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Abstract. Indoor residual spraying – spraying insecticide inside houses to kill

mosquitoes – has been one of the most effective methods of disease control ever
devised, being responsible for the near-eradication of malaria from the world

in the third quarter of the twentieth century and saving tens of millions of

lives. However, with malaria resurgence currently underway, it has received
relatively little attention, been applied only in select physical locations and

not always at regular intervals. We extend a time-dependent model of malaria
spraying to include spatial heterogeneity and address the following research

questions: 1. What are the effects of spraying in different geographical areas?

2. How do the results depend upon the regularity of spraying? 3. Can we alter
our control strategies to account for asymmetric phenomena such as wind?

We use impulsive partial differential equation models to derive thresholds for

malaria control when spraying occurs uniformly, within an interior disc or under
asymmetric advection effects. Spatial heterogeneity results in an increase in

the necessary frequency of spraying, but control is still achievable.

1. Introduction. Malaria is an infectious disease that causes morbidity and mor-
tality in the developing world. There are an estimated 360 million cases [29], killing
between one to two million people annually [6], primarily among children less than
five years of age in sub-Saharan Africa [16]. Three billion people – almost half the
world’s population – are at risk of malaria [19, 25, 29]. It has been estimated that
one in two humans who ever lived has been killed by malaria [10].

In the absence of effective strategies [26], the number of malaria cases might
double over the next 20 years. Symptoms include acute febrile illness, chronic de-
bilitation, complication of pregnancy, and impairment of the physical development
and learning ability of children. Malaria has an enormous negative social impact
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in high-burden areas [16] and devastating economic effects; in sub-Saharan Africa,
malaria costs more than one percentage point of economic growth every year [16].

Malaria is strongly associated with location, with disease transmission restricted
to a few kilometres from specific mosquito breeding sites [7]. The clustering of
malaria risk has been recognised as a potent factor underlying the robustness of
malaria transmission [15]. Conversely, knowledge of locations and individuals at
high risk allows specific targeting of intervention measures [13].

Prevention of malaria relies on two main methods: insecticide-treated nets and
indoor residual spraying (IRS); both are known to be highly effective [21]. The latter
involves spraying houses and structures with insecticides, thereby killing mosquitoes
after they have fed, in an effort to stop transmission of the disease. Using these
methods, malaria was eradicated or greatly reduced in many countries in the world
between the 1940s and 1960s. Due to its success, DDT was rapidly introduced into
public health and malaria-control campaigns, and was the main insecticide used in
the malaria-eradication campaign carried out between 1955 and 1969 [30]. In sub-
Saharan Africa, early malarial eradication pilot projects also showed that malaria
was highly responsive to IRS [20].

In recent years, however, IRS has received relatively little attention, despite evi-
dence of its effectiveness in malaria control in countries where it was implemented
[14]. Careful delineation of spray areas and populations is necessary for determin-
ing the scale of expected impact for each intervention [31]. IRS cannot be used
in areas devoid of structures, such as forests or swamps [14]. The application of
IRS consistently over time in large areas has altered the vector distribution and
subsequently the epidemiological pattern of malaria in Botswana, Namibia, South
Africa, Swaziland and Zimbabwe [5, 8, 12, 17]. IRS has commonly been the inter-
vention of choice in areas of a particular economic interest (e.g. tourism, mining, oil
extraction, agricultural schemes) that requires a rapid and very effective prevention,
where financial and logistic constraints do not prevail [14]. It follows that the spatial
heterogeneity of landscape, urban/rural population densities and the distribution
of structures plays an important role in the control of malaria.

In this paper, we developed a PDE model to study the effect of IRS, using
impulsive partial differential equations, in order to determine the minimal effective
spraying period and the amount by which mosquitoes should be reduced at each
spraying event. This work is a generalisation of [27], extending our time-dependent
spraying model to incorporate spatial effects. We address the following research
questions: 1. What are the effects of spraying in different geographical areas? 2.
How do the results depend upon the regularity of spraying? 3. Can we alter our
control strategies to account for asymmetric phenomena such as wind? To the best
of our knowledge, this is the first PDE model of malaria.

This paper is organised as follows. In Section 2, we introduce the problem as a
system of PDEs with initial and boundary conditions. In Section 3, we determine
steady-state and time-dependent solutions to the PDEs and incorporate impulsive
effects. In Section 4, we analyse the impulsive system and examine the effects of
fixed and nonfixed spraying, both in our entire region and also within a smaller disc.
In Section 5, we find the solution when the wind impact is taken into account. In
Section 6, we support our results with numerical simulations. We conclude with a
discussion.
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2. The model. Assume that mosquitoes are either susceptible (M) or infected
(N). Their birth rate is Λ and their death rate µq, which do not vary significantly
if they are infected. The rate of infecting a mosquito is βm and the number of
infected humans is I. Assume that spraying reduces both susceptible and infected
mosquitoes by the same portion r, satisfying 0 ≤ r ≤ 1, and that it occurs at distinct
times tk (k = 0, 1, 2, . . .). These times may be fixed or variable. We assume that
both susceptible and infected mosquitoes diffuse with the same diffusion constant
D. Humans may be susceptible (S), infected (I), or temporarily immune (R).
Individuals who have experienced infection may recover without substantial gain
in immunity at recovery rate h or may become temporarily immune at acquired
immunity rate α. Temporarily immune individuals will become susceptible again
at rate δ. The rate of infection of a susceptible individual is βh. The birth rate for
humans is π, the natural death rate is µh and the disease-specific death rate is γ.
See [27] for further details.

We thus have a system of impulsive PDEs. That is, between impulses tk, the
continuous system of PDEs in the representative area B(0, ρ0) ⊂ R2 (the disc with
radius ρ0 and center at the origin (0, 0)) is the following:

St = π − βhSN + hI + δR− µhS (1)

It = βhSN − hI − αI − (µh + γ)I (2)

Rt = αI − δR− µhR (3)

Mt = Λ− µqM − βmMI +D∆M t 6= tk (4)

Nt = −µqN + βmMI +D∆N t 6= tk, (5)

with the boundary conditions

Mρ(t, ρ0) = Nρ(t, ρ0) = 0 on ∂B(0, ρ0), (6)

which means that mosquitoes do not enter or leave the disc. Here ∂B(0, ρ0) repre-
sents the boundary of the disc B(0, ρ0). We refer the interested reader to [2, 3, 4, 18]
for more details on the theory of impulsive differential equations.

For t = tk (impulsive conditions), we have the following:

M+ = (1− r)M− t = tk (7)

N+ = (1− r)N− t = tk. (8)

Here ()+ and ()− are the left and right limits at tk.

Remark 1. Note that, because of the term βhSN in equation (2), if the number
of infected mosquitoes (N) decreases, then the number of infected humans will also
decrease. Furthermore, since spraying does not differentiate between susceptible
and infected mosquitoes, we will consider the total mosquito population. Thus,
our analysis will focus on reducing the total number of mosquitoes as a way of
controlling malaria.

