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Abstract. A model is developed of the stress-strain response of an inter-
vertebral disc to axial compression. This is based on a balance of increased

intradiscal pressure, resulting from the compression of the disc, and the re-

straining forces generated by the collagen fibres within the annulus fibrosus.
A formula is derived for predicting the loading force on a disc once the nu-

cleus pressure is known. Measured material values of L3 and L4 discs are used

to make quantitative predictions. The results compare reasonably well with
experimental results.

1. Introduction. The intervertebral disc is prone to ruptures and degenerative
processes [26]. Mechanical stress applied to the disc appears to accelerate the de-
velopment of degenerative changes. There is thus considerable interest in under-
standing how the application of different loadings to the spine affects the stresses
that it experiences [27].

In a normal unloaded disc, a small but positive pressure is present within the
nucleus pulposus at rest and this pressure increases when loads are applied to the
spine [17, 22, 23, 28, 36]. When the spine is axially compressed, the force applied
to the intervertebral disc is balanced by an increase in this pressure [19, 23]. This
pressure, which does not vary with location within the nucleus pulposus [22, 23],
places the fibres of the annulus in tension, so that they are stretched, leading to
annular bulging [10]. The objective of this paper is to develop a model that de-
scribes this behaviour and in particular to predict how the pressure varies with the
load transmitted through the spine. To do this we shall assume that the vertical
displacement of the discs is specified. Using this as a parameter we are then able to
make predictions about the pressure in the nucleus pulposus, the load transmitted
by the disc as well as the sideways displacement of the annulus fibrosus.

We use the model to make a comparison with the experimental results of Nachem-
son and Morris [25]. They measured the pressure in the nucleus pulposus and the
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load carried by the body. We are able to predict the loading from the pressure
measurement and compare it with the measured load.

2. Description of intervertebral disc. There are 23 intervertebral discs in hu-
mans between the bodies of adjacent vertebrae from the second cervical vertebra to
the sacrum. They are thicker in the lumbar region, where movements of the spine
are greatest, than in other regions of the vertebral column, with the fifth lumbar
disc most commonly the largest [32]. The intervertebral disc connects the cartilagi-
nous endplates of two adjacent vertebral bodies and its shape corresponds to that
of the vertebral bodies. It is made up of two distinct parts: the nucleus pulposus
and the annulus fibrosus, as depicted in Fig. 1.

The nucleus pulposus is located in the centre of the disc. It is bounded above
and below by the superior and inferior cartilaginous endplates and on its periphery
by the annulus fibrosus. It is composed of a concentrated proteoglycan solution
containing randomly distributed collagen fibres. The collagen network of the nu-
cleus has been shown to interconnect with that of the inner annulus [16] and some
connections with the end-plate have been observed [9]. The nucleus functions as a
gel, distributing forces of compression and tension equally to all parts of the annulus
[1, 29].

The annulus fibrosus is quite distinct from the nucleus and forms the outer bound-
ary of the disc. It contains a series of 15 to 25 concentric layers (lamellae) of fibrous
tissue [20]. The fibres within each lamella are arranged in a helicoid manner, and
have two well-defined axes of orientation. The fibres in each lamella run in a single
direction, alternating from the previous one and aligned at an approximate constant
angle of 30o to the horizontal axis according to Vijay and Weinstein [35]. According
to Bayliss and Johnstone [7], they are oriented at an angle varying between 20o–50o

to the horizontal axis. By this means the annulus is able to withstand strain in
any direction [21]. The space between the collagen fibre framework is filled with
proteoglycan, which in turn attracts and holds large amounts of water [12]. In the
fibrocartilaginous inner annulus (area adjacent to the nucleus), the fibres terminate
in the cartilaginous end-plate which is a thin layer of hyaline cartilage on the sur-
face of the vertebra. In the outer region the fibres are connected directly to the
osseous tissue of the vertebral body where they are known as Sharpey’s fibres [7].
The fibres constitute 16–19% of the annulus volume [19, 35]. A radial variation in
biochemical content exists within the disc, with an increasing amount of collagen,
and decreasing amounts of water and proteoglycan towards the periphery of the
annulus [5, 14, 15]. The collagen fibre content is also dependent on the level of the
disc. The stress-strain behaviour of the collagen fibres has been measured and it
is observed to vary both with level and with their radial and azimuthal position
within a disc [19].

