
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.1085
AND ENGINEERING
Volume 8, Number 4, October 2011 pp. 1085–1097

EMPIRICAL MODE DECOMPOSITION/ HILBERT TRANSFORM

ANALYSIS OF POSTURAL RESPONSES TO SMALL

AMPLITUDE ANTERIOR-POSTERIOR SINUSOIDAL

TRANSLATIONS OF VARYING FREQUENCIES

Rakesh Pilkar

Department of Electrical and Computer Engineering

Clarkson University, Potsdam, NY13699, USA

Erik Bollt

Department of Mathematics

Clarkson University, Potsdam, NY13699, USA

Charles Robinson

Department of Electrical and Computer Engineering

Clarkson University, Potsdam, NY13699, USA
Center for Rehabilitation, Science and Technology (CREST)

Clarkson University, Potsdam, NY13699, USA

Syracuse VA Medical Center
Syracuse, NY13210, USA

(Communicated by Yang Kuang)

Abstract. Bursts of 2.5mm horizontal sinusoidal anterior-posterior oscilla-
tions of sequentially varying frequencies (0.25 to 1.25 Hz) are applied to the

base of support to study postural control. The Empirical Mode Decomposition
(EMD) algorithm decomposes the Center of Pressure (CoP) data (5 young, 4

mature adults) into Intrinsic Mode Functions (IMFs). Hilbert transforms are

applied to produce each IMF’s time-frequency spectrum. The most dominant
mode in total energy indicates a sway ramble with a frequency content below

0.1 Hz. Other modes illustrate that the stimulus frequencies produce a ‘locked-

in’ behavior of CoP with platform position signal. The combined Hilbert Spec-
trum of these modes shows that this phase-lock behavior of APCoP is more
apparent for 0.5, 0.625, 0.75 and 1 Hz perturbation intervals. The instanta-

neous energy profiles of the modes depict significant energy changes during the
stimulus intervals in case of lock-in. The EMD technique provides the means

to visualize the multiple oscillatory modes present in the APCoP signal with

their time scale dependent on the signals’s successive extrema. As a result, the
extracted oscillatory modes clearly show the time instances when the subject’s
APCoP clearly synchronizes with the provided sinusoidal platform stimulus
and when it does not.
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1. Introduction. The Human postural control mechanism can be studied via vari-
ous biomechanical protocols. These tests can be either static or dynamic. Providing
the stimulus to the base of support and observing the reaction to these stimuli by
the posture control mechanism is one of popular dynamic methods used by the re-
searchers [16],[3],[18]. The type of stimulus used could be of different forms as well.
It can be translational or rotational. Moreover, these translational stimuli can be
unidirectional as well as sinusoidal or even both. Human balance can also be studied
by providing a visual perturbation [10]. The Center of Gravity (CoG) and CoP are
two variables of interest for studying posture control mechanisms. For this study,
we use APCoP changes collected during sinusoidally perturbed stance. Human pos-
tural control responses to sinusoidal perturbations have been studied before [1],[9].
Bugnariu et al. studied the age related changes in postural responses to externally
as well as self triggered platform oscillations of 20 cm (peak-peak) with increasing
frequencies up to 0.61 Hz [9]. De Nunzio et al. studied the effect of sinusoidal trans-
lations of 0.2 Hz and 0.6 Hz on balance strategies in AP directions [1]. However, the
crux of our study is based on the fact that that the normal postural detection and
controller mechanisms are best studied by the perturbation probes that lay within
the range of normal sway. Hence, for this study, the maximum stimulus amplitude
is 5 mm (peak-peak) with the stimulus frequency sequentially varying from 0.25 to
1.25 Hz. Our goal is to see how the subjects’ reaction to the stimulus varies with
the stimulus frequency. The recognition of the presented stimulus is characterized
by having the APCoP time-series profile phase-locked with the platform position
signal. In other words, the frequency of sway switches from its natural value (Quiet
Standing) to the presented stimulus frequency in case of a phase-lock response. To
study how this particular response varies with changing stimulus frequency and
time, there is a need of a reliable time-frequency representation of this signal.