Define Ψ ≡ M + N (representing the total number of mosquitoes). Then Ψ
satisfies

Ψt = Λ− µqΨ +D∆Ψ in B(0, ρ0) (9)

with the boundary condition

Ψρ(t, ρ0) = 0 on ∂B(0, ρ0) (10)

and the impulsive condition
Ψ+ = (1− r)Ψ−. (11)
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To find the exact solution for (9)-(11), we will use classical methods for solving
PDEs [1]. We will begin with a particular solution (radially symmetric), then we
will look for a general solution.

3. Radially symmetric solution. Assume that the solution of (9)-(11) is radially
symmetric, which means that the solution of this problem in polar coordinates is
independent of θ. Thus, Ψ(θ, ρ) = Ψ(ρ), so ∆Ψ = Ψ′′ + 1

ρΨ′, where Ψ′ ≡ Ψρ.

We will look at the solution as a sum of two solutions, the steady state solution
Ψs and a time-dependent solution Ψd. Therefore, the solution for (9)-(11) can be
written as

Ψ = Ψs + Ψd. (12)

3.1. Steady-state solution. Let t → ∞ in (9) and (10), then define Ψs as a
solution for the resulting steady-state boundary value problem. Then Ψs satisfies

Λ− µqΨs +D(Ψ′′s +
1

ρ
Ψ′s) = 0

Ψ′s(ρ0) = 0.

This ODE can be written as

ρ2(Ψs)
′′ + ρ(Ψs)

′ − µq
D
ρ2Ψ =

−Λ

D
ρ2. (13)

We will look at Ψs as a sum of two solutions; i.e.

Ψs = Ψh + Ψp, (14)

homogeneous and particular solutions, respectively. The homogeneous solution sat-
isfies

ρ2(Ψh)′′ + ρ(Ψh)′ − µq
D
ρ2Ψh = 0 (15)

and the particular solution is a solution for (13).
By Theorem 1, Appendix A, [1], one solution of (15) is of the form

Ψh(ρ) =

∞∑
n=0

anρ
s+n, (16)

with a0 6= 0 (arbitrary constant), s ∈ R.
Since (16) satisfies (15), we have

∞∑
n=0

an(s+ n)(s+ n− 1)ρs+n +

∞∑
n=0

an(s+ n)ρs+n − µq
D

∞∑
n=0

anρ
s+n+2 = 0,

which is equivalent to

a0(s(s−1)+s)ρs+a1((s+1)s+(s+1))ρs+1 +

∞∑
n=2

(−µq
D
an−2 +(s+n)2an)ρs+n = 0.

(17)
It is clear that all terms in (17) are zeros so, from the coefficient of ρs, we have s = 0.
The coefficient of ρs+1 implies a1 = 0. Finally, the last term implies an =

µq
D
an−2

n2

for all n ≥ 2. In other words, for all n ≥ 0, we have a2n+1 = 0 and a2n =
(
µq
D )n

(2nn!)2 a0.

Therefore, we have

Ψh(ρ) = a0

∞∑
n=0

(
µq
D )nρ2n

(2nn!)2
. (18)
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Another independent solution for (15) is Ψ̃h = Ψh × ln(ρ) +
∑∞
m=1 bmρ

m (see
Theorem 2, Appendix A, [1]), which is ignored here because it is singular at the
origin.

Note that any particular solution for (13) has the form

Ψp(ρ) = Aρ2 +Bρ+ C, (19)

for some constants A, B and C. Since (19) satisfies (15), we have

−µq
D
Aρ4 − µq

D
Bρ3 + (4A− µq

D
C)ρ2 +Bρ = −Λ

D
ρ2,

which implies A = B = 0 and C = Λ
µq

. Therefore,

Ψp =
Λ

µq
. (20)

As a result of (14), (18) and (20) imply

Ψs =
Λ

µq
+ c1

∞∑
n=0

(
µq
D )nρ2n

(2nn!)2
.

Now, using the boundary condition Ψ′s(ρ0) = 0, we conclude that c1 = 0. Therefore,

Ψs =
Λ

µq
. (21)

Remark 2. Note that if we analyse the system without impulses, then the same
idea above can be used to prove that the disease-free equilibrium (I = 0) for the

nonimpulsive model (4), (5) and (6) is given by E0 = (M,N) =
(

Λ
µq
, 0
)

. This

result agrees with what we have in Equation 3.1, [27].

3.2. Time-dependent solution. The time-dependent solution Ψd satisfies

(Ψd)t = −µqΨd +D(Ψ′′d +
1

ρ
Ψ′d), (22)

and the two conditions (10) and (11).
To calculate the solution of this problem, we will use the separation of variables

method, so let Ψd(t, ρ) = T (t)R(ρ). If we substitute this in (22), then we have

T ′

DT
+
µq
D

=
R′′

R
+

1

ρ

R′

R
. (23)

Since the left-hand side in (23) depends on t only and the right-hand side depends
on ρ only, then we must have

T ′

DT
+
µq
D

= k (24)

and
R′′

R
+

1

ρ

R′

R
= k, (25)

for some constant k. Also, the boundary condition (10) implies

R′(ρ0) = 0. (26)

Now consider the two cases:
Case 1. k = 0.
In this case, (24) implies T ′ + µqT = 0. Therefore, T (t) = T0 exp(−µqt), for some
constant T0. Also, (25) becomes (ρR′)′ = 0, which implies ρR′ = C, for some
constant C. Moreover, from (26), we have C = 0. Therefore, we have R(ρ) = ρ∗, for
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some constant ρ∗. As a result of this case, we have Ψ(t, ρ) = Ψ(t) = c0 exp(−µqt),
for some constant c0.
Case 2. k 6= 0.
In this case, (24) can be written as T ′ + (µq − kD)T = 0, which has the solution
T (t) = T1 exp((kD − µq)t), for some constant T1. Note that the solution Ψ should
satisfy, Ψ→ Ψs (unconditionally) as t→∞, so k must be of the form k = −λ2, for
some constant λ. Also, equation (25) can be written in the form

ρ2R′′ + ρR′ + λ2ρ2R = 0. (27)

To find R(ρ) that satisfies (26) and (27), we try a solution of the form (16) and
conclude that

R(ρ) = a0

∞∑
n=0

(−1)n(λρ)2n

(2nn!)2
≡ a0J0(λρ),

which is a Bessel function of the first kind [1]. Again we ignored the second in-

dependent singular solution; that is, the solution of the form R̃(ρ) = R(ρ) ln(ρ) +∑∞
n=1 bnρ

n. Therefore, the set of all regular solutions for (27) is

R(ρ) = c2J0(λρ).