3. Description of the model. A good number of analytic or geometric and finite
element models have been developed to describe the structural response of inter-
vertebral discs. Most of the previous existing models of the intervertebral disc have
modelled the nucleus pulposus as an incompressible, inviscid fluid [8, 18, 26, 34],
and we also assume this in our model. The annulus fibrosus has been assumed to be
a homogeneous material with either isotropic [34] or orthotropic [8] properties. In
[18], Galante is noted to have shown experimentally that the annulus is nonhomo-
geneous and anisotropic and exhibits hardening stress-strain characteristics. The
cartilaginous end-plate has been considered as an isotropic, homogeneous elastic
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Figure 1. Schematic representation of the intervertebral disc
showing collagen fibres in alternating layers within the annulus.
(1a) Disc location between vertebrae; (1b) Cut out section of disc
showing annulus fibrosus layers; (1c) Cross-section of the internal
structure of the annulus fibrosus.

linear material [8, 34] while in [34], Spilker et al. assumed that the vertebral body
is nearly rigid. In most of the previous models of the intervertebral disc, especially
the finite element studies, [8, 18], no clear distinction is made between the fibres
and the matrix of ground substance, and they are assumed to have the same dis-
placement field. However, this would generate tangential forces within the matrix
of ground substance. This is not entirely consistent with the fact that the ground
substance principally consists of proteoglycan and water, which in the nucleus pul-
posus acts as a liquid. Because of this we believe it is necessary to distinguish
between the two phases of the annulus fibrosus. We treat the fibres as unbroken
sheets (lamellae) which are able to withstand tensile forces along the lengths of the
fibres, and the ground substance as a passive liquid that separates the sheets. This
will lead to a different set of equations to the normal composite material model.
The displacement field of the fibres will no longer be divergence free since local in-
crease in fibre density can be compensated by local reduction in the liquid density.
We gain an additional dynamic equation since the liquid ground substance is only
able to generate a normal force on each fibre sheet. We assume that the sheets
are evenly distributed with radial distance and that the fibres all have the same
size and are laid out with the same even spacing within the different sheets. This
assumption of uniformity is not necessary for the success of the model but we have
no quantitative measure of the variation of these quantities and it is the simplest
assumption to make.

4. Model formulation. We now develop equations by comparing the disc in two
states, the initial state where it is under no loading and the final state where it
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is under a loading W . We assume that in both cases the intervertebral disc is
axisymmetric about the spinal (vertical) axis. The initial state is illustrated in Fig.
2. We assume that in this state the fibres lie on helices of constant radius that
are inclined at fixed constant angles of +φ or −φ to the horizontal (perpendicular
to the spinal axis) [35], alternating from sheet to sheet. We denote the height of
the disc by 2L and the inner and outer radii of the annulus fibrosus by a and b,
respectively. We assume that a, b and L are comparable in magnitude.

Note that in the initial state the fibres are already stretched and under tension.
This is not a trivial point mathematically since the stress-strain relation is non-
linear in the practical range of interest. Also, as a consequence of the fibre tension,
the nucleus pulposus is under an initial pressure Pi. This state needs to be given
(known) as part of the description of the problem.