The APCoP profile is characterized by the multiple frequency oscillations with
different amplitudes. It is shown to be nonstationary [11]. For the nonstationary
signals like these, the notion of frequency is ineffective [2]. Hence, there arises a
need of a parameter which accounts for the time varying nature of the signal. This
is fulfilled by the term ‘instantaneous frequency’. However, this term has received
both positive and negative criticisms; and in general, it has been accepted for the
monocomponent signals [2],[6],[7]. Huang et. al. developed the method of EMD
that decomposes the signal into IMFs involving only one mode of oscillations and
no complex riding waves [8]. Hence, the notion of instantaneous frequency fits
with these decomposed signals and allows us to apply the Hilbert transforms to
get instantaneous frequency measures. Also, the process of sifting uses the time
lapse between the successive extrema to define the time scale of the oscillatory
mode [8]. This kind of decomposition not only provides a better resolution of the
mode, but also gives us an opportunity to extract a mode that clearly detects the
time instances as well as duration of the events where the subject’s APCoP clearly
synchronizes with the imparted sinusoidal platform stimulus.

On the other hand, other classical methods like the Short-Time-Fourier-Transform
(STFT) or the Wigner-Ville distribution can provide only the information about
the global frequency content of the signal and not about the local attributes. Also,
applying these techniques on non-stationary signals like APCoP time-series have
always been a topic of debate. Huang et al. have also demonstrated the advantages
of EMD-Hilbert transform over these methods [8].
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For this study, our approach is to decompose a subject’s CoP into intrinsic mode
functions and to observe 1) how there modes contribute to the subject’s overall
response to the sinusoid translation of the base of support, and 2) how the stimulus
frequencies effect each mode. The instantaneous energy of the whole CoP time
series as well as each extracted mode are studied as well.

2. Methods.

2.1. Subjects. Nine subjects (5 Young Adults, 4 Mature Adults) with no current
or past record of peripheral neuropathy or orthopedic injury were used for this
study with Clarkson University’s IRB approval. Subjects underwent an informed
consent procedure and preliminary testing to confirm their willingness and aptitude
for participating in the study.

2.2. Data acquisition system. A unique device, the Sliding Linear Investiga-
tive Platform For Assessing Lower Limb Stability, Simultaneous Tracking, EMG
and Pressure measurement (SLIP-FALLS-STEPm), is used to provide anterior-
posterior vibrations free translations. The detailed explanation of the device is
given elsewhere [4]. Load cells data collected as one of the inputs to this system are
used to calculate the center of pressure profiles in both the anterior-posterior and
medial-lateral directions (AP and ML). A Tekscan (HR mat) pressure mat is used
to validate this data. The platform position and APCoP data are collected at 1kHz,
10Hz low-pass-filtered and downsampled to 100 Hz. The subjects are blindfolded
throughout the testing to block any potential visual cues and provided with aural
masking noise (70 dB SPL) via headphones.

2.3. Testing protocol. In this protocol, the platform frequency is swept in discrete
steps from 0.25 Hz to 1.25 Hz (Table 1). A single trial consists of initial quiet
standing (QS) period of 32 s followed by seven stimulus frequency blocks (see Table
1), each block of 32 s, and finally ending with a 32 s QS period. The table below
shows the number of cycles presented in each block for each frequency. The SLIP-
FALLS PMAC controller smoothes the transition from one frequency to the next
[4].

Frequency (Hz) No. of Cycles
0.25 8
0.375 12
0.5 16

0.625 20
0.75 24

1 32
1.25 40

Table 1. Number of cycles presented for each frequency compo-
nent in a single trial

We know that human sway does not contain any appreciable energy above 2 Hz
[15]. Even the presence of frequency components greater than 1.5 Hz is atypical.
Also, we are interested in testing the subjects around their natural sway frequency.
Soames et al. showed the presence of three modal frequencies in AP direction -
primary (0.30 - 0.45 Hz), secondary (0.6 - 0.75 Hz) and tertiary (1.05 - 1.20 Hz)
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[15]. Hence, our stimulus frequency starts from 0.25 Hz, which is below the natural
frequency but still perceivable. Then the stimulus frequency is incremented in steps
every 32 s. The amplitude for the trials is set to 2.5 mm and is selected based on
our experience with a previous stimulus perception study [17].