But R′(ρ0) = 0, so we have c2λJ
′
0(λρ0) = −c2λJ1(λρ0) = 0, so c2 6= 0 only when

λ = λn =
z′n
ρ0

, where z′n (n = 1, 2, 3, . . .) is an increasing sequence of positive roots

of J ′0(ρ) = −J1(ρ) (the second Bessel function of the first kind). As a result of the
two cases, we have

Ψd(t, ρ) = c0 exp(−µqt) +

∞∑
n=1

cn exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)t)J0(
z′n
ρ0
ρ), (28)

3.3. General solution and impulsive condition. From (12), (21) and (28), the
general solution for (9) and (10) (the boundary value problem between impulses) is

Ψ(t, ρ) =
Λ

µq
+ c0 exp(−µqt) +

∞∑
n=1

cn exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)t)J0(
z′n
ρ0
ρ). (29)

Next, we will use the impulsive conditions (11) to determine the value of cn for
n = 0, 1, 2, . . . Note that cn will depend also on k; for this reason, we will replace
cn by cn,k.

For n = 0, we will use the fact that J0(0) = 1, so (29) and the impulsive conditions
imply

c0,k = (Ψ(t+k , 0)− Λ

µq
) exp(µqtk)−

∞∑
n=1

cn,k exp(−
∣∣∣∣z′nρ0

∣∣∣∣2Dtk), (30)

which means that c0,k depends on cn,k for n ≥ 1.
For n ≥ 1, we will use the fact that∫ ρ0

0

ρJ1(
z′n
ρ0
ρ)J1(

z′m
ρ0
ρ)dρ =

1

2
ρ2

0J
2
2 (z′n)δn,m, (31)

which can be found in [9], page 285.
From (29) and the impulsive conditions, we have

Ψ(t+k , ρ)− Λ

µq
− c0,k exp(−µqtk) =

∞∑
n=1

cn,k exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)tk)J0(
z′n
ρ0
ρ). (32)
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Now differentiate both sides of (32) with respect to ρ. Then we have

Ψρ(t
+
k , ρ) = −

∞∑
n=1

z′n
ρ0
cn,k exp((−µq −

∣∣∣∣z′nρ0

∣∣∣∣2D)tk)J1(
z′n
ρ0
ρ). (33)

Multiplying (33) by ρJ1(
z′n
ρ0
ρ) and integrating over [0, ρ], then using (31) with some

rearranging, we conclude

cn,k =
−2

ρ0z′nJ
2
2 (z′n)

exp((µq +

∣∣∣∣z′nρ0

∣∣∣∣2D)tk)

∫ ρ0

0

ρΨρ(t
+
k , ρ)J1(

z′n
ρ0
ρ)dρ. (34)

Then (29), (30) and (34) imply

Ψ(t, ρ) =
Λ

µq
[1− exp(−µq(t− tk))]

+ [Ψ(t+k , 0) +

∞∑
n=1

2

ρ0znJ2
2 (z′n)

∫ ρ0

0

ρΨρ(t
+
k , ρ)J1(

z′n
ρ0
ρ)dρ] exp(−µq(t− tk))

−
∞∑
n=1

2

ρ0z′nJ
2
2 (z′n)

exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t− tk))

∫ ρ0

0

ρΨρ(t
+
k , ρ)J1(

z′n
ρ0
ρ)dρ.

The impulsive conditions (11) can be written as

Ψ(t+k , ρ) = (1− r)Ψ(t−k , ρ), (35)

where
Ψ(t+0 , ρ) ≡ (1− r)Ψ0(ρ). (36)

As a result, we have

Ψ(t−k+1, ρ) =
Λ

µq
[1− exp(−µq(tk+1 − tk))]

+ [Ψ(t+k , 0)−
∞∑
n=1

bn,k] exp(−µq(tk+1 − tk))

+

∞∑
n=1

bn,k exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tk+1 − tk)).

=
Λ

µq
[1− exp(−µq(tk+1 − tk))]

+ [(1− r)Ψ(t−k , 0)−
∞∑
n=1

bn,k] exp(−µq(tk+1 − tk))

+

∞∑
n=1

bn,k exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tk+1 − tk)), (37)

where

bn,k =
−2

ρ0z′nJ
2
2 (z′n)

∫ ρ0

0

ρΨρ(t
+
k , ρ)J1(

z′n
ρ0
ρ)dρ

=
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρΨρ(t
−
k , ρ)J1(

z′n
ρ0
ρ)dρ. (38)

As a result, we have a recurrence relation for the total number of mosquitoes at
any point with distance ρ from the origin, immediately before spraying (equations
(37) and (38)), under the assumption that the solution is radially symmetric. This
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relation depends on the birth and death rates of mosquitoes, the spraying times,
and the spraying effectiveness.

Note also that, since spraying always reduces the total number of mosquitoes,
the solution immediately before spraying will be a local maximum.

Remark 3. Note that if Ψ0(ρ) = C is constant in ρ, then bn,k = 0 for all n ≥ 1,
because (Ψ0)ρ = 0. Therefore, (37) becomes

Ψ(t−k+1, ρ) =
Λ

µq
[1− exp(−µq(tk+1 − tk))]

+ (1− r)Ψ(t−k , 0) exp(−µq(tk+1 − tk)),

which is similar to what we have in the nonspatial model [27].

In the following example, we introduce a simple function Ψ0 to give the reader
an idea about evaluating the coefficients bn,k given by the formula (38).

Example. Let Ψ0(ρ) = ρ2
0−ρ2 +α (ρ0 and α are positive constants), which means

we have more mosquitoes in the center of the circle, under the assumption that we
have more houses and farms at the center and mosquitoes prefer to live in these
places. This distribution is illustrated in Figure 1.

Figure 1. A centre-focused distribution of mosquitoes. Here,
Ψ0(ρ) for ρ0 = 1, α = 0.5 and 0 ≤ ρ ≤ 1.
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Then we have

bn,0 =
4

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρ2J1(
z′n
ρ0
ρ)dρ

=
4ρ2

0

(z′n)4J2
2 (z′n)

(1− r)
∫ z′n

0

u2J1(u)du

=
4ρ2

0

(z′n)4J2
2 (z′n)

(1− r)
[
u2J2

2 (u)
]z′n
0

=
4ρ2

0

(z′n)2
(1− r).

Here, we used integration by substitution and the fact that d
dρ (ρ2J2

2 (ρ)) = ρ2J1(ρ).

(See [9], page 282.) Therefore,

Ψ(t−1 , ρ) =
Λ

µq
[1− exp(−µq(t1 − t0))] + (1− r)Ψ0(0) exp(−µq(t1 − t0))

− 4ρ2
0(1− r) exp(−µq(t1 − t0))

∞∑
n=1

1

(z′n)2

+ 4ρ2
0(1− r)

∞∑
n=1

1

(z′n)2
exp((−µq −

∣∣∣∣z′nρ0

∣∣∣∣2D)(t1 − t0)).

This function represents the number of mosquitoes immediately before the first
spraying.