Nucleus

Pulposus

Lamella

Fibre

r=a r=b

φ

fibrosus

2L

Annulus

Figure 2. Idealized initial state of intervertebral disc

The final state (not illustrated) has the top endplate of the disc displaced down-
wards by a distance h and the lower endplate displaced upwards by h. Although
axisymmetric, the fibres no longer lie on cylinders. Any point on a fibre can be
identified by the cylindrical polar co-ordinates (r, θ, z) of its original position or by
the cylindrical polar co-ordinates (R, Θ, Z) of its final, deformed position. Since
the problem is symmetrical about a horizontal plane through the centre of the disc
we take z = 0 and Z = 0 on that plane. The coordinates are connected by the
fibre material displacement functions (u, v, w). One of our main objectives is to
determine these displacement fields. They can be defined to be functions of either
the original position (r, θ, z) or of the final position (R,Θ, Z). We choose to work
with the former. From the axisymmetry of the problem the displacements cannot
depend on the azimuthal co-ordinate, so we have

R = r + u(r, z), Θ = θ + v(r, z), Z = z + w(r, z). (1)

Note that (u, v, w) represent only the displacement of the collagen fibres. The
continuum phase contained between the fibre sheets has a slightly different dis-
placement field (which we do not actually determine). We neglect any displacement
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of the endplate into the vertebrae; in experiments on motion segments [13, 15, 30]
this was found to be negligible.

4.1. The fibre strain equation. The displacement functions (u, v, w) are field
variables, describing the displacement at any point in the domain but not, in them-
selves, describing the response of any individual fibre. In this section we need to
describe the displacement behaviour of single fibres; this can be done by represent-
ing the fibres parametrically. In the original state each fibre lies on a helix that can
be described by

r = q, θ = s+ p, z = qs tanφ

where q and p identify the fibre, and s distinguishes the points along the fibre. In
its displaced location the fibre is described by

R = q+u(q, qs tanφ), Θ = p+s+v(q, qs tanφ), Z = qs tanφ+w(q, qs tanφ). (2)

We now obtain an expression for the strain in a given fibre. Consider a typical
element of the fibre; the fibre itself is specified by the fixed parameter values q and
p and the ends of the element are specified by the parameter values s and s + ds.
Let the length of this element be denoted by dl′′ if it were in an unstretched state,
by dl′ in its original (partly stretched) state and by dl in its final (fully stretched)
state. We use the subscripts − and + to distinguish the co-ordinates of the ends
of the element at s and s + ds respectively. Then, in the original state, r− = q,
θ− = p + s, z− = qs tanφ and r+ = q, θ+ = p + s + ds, z+ = q(s + ds) tanφ.
The length of this element in this state is given by

dl′ = q secφds, (3)

and the strain by

ei = lim
ds→0

dl′ − dl′′

dl′′
, (4)

where ei denotes the initial fibre strain. We are taking ei as a given quantity in
the problem formulation so this equation effectively determines the value of dl′′, the
unknown length of the element in its unstretched state.

Now consider the same element after it has been displaced by the effect of the
compression. After the displacement the two end points have co-ordinate values

R− = q + u∗, Θ− = p+ s+ v∗, Z− = qs tanφ+ w∗,

and

R+ = q + u(q, q(s+ ds) tanφ),

Θ+ = p+ s+ ds+ v(q, q(s+ ds) tanφ),

Z+ = q(s+ ds) tanφ+ w(q, q(s+ ds) tanφ),

where the asterisk indicates quantities that are evaluated at the original particle
location, e.g., u∗ = u(q, qs tanφ). The length of the displaced element is

dl =
[
q2 tan2 φu∗z

2 + (q + u∗)2(1 + q tanφ v∗z)2 + q2 tan2 φ (1 + w∗z)2
] 1

2

ds. (5)

The final strain e is given by the expression

e = lim
ds→0

dl − dl′′

dl′′
= lim
ds→0

(1 + ei) dl − dl′

dl′
. (6)
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Substituting (3) and (5) into (6), we thus have the following expression for the fibre
strain:

e =
cosφ

q

[
(q tanφu∗z)