Figure 1 shows the platform position signal along with a subject’s APCoP re-
sponse, with frequencies varying from low to high.
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Figure 1. Sweep trial with platform position of 2.5mm ampli-
tude and frequencies swept from low to high (dotted) and subject’s
APCoP (solid). The solid black vertical bars were added for illus-
tration purpose only.

3. Empirical mode decomposition.

3.1. EMD algorithm. Here we give a brief review of the method in Huang et. al
to develop an EMD of a signal [8].

1. In the process, local maxima and minima of x(t) are identified. The local max-
ima are connected by an envelope obtained by cubic spline, and the process
is repeated for local minima.

2. The mean of upper and lower envelope, m1 is subtracted from x(t) to get the
first component, h1.

3. If this component contains riding waves or asymmetry, it is treated as new data
and the above process is repeated to get h11. The process is again repeated
till we get h1k as the first IMF, c1.

h1(k−1) −m1k = h1k = c1 (1)

4. The extracted IMF c1 is then subtracted from the original data and the process
is repeated on the residual to get the second IMF, and so on.

5. However, excessive application of this process can result into IMF which could
be a pure frequency modulated signal of constant amplitude. Hence, the
limitation on the standard deviation calculated from two consecutives sifting
processes is used as a stopping criterion.

0.2 ≤
T∑
t=0

[∣∣h1(k−1)(t)− h1k(t)
∣∣2

h2
1(k−1(t)

]
≤ 0.3 (2)
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6. Thus the sifting process allows the signal x(t) to be decomposed into n IMFs
with final residual rn.

3.2. Hilbert spectrum. Once all the IMFs and final residual are extracted from
the data, a Hilbert transform [8],[5], is applied to each IMF. The final residual, rn
is either a monotonic function or a constant, and hence it can be removed.

HT {IMF1} = a1(t)ei
∫
ω1(t)dt

HT {IMF2} = a2(t)ei
∫
ω2(t)dt

.

.

.

HT {IMFn} = an(t)ei
∫
ωn(t)dt (3)

3.3. Instantnous energy. For time discrete signals, the energy of a signal, Ed, is
defined as the sum of the squared magnitude of the samples. Hence, the instanta-
neous energy of a signal x(t) is calculated as:

Ei(t) =

∫ t

t−τ
x2(t)dt (4)

Note that the term ‘energy’ does not refer to the concept of conservation of energy.
The instantaneous value of the energy represents the size of the signal in this situ-
ation. This energy operator was applied on every IMF extracted as well as on the
original data.

4. Results.

4.1. Platform position data. The EMD-HT algorithm is first applied on the
platform position signal because its frequency content is known. The position mode
1 and its Hilbert transform spectrum faithfully track the oscillation frequency (Fig-
ure 3).
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Figure 2. The Power Spectrum using DFT(Left) and the Hilbert
spectrum obtained by applying the EMD algorithm (Right) on the
platform position signal
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4.2. APCoP data. The algorithm can be now applied to the APCoP data col-
lected during the same trial (Figure 3). The EMD method decomposes the signal
into 10 IMFs, as shown in Figure 4. For the APCoP, the Hilbert spectrum shows
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Figure 3. The APCoP response collected during a sweep trial
from 20 y.o. female subject

that the most dominant mode in total energy has its frequency content below 0.1 Hz,
thus indicating a sway ramble or a low frequency drift present in the sway. Other
modes in turn illustrate that the stimulus frequencies produce a ‘lock-in’ behavior
of CoP with platform position oscillation. This lock-in response is seen in several
modes partially, and not in a single mode as a frequency modulated signal. Also,
this locked-in behavior is more apparent for 0.5, 0.625, 0.75 and 1 Hz perturbations,
possibly because of the limited number of cycles presented at 0.25 and 0.375 (Table
1).

The EMD algorithm decomposes the APCoP signal into ten intrinsic mode func-
tions (Figure 5). The Hilbert transforms of these individual modes and their in-
stantaneous energy profiles reveal more information. The individual modes track
the frequencies from their high to lower order. The first mode (IMF 1) shows 1.25
and 1 Hz components, while the last one showing the lowest frequency reactions.
Point-by-point summation of all of these modes with the final residual yields back
the test signal with mean error of −1.7× 10−17ensuring the “completeness” of the
EMD algorithm. For the test signal shown in Figure 4, the Hilbert spectra and the
instantaneous energy plots of IMF 1 to IMF 4 are shown in Figure 5 to Figure 8,
respectively.