4. Symmetric patterns of spraying. We now examine a number of different
options for spraying, that vary with time and space, but where the pattern is sym-
metric. Spatially, we shall look at uniform spraying and then spraying within an
interior region. However, we shall also examine time-dependency of spraying. Ide-
ally, spraying would occur at fixed, regular intervals. However, due to infrastructure
and resource limitations, it may not be possible to spray periodically. Furthermore,
the past history of spraying events may not be available, meaning that we need
to derive a solution for nonfixed spraying, under the constraint that only limited,
recent information may be available.

4.1. Spraying is applied everywhere and occurs at fixed times. First we
shall examine the case most analagous to [27], where the landscape is homogeneous,
so that spraying can be applied uniformly. We shall also examine the idealised case,
when spraying can be applied at regular periods.

From (37) and (38), we have

Ψ−1 ≡ Ψ(t−1 , ρ)

=
Λ

µq
[1− exp(−µq(t1 − t0))] + (1− r)Ψ0(0) exp(−µq(t1 − t0))

− exp(−µq(t1 − t0))

∞∑
n=1

bn,0 +

∞∑
n=1

bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t1 − t0))J0(
z′n
ρ0
ρ),

where

bn,0 =
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρ(Ψ0)ρ(ρ)J1(
z′n
ρ0
ρ)dρ.
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Thus

Ψ−2 =
Λ

µq
[1− exp(−µq(t2 − t1))] + (1− r)Ψ(t−1 , 0) exp(−µq(t2 − t1))

− exp(−µq(t2 − t1))

∞∑
n=1

bn,1 +

∞∑
n=1

bn,1 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t2 − t1))J0(
z′n
ρ0
ρ)

=
Λ

µq
[1− exp(−µq(t2 − t1))] + (1− r)

(
Λ

µq
[1− exp(−µq(t1 − t0))]

+ (1− r)Ψ0(0) exp(−µq(t1 − t0))− exp(−µq(t1 − t0))

∞∑
n=1

bn,0

+

∞∑
n=1

bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t1 − t0))

)
exp(−µq(t2 − t1))

− exp(−µq(t2 − t1))

∞∑
n=1

bn,1 +

∞∑
n=1

bn,1 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t2 − t1))J0(
z′n
ρ0
ρ),

where

bn,1 =
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρ

( ∞∑
s=1

bs,0 exp((−µq − (
z′s
ρ0

)2D)(t1 − t0))

− z
′
s

ρ0
J1(

z′s
ρ0
ρ)

)
J1(

z′n
ρ0
ρ)dρ

=
−2

ρ0z′nJ
2
2 (z′n)

(1− r)bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t1 − t0))− z′n
ρ0

ρ2
0

2
J2

2 (z′n)

= (1− r) exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t1 − t0))bn,0,

and where we have used (31). Therefore, we have

Ψ−2 =
Λ

µq
[1− r exp(−µq(t2 − t1))− (1− r) exp(−µq(t2 − t0))]

+ (1− r)2Ψ0(0) exp(−µq(t2 − t0))− (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0

+ (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t1 − t0))

− (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t1 − t0))

+ (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t2 − t0))J0(
z′n
ρ0
ρ),
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which implies

Ψ−2 =
Λ

µq
[1− r exp(−µq(t2 − t1))− (1− r) exp(−µq(t2 − t0))]

+ (1− r)2Ψ0(0) exp(−µq(t2 − t0))− (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0

+ (1− r) exp(−µq(t2 − t0))

∞∑
n=1

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t2 − t0))J0(
z′n
ρ0
ρ).

We now repeat the process to get

Ψ−3 =
Λ

µq
[1− exp(−µq(t3 − t2))] + (1− r)Ψ(t−2 , 0) exp(−µq(t3 − t2))

− exp(−µq(t3 − t2))

∞∑
n=1

bn,2 +

∞∑
n=1

bn,2 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t3 − t2))J0(
z′n
ρ0
ρ)

=
Λ

µq
[1− r exp(−µq(t3 − t2))− r(1− r) exp(−µq(t3 − t1))

− (1− r)2 exp(−µq(t3 − t0))] + (1− r)3Ψ0(0) exp(−µq(t3 − t0))

− (1− r)2 exp(−µq(t3 − t0))

∞∑
n=0

bn,0

+ (1− r)2 exp(−µq(t3 − t0))

∞∑
n=0

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t2 − t0))

− exp(−µq(t3 − t2))

∞∑
n=1

bn,2 +

∞∑
n=1

bn,2 exp(−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D(t3 − t2))J0(
z′n
ρ0
ρ),

with

bn,2 =
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρ

(
(1− r) exp(−µq(t2 − t0))

∞∑
s=1

bs,0

× exp(−(
z′s
ρ0

)2D(t2 − t0)) − z
′
s

ρ0
J1(

z′s
ρ0
ρ)

)
J1(

z′n
ρ0
ρ)dρ

= (1− r)2 exp(−µq(t2 − t0)) exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t2 − t0))bn,0.

Then,

Ψ−3 =
Λ

µq
[1− r exp(−µq(t3 − t2))− r(1− r) exp(−µq(t3 − t1))

− (1− r)2 exp(−µq(t3 − t0))] + (1− r)3Ψ0(0) exp(−µq(t3 − t0))

− (1− r)2 exp(−µq(t3 − t0))
∞∑
n=0

bn,0

+ (1− r)2
∞∑
n=1

bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t3 − t0))J0(
z′n
ρ0
ρ).
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Similarly,

Ψ−4 =
Λ

µq
[1− exp(−µq(t4 − t3))] + (1− r)Ψ(t−3 , 0) exp(−µq(t4 − t3))

− exp(−µq(t4 − t3))

∞∑
n=1

bn,3 +

∞∑
n=1

bn,3 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t4 − t3))J0(
z′n
ρ0
ρ)

where

bn,3 = (1− r)3 exp(−µq(t3 − t0)) exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(t3 − t0))bn,0.

Hence,

Ψ−4 =
Λ

µq
[1− r exp(−µq(t4 − t3))− r(1− r) exp(−µq(t4 − t2))

− r(1− r)2 exp(−µq(t4 − t1))− (1− r)3 exp(−µq(t4 − t0))]

+ (1− r)4Ψ0(0) exp(−µq(t4 − t0))− (1− r)3 exp(−µq(t4 − t0))

∞∑
n=0

bn,0

+ (1− r)3
∞∑
n=1

bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(t4 − t0))J0(
z′n
ρ0
ρ).

We can thus derive the general solution for the value immediately before the mth
spraying:

Ψ−m =
Λ

µq
[1−

m−1∑
i=1

r(1− r)m−i−1 exp(−µq(tm − ti))

− (1− r)m−1 exp(−µq(tm − t0))]

+ (1− r)mΨ0(0) exp(−µq(tm − t0))− (1− r)m−1 exp(−µq(tm − t0))

∞∑
n=0

bn,0

+ (1− r)m−1
∞∑
n=1

bn,0 exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tm − t0))J0(
z′n
ρ0
ρ). (39)

If spraying occurs at fixed times, so that τ = ts+1 − ts, then tm − ti = (m − i)τ .
Therefore, we have

Ψ−m =
Λ

µq
[1− r exp(−µqτ)− r(1− r)m−1 exp(−µqmτ)

1− (1− r) exp(−µqτ)

− (1− r)m−1 exp(−µqmτ)]

+ (1− r)mΨ0(0) exp(−µqmτ)− (1− r)m−1 exp(−µqmτ)

∞∑
n=0

bn,0

+ (1− r)m−1 exp(−µqmτ)

∞∑
n=1

bn,0 exp(−
∣∣∣∣z′nρ0

∣∣∣∣2Dmτ)J0(
z′n
ρ0
ρ).