2 + (q + u∗)2(1 + q tanφ v∗z)2 +

+ q2 tan2 φ (1 + w∗z)2
] 1

2 (1 + ei)− 1. (7)

Let T denote the tension in a fibre at any point. The constitutive law for the tension
is such that it only depends on the local strain of the fibre, i.e. T = T (e). Now
we are assuming that the continuous phase is unable to generate tangential forces
and hence that it can only push at any point on a fibre in a direction perpendicular
to the fibre axis at that point. We shall show later on that, as a consequence of
this, the tension along any one fibre takes a uniform value, although this value may
vary from fibre to fibre. The restriction that T is a constant implies that e is also
uniform along each fibre and so independent of the fibre progress parameter s. In
principle, then, e = e(q, p). However, the problem is axisymmetric so e must be
independent of p since this parameter only specifies the original azimuthal location
of the fibre. Thus e = e(q). We make one last improvement. The final equation
is an identity, true for all values of q and s. Hence it remains true if we replace
q → r, qs tanφ → z. Thus the asterisk (indicating evaluation at (q, qs tanφ)) is
unnecessary and the strain equation can be expressed in the final form

e(r) =
cosφ

r

[
(r tanφuz)

2 + (r + u)2(1 + r tanφ vz)
2 +

+ r2 tan2 φ (1 + wz)
2
] 1

2 (1 + ei)− 1. (8)

4.2. The force balance equations. We begin by examining a small element of a
fibre sheet in its displaced configuration. The element is constructed as a parallel-
ogram with two sides parallel to the fibres and two sides horizontal (constant value
of z). See Fig. 3. Let the element length along the fibre be dl and the element

Φ
d λ

dl

n

b

^

^

Fibres

inside the

element

Fibres

bounding the

element

t̂

Figure 3. Small element of the fibre sheet after displacement

width be dλ. Let the number of fibres in the element be ρsdλ, where ρs is the line
density of fibres along the sheet. Let ∆Ps denote the pressure drop from one side of
the fibre sheet to the other. We assume from the axial symmetry that the tension
T in any fibre is the same as that of any other fibre in the same sheet (and, as
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already mentioned, we show later that this distribution is in fact a constant). We
now calculate the forces on the element caused by the pressure and the tensions.

We define the forces in terms of the orthogonal basis (̂t, n̂, b̂), where t̂ is the unit
vector parallel to the fibres in their displaced position, n̂ is the unit vector normal
to the displaced fibre sheet, and b̂ is the unit vector perpendicular in a right handed
sense to both t̂ and n̂, (so b̂ = t̂∧ n̂). It is not immediately obvious but n̂ and b̂ are
also the normal and binormal respectively of the individual fibre curves. The force
due to the pressure is ∆Ps(−n̂)×Area, where the area of the element is dl dλ sin Φ.
The force due to the tension in the fibres is (ρs dλ)

(
[T t̂]l+dl − [T t̂]l

)
. The sum of

all these forces is zero (since the element is in equilibrium). If we take the limit of
all these terms as dl→ 0 and dλ→ 0 (treating the fibre distribution as a continuous
variable) we obtain the equation

−∆Ps sin Φ n̂ + ρsT
∂t̂

∂l
+ ρs

∂T

∂l
t̂ = 0. (9)

We consider the three components of this equation in turn. First we consider the
t̂ component. We note that t̂ is perpendicular to both n̂ and to ∂t̂/∂l (the derivative
of any unit vector is perpendicular to itself). Thus taking the dot product with t̂
we obtain the component equation

∂T

∂l
= 0. (10)

It may be trivially integrated to show that T is constant along the fibre. This result
was used earlier to show that e = e(r) only.