As shown by the Hilbert spectrum in Figure 5, the first IMF tracks the highest
frequency component present in the signal. It is also the one of the stimulus fre-
quencies, and it presented during the 230 s to 261 s time interval. The instantaneous
energy plot shown above also verifies this by showing the significant energy content
during the period of lock-in. A phase-locked response is present for approximately
half of the stimulus interval for this mode, and the rest of the response is observed
in the Hilbert spectrum of IMF 2 shown in Figure 6.

Now, the algorithm moves to the lower frequencies, this time tracking 0.625 Hz,
0.75 Hz, 1 Hz and the remaining portion of 1.25 Hz (shown by horizontal solid
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Figure 4. The ten IMFs extracted from the APCoP time series
by the EMD method

lines in the Hilbert spectrum). Also, the energy during these stimuli intervals was
significantly higher than the other stimuli intervals.

Similarly, IMF 3 detects the lower frequencies, 0.375 Hz and 0.5 Hz that are
present in the APCoP signal. The higher energy shown during these intervals is
plotted in Figure 7(bottom).

The Hilbert Spectrum of IMF 4 shows a monotonic response (Figure 9 middle).
The instantaneous frequency for this mode is found to be around 0.25 Hz and does
not show any significant variation during the complete trial.

The contribution of all these modes extracted can be studied by merging all
their Hilbert spectra (Figure 9). As the frequencies detected by individual modes
overlap, it reveals the regions where the phase-lock behavior of the APCoP is more
apparent. Thus, for the stimulus whose frequencies are sequentially increased from
0.25 Hz to 1.25 Hz, the subject’s lock-in response is more apparent at frequencies



1092 RAKESH PILKAR, ERIK BOLLT AND CHARLES ROBINSON

0 37 70 102 134 165 198 230 261
−50

0

50

Im
f 1

0 37 70 102 134 165 198 230 261
0

1

2

3

F
re

q(
H

z)

0 37 70 102 134 165 198 230 261
0

5000

10000

Time (sec)

E
ne

rg
y

 

 

Figure 5. IMF 1 (top), its Hilbert spectrum (center) and instan-
taneous energy (bottom). Horizontal lines are added for reference
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Figure 6. IMF 2 (top), its Hilbert spectrum (center) and instan-
taneous energy (bottom)

from 0.625 Hz to 1 Hz. The color bar indicates that intensity level or the energies
(obtained by EMD-HT) during these regions are higher than the one at the low
frequency regions.

Figure 10 shows the result of applying this energy operator on the APCoP time
series shown in Figure 3. The instantaneous energy value reaches maximum (with
some latency) when the platform switches from 0.75 Hz to 1 Hz. The value is smaller
for 0.25 Hz (37-70 sec) and 0.375 Hz (70-102 sec) intervals as compared with other
higher frequency intervals.

Next, we consider the root-mean-square value of the instantaneous energy during
each stimulus interval (interval 1 to 7 for 0.25 to 1.25 Hz) trial. It is calculated for
every subject and is compared between the matured and young adult groups.
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Figure 7. IMF 3 (top), its Hilbert spectrum (center) and instan-
taneous energy (bottom)
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Figure 8. IMF 4 (top), its Hilbert spectrum (center) and instan-
taneous energy (bottom)

For two young adults (M22AA242 and M25AA257), the instantaneous energy
rms is found to be higher at 0.375 Hz and 0.5 Hz, respectively. Two other young
adults, F27AA252 and F20AA237, show an increase in the instantaneous energy
with an increase in the stimulus frequency until 1 Hz interval (Interval 6).

For the mature adults, the energy values for the lower frequency intervals (In-
terval 1 and 2 for 0.25 Hz and 0.375 Hz respectively) are smaller than the rest.
M44AA245 clearly shows the maximum response at 0.625 Hz.