Since 0 < r ≤ 1, we have proved the following theorem.

Theorem 4.1. The total mosquito population satisfies

lim
m→∞

Ψ−m =
Λ

µq
[1− r exp(−µqτ)

1− (1− r) exp(−µqτ)
].
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Remark 4. Note that Ψ−m → 0 as τ → 0 and m→∞, which means that the total
mosquito population shrinks to zero as the spraying period decreases.

We can reduce the total mosquito population below a desired threshold Ψ̃ per
unit area, if the minimum spraying effectiveness satisfies

r̃ = 1− [1− Λ

µqΨ̃
(1− exp(−µqτ))] exp(µqτ),

or if the minimum spraying period satisfies

τ̃ = − 1

µq
ln[

Λ− µqΨ̃
Λ + µqΨ̃(r − 1))

],

which are similar to the results given in Corollary 4.3, [27].
Note that the total number of mosquitoes is independent ofD, because asm→∞

we have also t → ∞. The number of mosquitoes is thus in steady state, where no
diffusion occurs.

It follows that we can find the minimal spraying effectiveness or the minimal
spraying period for fixed spraying in the entire region, in terms of the birth and
death rates of mosquitoes and the spraying effectiveness. The results agree with the
nonspatial model [27]. Therefore, our work proves that some of the results in [27]
apply to the spatial model, when spraying is applied everywhere and a symmetric
solution is considered.

4.2. Spraying is applied everywhere and occurs at nonfixed times. Note
that, for large m, all terms in (39) containing (1− r)m−1 or (1− r)m are very small
because 0 < r ≤ 1. Therefore,

Ψ−m ≈
Λ

µq
[1−

m−1∑
i=1

r(1− r)m−i−1 exp(−µq(tm − ti))]

<
Λ

µq
[1− r(1− r)m−(m−1)−1 exp(−µq(tm − tm−1))]

=
Λ

µq
[1− r exp(−µq(tm − tm−1))]. (40)

Also

Ψ−m+1 =
Λ

µq
[1− exp(−µq(tm+1 − tm))]

+ [(1− r)Ψ(t−m, 0)−
∞∑
n=1

bn,m] exp(−µq(tm+1 − tm))

+

∞∑
n=1

bn,m exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tm+1 − tm)),

where

bn,m = (1− r)m exp(−µq(tm − t0)) exp(−
∣∣∣∣z′nρ0

∣∣∣∣2D(tm − t0))bn,0,

which is very small for large m because 0 < r ≤ 1. This implies

Ψ−m+1 ≈
Λ

µq
[1− exp(−µq(tm+1 − tm))] + (1− r)Ψ(t−m, 0) exp(−µq(tm+1 − tm)).

(41)
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Spraying

No spraying

Figure 2. Spraying in an interior disc.

From (40) and (41), we have

Ψ−m+1 <
Λ

µq
[1− exp(−µq(tm+1 − tm))]

+ (1− r) Λ

µq
[1− r exp(−µq(tm − tm−1))] exp(−µq(tm+1 − tm)),

≡ Ψ̃.

Solving for tm+1, we have

tm+1 = tm −
1

µq
ln

[
2− r − Ψ̃µq

Λ

1 + r(1− r) exp(−µq(tm − tm−1))

]
,

which gives the time at which the spraying reduces the number of mosquitoes to be
less than Ψ̃ (a desired value per unit area). Note that to find such time we need to
know the previous two spraying times. This is exactly what we have in Theorem
4.4, [27].

Thus, the “next best” spraying events for nonfixed spraying is derived, by assum-
ing that the time between the current spraying and two sprayings events previously
is sufficiently large. Again, we prove that the results in [27] are analogous in the
spatial model when a nonfixed spraying is applied everywhere and a symmetric
solution is considered.

The following theorem then follows immediately.

Theorem 4.2. If nonfixed spraying occurs indefinitely, then there exists a minimum
spraying effectiveness r0, satisfying 0 < r0 < 1, such that variable spraying is only
effective for r0 ≤ r < 1. Furthermore, on this interval, the minimum spraying
interval for indefinite nonfixed spraying is always less than the minimum spraying
interval for regular spraying.

Proof. See Theorem 4.5, [27].

4.3. Fixed spraying in an interior disc. Let 0 < ρ00 < ρ0 and assume that
spraying is applied only in the disc B(0, ρ00). See Figure 2. Moreover, the flux on
the boundary of the center circle depends on both time and diffusion. Thus, if τ
and D are sufficiently small, mosquitoes will not have enough time to diffuse to the
disc B(0, ρ00) from the outer region B(0, ρ0) \B(0, ρ00); we shall thus assume that
this effect is negligible.
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In this case, the impulsive conditions (35) and (36) are applied to the disc
B(0, ρ00) and the initial condition Ψ(t0, ρ) = Ψ0(ρ) is applied to the annulus
B(0, ρ0) \B(0, ρ00). This implies that the impulsive solution in B(0, ρ00) is

Ψ(t−k+1, ρ) =
Λ

µq
[1− exp(−µq(tk+1 − tk))]

+ [(1− r)Ψ(t−k , 0)−
∞∑
n=1

bn,k] exp(−µq(tk+1 − tk))

+

∞∑
n=1

bn,k exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tk+1 − tk)),

where

bn,k =
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ0

0

ρΨρ(t
−
k , ρ)χ[0,ρ00]J1(

z′n
ρ0
ρ)dρ

=
−2

ρ0z′nJ
2
2 (z′n)

(1− r)
∫ ρ00

0

ρΨρ(t
−
k , ρ)J1(

z′n
ρ0
ρ)dρ.

In the annulus B(0, ρ0) \B(0, ρ00), the solution is

Ψ(tk+1, ρ) =
Λ

µq
[1− exp(−µq(tk+1 − t0))]

+ [Ψ0(0)−
∞∑
n=1

bn] exp(−µq(tk+1 − t0))

+

∞∑
n=1

bn exp((−µq −
∣∣∣∣z′nρ0

∣∣∣∣2D)(tk+1 − t0)),

where

bn =
−2

ρ0z′nJ
2
2 (z′n)

∫ ρ0

ρ00

ρ(Ψ0)ρ(ρ)J1(
z′n
ρ0
ρ)dρ.

Therefore, we have

Ψ(t−k+1, ρ) = Ψ(t−k+1, ρ)χ[0,ρ00] + Ψ(tk+1, ρ)χ(ρ00,ρ0].