5. Discussion. Our approach is based on the fact that that the normal postural
detection and controller mechanisms are best studied by the perturbation probes
that lay within the range of normal sway. Bugnariu et al. used the platform
oscillations of 20 cm (peak-peak) for their study which are much higher than any
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data collected during a Sweep trial
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Figure 10. The instantaneous energy of the APCoP signal ac-
cording to Equation 5

normal healthy subject’s natural CoP range. The testing frequencies were less than
0.7 Hz for both Bugnariu et al and De Nunzio et al. [1],[9]. The wide range
of stimulus frequencies in our study provides us an opportunity to observe the
postural control responses below, at, and above their natural sway frequency in
a single trial with the stimulus amplitude kept well below the natural CoP sway
range. Providing a stimulus of considerably higher amplitudes can not only make the
subject take extreme actions to gain necessary balance control, but can also affect
them psychologically for the rest of the testing process. By providing translations
of 5mm (peak-peak) amplitude, we ensure that they always lie within the natural
sway range of a healthy person.

The idea behind using the EMD algorithm to decompose the APCoP signal into
the intrinsic mode functions is to represent the oscillation modes imbedded in the
signal. The IMF each cycle is defined by zero crossings, and involves only one
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Figure 11. The rms values of instantaneous energy of the APCoP
signal during each stimulus interval according to Equation 5, for
(top) young adults, (bottom) for healthy mature adults

mode of oscillation, removing the complex riding waves [8]. Moreover, the process
of sifting uses the time lapse between the successive extrema as the definition of
the time scale for the intrinsic oscillatory mode [8]. This approach not only makes
the algorithm applicable to the signals with a non-zero mean but also provides for
the better resolution of the oscillatory modes. The idea of IMFs and process of
decomposition perfectly fit our need for analyzing the APCoP data collected in
response to sinusoidal translations of time varying frequency. Using the method of
sifting, we are more likely to detect the time instances of two particular scenarios.
One when subject responds to the stimulus by locking to the platform position
signal; and second, when the stimulus frequency is either too fast to too slow to be
tracked by the subject’s APCoP.

Also, given the nature of our experiment, most subjects sway at a particular
stimulus frequency and switch to the next frequency when the next interval starts.
This ‘switching’ can be easily seen in one of the extracted modes and its instan-
taneous frequency, thus making EMD-HT extremely suitable for the analysis. As
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a confirmation, the instantaneous energy plots of each IMF also showed significant
changes during the lock-in intervals.

Sparto et al. provided sinusoidal perturbations to the visual sensory system and
proposed the method to determine if the postural response was present using F-
statistics [12]. In their study, they used sinusoidal optical flow at 0.1 Hz and 0.25
Hz and quantitatively showed if the response was present or not [12]. Although,
the EMD algorithm is another approach to qualitatively determine the presence
of response at given broad range of frequencies, the instantaneous energy operator
provides the quantitative measures of the subjects’ responses in terms of the rms
value of the instantaneous energy during each stimulus frequency interval. The
ability of EMD to access these local oscillations allows us to understand the range
of frequencies at which a subject’s lock-in behavior is more apparent. The modes
and their Hilbert spectrum clearly demonstrated how subjects’ responses shifted
from one frequency interval to the other.

6. Conclusion. The basic EMD-HT method provides the means to dissect an AP-
CoP time-series signal into multiple oscillatory modes, and allows us to observe the
contribution of these modes to a subject’s overall response to the sinusoidal oscil-
lations of the base of support. For APCoP, the mode that was most dominant in
total energy had its frequency content below 0.1 Hz, thus indicating a sway ram-
ble. Other modes detected the induced oscillations in APCoP and showed that
the stimulus frequencies produced a ‘lock-in’ behavior between CoP and platform
position oscillation. The combined time-frequency representation of these modes
showed that this phase-lock behavior of APCoP was more apparent for the 0.5,
0.625, 0.75 and 1 Hz perturbation intervals for all the young adult subjects. This
was also confirmed by the instantaneous energy plots. The instantaneous energy
plots for the mature adults had monotonous response for all the stimuli intervals
except for one 44 y.o. mature adult who had the highest response at 0.625 Hz. The
visual assessment of all the results was done by observing the Hilbert spectra of all
the APCoP responses.
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