Here, χ is the characteristic function defined by

χ[a,b] =

{
1 ρ ∈ [a, b]
0 elsewhere.

Similar to Section 4.1 (fixed spraying applied everywhere), we have

lim
k→∞

Ψ(t−k+1, ρ)→ Λ

µq
[1− r exp(−µqτ)

1− (1− r) exp(−µqτ)
].

The work is identical except for bn,k, in which all the integrals are evaluated over
[0, ρ00] instead of [0, ρ0].

Also, it is clear that

lim
k→∞

Ψ(tk+1, ρ)→ Λ

µq
,

because in this case exp(−µq(tk+1 − t0)) = exp(−µq(k + 1)τ) → 0. Therefore, as
k →∞, we have

Ψ(t−k+1, ρ)→ Λ

µq
[1− r exp(−µqτ)

1− (1− r) exp(−µqτ)
]χ[0,ρ00](ρ) +

Λ

µq
χ(ρ00,ρ0](ρ).
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Remark 5. Note that, as k →∞ and τ → 0, we have

Ψ(t−k+1, ρ)→ 0χ[0,ρ00] +
Λ

µq
χ(ρ00,ρ0].

This means that the number of mosquitoes in the interior disc B(0, ρ00) approaches
zero for sufficiently frequent spraying.

If the number of mosquitoes is less than or equal to a desired value Ψ̂, then we
have to solve

πρ2
00

Λ

µq
[1− r exp(−µqτ)

1− (1− r) exp(−µqτ)
] + π(ρ2

0 − ρ2
00)

Λ

µq
= Ψ̂,

or

Λ

µq
[1− r exp(−µqτ)

1− (1− r) exp(−µqτ)
] = Ψ̆,

where

Ψ̆ ≡ Ψ̂

πρ2
00

− ((
ρ0

ρ00
)2 − 1)

Λ

µq

= (
ρ0

ρ00
)2Ψ̃− ((

ρ0

ρ00
)2 − 1)

Λ

µq
. (42)

This implies that the minimum spraying effectiveness satisfies

r̃ = 1− [1− Λ

µqΨ̆
(1− exp(−µqτ))] exp(µqτ),

or the minimum spraying period satisfies

τ̃ = − 1

µq
ln[

Λ− µqΨ̆
Λ + µqΨ̆(r − 1))

].

Therefore, the minimal spraying effectiveness or the minimal spraying period for
the fixed spraying in an interior disc is derived, in terms of the birth and death rates
of mosquitoes and the spraying effectiveness. This differs from [27] in the term Ψ̆

instead of Ψ̃. Note that ∂τ
∂Ψ̆

> 0. It follows that, since the threshold has decreased

from Ψ̃ (in [27]) to Ψ̆ (see (42)), τ̃ must be lower (Ψ̆ is an increasing function in

( ρ0ρ00 )2 and has a maximum equal to Ψ̃ when ρ00 = ρ0). Thus, spatial considerations

force us to spray more frequently if regular spraying occurs only inside an interior
disc.

4.4. Nonfixed spraying in an interior disc. Suppose that the assumptions on
D still hold. As in Section 4.2 and the previous section, for large m, we can prove
that

Ψ−m+1 ≈
(

Λ

µq
[1− exp(−µq(tm+1 − tm))] + (1− r) Λ

µq

× [1− r exp(−µq(tm − tm−1)] exp(−µq(tm+1 − tm))

)
χ[0,ρ00] +

Λ

µq
χ(ρ00,ρ0].
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Again, define

Ψ̂ ≡ πρ2
00

(
Λ

µq
[1− exp(−µq(tm+1 − tm))]

+ (1− r) Λ

µq
[1− r exp(−µq(tm − tm−1)] exp(−µq(tm+1 − tm))

)
+ π(ρ2

0 − ρ2
00)

Λ

µq
. (43)

Now, we can solve (43) to conclude

tm+1 = tm −
1

µq
ln[

2− r − Ψ̆µq
Λ

1 + r(1− r) exp(−µq(tm − tm−1))
].

Thus, the “next best” spraying events for nonfixed spraying in an interior disc is
derived, by assuming that the time between the current spraying and two spraying

events previously is sufficiently large. In this case, ∂tm+1

∂Ψ̆
> 0 and thus reducing

the threshold from Ψ̃ (in [27]) to Ψ̆ reduces tm+1. It follows that nonfixed spraying
must be initiated earlier if spraying occurs only inside an interior disc.

5. Wind impact. Thus far, we have employed radial symmetry to derive solutions.
We now consider the effects of asymmetry on the outcome.

Both infected and noninfected classes of mosquitoes are not only under diffusion
due to flying, but may also be under advection by wind. To show the impact of
wind, we will add the terms v ·∇M and v ·∇N respectively, to the equations (4) and
(5) where v ≡ (v1, v2) is the wind velocity vector in the polar coordinate systems
(ρ, θ) and ∇ = (∂ρ,

1
ρ∂θ). Therefore, the equations in the ball B(0, ρ0) are

Mt = Λ− µqM + v · ∇M − βmMI +D∆M t 6= tk

Nt = −µqN + v · ∇N + βmMI +D∆N t 6= tk,

with the boundary condition (6) and the impulsive conditions (7)-(8).
Again setting Ψ = M +N , in the disc B(0, ρ0), we have

Ψt = Λ− µqΨ + v · ∇Ψ +D∆Ψ t 6= tk,

with the boundary condition (10) and the initial condition (11).
To solve this problem, we define w(t, ρ, θ) = Ψ(t, ρ−v1t, θ−v2t). Then wρ = Ψρ,

wθ = Ψθ and wt = Ψt − v · ∇Ψ. Therefore, w satisfies

wt = Λ− µqw +D∆w in B(0, ρ0),

which is equipped with the boundary condition

wρ(t, ρ0, θ) = 0 in ∂B(0, ρ0) (44)

and the impulsive condition

w+ = (1− r)w−. (45)

Note that we have to search for asymmetric solutions because the effect of wind is
not radial.

As we did for the radially symmetric solution, we will look at w = ws + wd, the
sum of the steady state and time-dependent solutions.
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5.1. Wind impact steady-state solution. As in Subsection 3.1, ws satisfies

Λ− µqws +D∆ws = 0 in B(0, ρ0), (46)

which is equipped with the boundary condition

(ws)ρ(ρ0, θ) = 0 in ∂B(0, ρ0). (47)

Consider the eigenvalue problem

∆φ(ρ, θ) = −kφ(ρ, θ) (48)

φρ(ρ0, θ) = 0. (49)

with k ≥ 0 (constant), 0 < ρ < ρ0 and 0 < θ < 2π. This problem can be solved
using separation of variables (see [9], page 231). Then we have

θ′′ +m2θ = 0 (50)

ρ2R′′ + ρR′ + (kρ2 −m2)R = 0 (51)

R′(ρ0) = 0.

Now, (50) has two independent solutions, cosmθ and sinmθ, for m = 0, 1, 2, . . .
Also, (51) has only one regular solution, Jm(λn,mρ). But R′(ρ0) = 0, which implies

λn,mJ
′
m(λn,mρ) = 0, so we have a nonzero solution only if λn,m =

z′n,m
ρ0

, where

z′n,m, n = 1, 2, . . ., is an increasing sequence of all nonnegative roots of J ′m, for
m = 0, 1, 2, . . .

As a result, the eigenvector for (48)-(49) corresponding to the eigenvalue k =

λ2
n,m = (

z′n,m
ρ0

)2 is

φ(ρ, θ) =

∞∑
m=0

∞∑
n=1

Jm(
z′n,m
ρ0

ρ)(an,m cosmθ + bn,m sinmθ). (52)

For (46)-(47), we shall try a solution of the form (52). Then we have

∞∑
m=0

∞∑
n=1

(
D(

z′n,m
ρ0

)2 + µq

)
Jm(

z′n,m
ρ0

ρ)(an,m cosmθ + bn,m sinmθ) = Λ. (53)

Note that if we multiply both sides of (53) by sinmθ, then integrate both sides over
[0, 2π], we get bn,m = 0. Also, if we multiply by cosmθ, then integrate over [0, 2π],
we get an,m = 0 for all m 6= 0. Therefore, (53) becomes

∞∑
n=1

(
D(

z′n,0
ρ0

)2 + µq

)
J0(

z′n,0
ρ0

ρ)an,0 = Λ. (54)

Now an,0 = 0, when n 6= 1, which can be proved by differentiating both sides of

(54), multiplying both sides of the result by J ′1(
z′n,0
ρ0
ρ), then integrating over [0, ρ0].

Then the result follows from (31). Therefore, the only nonzero term is the term
with the coefficient a1,0. But z′0,1 = 0 and J0(0) = 1, so a0,1 = Λ

µq
.

As a result, we have

ws =
Λ

µq
. (55)
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5.2. Wind impact time-dependent solution. The time-dependent solution wd
is the solution for

(wd)t = D∆wd − µqwd,

with the boundary condition (44) and the initial condition (45).
To find wd, we will use the separation of variables wd(t, ρ, θ) = T (t)R(ρ)Θ(θ).

Then we have

T ′ + (µq + kD)T = 0 (56)

ρ2R′′ + ρR′ + (ρ2k − l)R = 0 (57)

R′(ρ0) = 0 (58)

Θ′′ + lΘ = 0. (59)

Here, k and l are constants.
To have a periodic solution for (59), we should have l = m2 for some m ∈ R,

and this implies that (59) has the two independent solutions, cosmθ and sinmθ.

For (57) and (58), we have only one regular solution, Jm(
z′n,m
ρ0

ρ), where z′n,m, n =

0, 1, 2, 3, . . ., is an increasing sequence of all nonnegative zeros of J ′m. Note that

this implies that k = (
z′n,m
ρ0

)2. Finally, (56) has the solution T (t) = T0 exp((−µq −

(
z′n,m
ρ0

)2D)t). As a result,

wd(t, ρ, θ) = a0,0 exp(−µqt) +

∞∑
m=0

∞∑
n=1

exp((−µq − (
z′n,m
ρ0

)2)t)

× Jm(
z′n,m
ρ0

ρ)(an,m cosmθ + bn,m sinmθ). (60)

The term a0,0 exp(−µqt) is added because we have to consider the case k = 0, at
which J0(0) = 1 and Jm(0) = 0 for m > 0.

5.3. Wind impact general solution. Using (55) and (60), we have

w(t, ρ, θ) =
Λ

µq
+ a0,0 exp(−µqt) +

∞∑
m=0

∞∑
n=1

exp((−µq − (
z′n,m
ρ0

)2D)t)

× Jm(
z′n,m
ρ0

ρ)(an,m cosmθ + bn,m sinmθ).

Here, an,m and bn,m can be determined using the identities (see [24])∫ 2π

0

∫ ρ0

0

ρJm(
z′n,m
ρ0

ρ)Js(
z′s,k
ρ0

ρ) cosmθ sin sθdρdθ = 0∫ 2π

0

∫ ρ0

0

ρJm(
z′n,m
ρ0

ρ)Js(
z′s,k
ρ0

ρ) cos2mθdρdθ = π
ρ2

0

2
(1− (

m

z′n,m
)2)J2

m(z′n,m)∫ 2π

0

∫ ρ0

0

ρJm(
z′n,m
ρ0

ρ)Js(
z′s,k
ρ0

ρ) sin2mθdρdθ = π
ρ2

0

2
(1− (

m

z′n,m
)2)J2

m(z′n,m).

Finally, the total number of mosquitoes is

Ψ(t, ρ, θ) = w(t, ρ+ v1t, θ + v2t),



908 MO’TASSEM AL-ARYDAH AND ROBERT SMITH?

which is only a shifting for the solution w. In other words, we have

Ψ(t, ρ, θ) =
Λ

µq
+ a0,0 exp(−µqt) +

∞∑
m=0

∞∑
n=1

exp((−µq − (
z′n,m
ρ0

)2D)t)

× Jm(
z′n,m
ρ0

(ρ+ v1t))(an,m cosm(θ + v2t) + bn,m sinm(θ + v2t)).

Remark 6. Note that shifting does not affect the mosquito population, so one can
analyse the impulsive system for w instead of Ψ.

To reduce the mosquito population in an interior area B(0, ρ00), we have to spray
in B(−vt, ρ00), because of the wind impact.

A similar analysis to that in Subsection 4.1 implies that

w(tk+1, ρ, θ) =
Λ

µq
[1− exp(−µq(tk+1 − tk))]

+ (1− r)w(t−k , 0, θ) exp(−µq(tk+1 − tk))

+

∞∑
m=0

∞∑
n=1

exp((−µq − (
z′n,m
ρ0

)2D)(tk+1 − tk))

× Jm(
z′n,m
ρ0

ρ)(an,m,k cosmθ + bn,m,k sinmθ), (61)

where, for m,n > 1,

an,m,k =
2(1− r)

πρ2
0(1− ( m

z′n,m
)2)J2

m(z′n,m)

∫ 2π

0

∫ ρ0

0

ρJm(
z′n,m
ρ0

ρ)w(t−k , ρ, θ) cosmθdρdθ

(62)

and

bn,m,k =
2(1− r)

πρ2
0(1− ( m

z′n,m
)2)J2

m(z′n,m)

∫ 2π

0

∫ ρ0

0

ρJm(
z′n,m
ρ0

ρ)w(t−k , ρ, θ) sinmθdρdθ.

(63)

As a result, we have a recurrence relation for the total number of mosquitoes at
any point (ρ, θ), immediately before spraying (equations (61)-(63)). This relation
depends on the birth and death rates of mosquitoes, the spraying times, and the
spraying effectiveness.

6. Numerical simulations. In this section, we will estimate the solution for the
initial boundary value problem (4)-(8). The data used to find the numerical solution
is given in Table 1. D, v1 and v2 are estimated by taking the components of the
one-dimensional diffusion and the wind velocity in [22] (the angle of projection is

45◦), which means dividing the values in [22] by
√

2. The rest of the parameters
are taken from [27]. The initial value of mosquitoes is taken as

Ψ0(ρ) =

{
150 ρ ∈ [0, 1]
50 ρ ∈ (1, 3].

Note that Ψ0 is defined as a step function with more mosquitoes in the center region,
which represents the area where people and animals live. We assume mosquitoes
prefer to live in such areas, where food and water exists.
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Parameter Value Units Reference
D 8.838× 10−3 km2 day−1 [22]
Λ 1000 mosquitoes year−1 [23]
µq 7.3−1 day−1 [11]
r 0.92, 0.98 (proportion) [27]
ρ0 3 km Assumed
ρ00 1 km Assumed
τ 7 days Assumed
v1 −3.5× 10−2 km day−1 [22]
v2 −3.5× 10−2 km day−1 [22]
βm 0.05 mosquitoes−1 day−1 [27]
βh 0.5 humans−1 day−1 [27]
h 1/9 day−1 [27]
α 1/8 day−1 [27]
γ 0.05 day−1 [27]
δ 1/30 day−1 [27]
µh 1/50 year−1 Assumed
π 1 humans day−1 Assumed

Table 1. Parameters and sample values.

Due to the cost and logistics of spraying, we will assume that we are interested in
either spraying in the central area B(0, ρ00), or in the annulus B(0, ρ0) \B(0, ρ00).

From Figure 3, we can see that the number of mosquitoes immediately before
spraying is always around 19, while the steady state solution in the absence of
spraying is Λ

µq
= 20. However, the mean remains significantly below that of the

steady-state solution.
From Figure 4, we can see that the number of mosquitoes immediately before

spraying is always around 13, while the steady state solution in the absence of
spraying is Λ

µq
= 20. Note that we start with a large number of mosquitoes initially,

as in [27].
Figure 5 demonstrates the effect of wind on the mosquito population (without

spraying). Instead of remaining in an interior region, wind effects redistribute the
mosquitoes (in this case into the back corner).

From Figure 6, we can see contribution of the wind in reducing the effectiveness
of spraying, since wind advects mosquitoes away from the area where the spraying
is applied. As a result, more mosquitoes are missed by the spraying.

Finally, Figure 7 compares the number of infected humans (solid curve) with the
maximal amount of malaria (stars) when spraying is applied every week in the disc
0 ≤ ρ ≤ 1. Note that the average number of malaria cases will be lower, since
the stars represent the number of infected humans immediately before spraying is
applied.

7. Discussion. The spatial distribution of humans in relation to their environment
plays a crucial role in disease management. Understanding the effects of mosquito
movements and their relationship with both urban and geographic features is critical
in controlling malaria. IRS is a powerful method of malaria control, but it is limited
to the physical location of households.
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Figure 3. Spraying applied every week in the annulus 1 < ρ ≤
3. Number of mosquitoes after one week (top left), three weeks
(top right) and five weeks (bottom left). The average number of
mosquitoes in the whole area changes with time (bottom right).
The dotted lines illustrate the mean number of mosquitoes over
each cycle.

We have used classical methods to solve the nonimpulsive PDEs, then applied
impulsive conditions and examined the case of constant initial conditions. If spray-
ing is applied everywhere, we have shown that the results are in line with those
from our nonspatial model [27]. If spraying is applied in an interior disc, we em-
ploy symmetry to show that results generalise the nonspatial model. In this case,
the result of considering such a heterogenous landscape is that spraying has to be
applied more frequently, whether it is fixed or nonfixed. Finally, we considered the
asymmetric effects of advection due to wind. In this case, we derived a solution
to the impulsive system and demonstrated that the results reduce to the previous
case, but with a shift.

If the spraying is uniform, then diffusion will not affect the efficiency of spraying.
However, if the spraying is applied in part of the area, then diffusion will play a
major role and will affect the efficiency of spraying. For example, even if perfect
spraying is applied in a central region, mosquitoes will diffuse from the external
area and fill the area again. The only way to control mosquitoes is to spray faster
than diffusion occurs or to increase the spraying area to take diffusion from nearby
areas into account.

There are several limitations to our model, the most obvious being that the only
form of symmetry we considered was circular. In particular, real-world heterogenity
is unlikely to be circular, as it often involves physical phenomena such as forests,
mountains, bodies of water and so on. We also assume that spraying occurs instan-
taneously, although approximating such events by impulsive differential equations
has been shown to be a reasonable approximation, even for quite large delays [28].
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Figure 4. Spraying applied every week in the disc 0 ≤ ρ ≤ 1.
Number of mosquitoes after one week (top left), three weeks
(top right) and five weeks (bottom left). The average number of
mosquitoes in the whole area changes with time (bottom right).
The dotted lines illustrate the mean number of mosquitoes over
each cycle. Note that we start with a large number of infected
mosquitoes initially, much higher than the steady-state solution.

Figure 5. The effects of wind in the absence of spraying. Number
of mosquitoes after three weeks (left) and five weeks (right). The
symmetry is lost, as the wind blows mosquitoes into the back cor-
ner.

Furthermore, when considering asymmetrical spread, we ignored the effect of wind
upon the spray itself.

Finally, it should be noted that we considered the diffusion coefficients for sus-
ceptible and infected mosquitoes to be equal, but this might not hold in general.
For example, infected mosquitoes might diffuse slower than susceptibles, at a rate
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Figure 6. Spraying is applied every week in the disc 0 ≤ ρ ≤ 1,
with the impact of wind. Number of mosquitoes after two weeks
(top left), three weeks (top right), four weeks (bottom left), and
five weeks (bottom right). In this case, wind blows mosquitoes
outside of the spraying region, reducing our ability to control
malaria.

DI = DS − ε. Numerical simulations based on this formulation showed no appre-
ciable difference (results not shown). Furthermore, the diffusion coefficient may
depend on location D(x, y), or on the solution itself D(M) or D(N) or both. While
beyond the scope of our work here, such an interpretation would be of interest in
the future.

Indoor residual spraying has been extraordinarily effective in global malaria erad-
ication programs in the past, responsible for the eradication of malaria in the devel-
oped world and much of the developing world. Although its use today is significantly
reduced, and may occur at nonfixed times or in heterogeneous locations, our results
demonstrate that these are not obstacles to its effectiveness.

To the best of our knowledge, this is the first PDE model of malaria. Extending
the ODE model shows that uniform spraying generalises the model, but incorporat-
ing spatial phenomena, even if idealised, results in a variety of possible outcomes,
both in symmetric and asymmetric cases. However, control of malaria through IRS
is still possible. We thus recommend that indoor residual spraying be reevaluated
for widespread control of malaria, in rural as well as urban areas.
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