The other two components can be obtained by taking the dot products of (9)

with b̂ and n̂ , respectively, to yield the equations

∂t̂

∂l
. b̂ = 0, (11)

and

−∆Ps sin Φ + ρsT
∂t̂

∂l
. n̂ = 0. (12)

We now develop the last of these equations further. We assume that there are
a large number of sheets in the disc so that they can be regarded as having a
continuum distribution. Specifically, if we examine a small element of a radial line,
then the number of sheets that intersect that line can be expressed as ρR dR, where
ρR is a continuous variable, the linear density of sheets along a radial line. Similarly,
we assume that the pressure can be considered to be a continuous variable, rather
than changing by discrete amounts at each fibre sheet. Then the gradient of the
continuous pressure can be related to ∆Ps by

∂P

∂R
= lim
dR→0

(
(ρR dR)(−∆Ps)

dR

)
= −ρR∆Ps, (13)

where the negative sign arises because P decreases with R. Thus combining this
with (12) we obtain the normal force balance in continuum form,

∂P

∂R
= −ρRρs

sin Φ
T
∂t̂

∂l
. n̂ . (14)

The equations (11) and (14) are expressed in terms of variables and unit vectors
that apply at the displaced location, (R,Θ, Z). However, the displacement fields
(u, v, w) are functions of the original location, (r, θ, z). Thus equations (11) and
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(14) must be converted to this co-ordinate system. This is done in the appendix
and the results are as follows: Equation (11) becomes

r2 tan2 φ(r + u)(1 + wz)(1 + r tanφ vz)wzz − (r + u)2(1 + r tanφ vz)
3uz

−r2 tan2 φ
[
(1 + wz)

2 + u2z
]

[2uz(1 + r tanφ vz) + r tanφ(r + u)vzz]

+r2 tan2 φ(r + u)(1 + r tanφ vz)uzuzz = 0. (15)

We refer to this as the tangential force equation.

Equation (14) becomes

(1 + wz)
∂P

∂r
− wr

∂P

∂z
= −ρi T (e)

(1 + wz)

(r + u)(dl/ds)N2 tanφ
× (16)

{
(1 + wz)

[
(r + u)(1 + r tanφ vz)− r2 tan2 φuzz

]
+ r2 tan2 φuzwzz

}
,

where dl/ds =
{
u2zq

2 tan2 φ+ (q + u)2(1 + vzq tanφ)2 + (1 + w2
zq

2 tan2 φ
} 1

2 , N ={
1 + 2wz + w2

z + u2z
} 1

2 and ρi denotes the value of ρr ρs in the initial state. We
refer to this as the radial force balance equation.

The basic equations describing the system are thus (10), (15) and (16).

4.3. Boundary conditions on the problem. For the displacement functions
(u, v, w), the boundary conditions are

u(±L) = 0, v(±L) = 0, w(±L) = ∓h.

The pressure before and after axial compression satisfies the following conditions:
before compression

P = 0 on r = b, and P = Pi on r = a,

and after compression they take the form

P = 0 on r = b, and P = Pn on r = a,

where Pi must be specified as part of the description of the initial state of the disc
and the final final pressure Pn can be calculated from the model.

4.4. The volume displacement equation. The volume contained within any
fibre sheet of initial radius r remains the same after the superior and inferior surfaces
of the disc have been displaced. Hence we have the equation

πr2(2L) =

∫ L−h

Z=−L+h
πR2dZ = π

∫ L

−L
(r + u)2(1 + wz) dz. (17)

4.5. Nondimensionalization. We define a small parameter ε by ε = h/2L � 1,
where h is the displacement of the endplates and 2L is the original height of the
disc. We make the model dimensionless in the following way:

r = ar̃, z = Lz̃, u = εaũ, v = εṽ, w = εLw̃, e = εẽ, T = T (εE)S(ẽ),

P = ρs T (εE)P̃ , dl = Ldl̃, γ = b/a, and α = a/L, (18)

where the tildes denote dimensionless variables. We shall work with the assump-
tion that the lengths a and b are comparable to L, so thatγ and α are both O(1)
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quantities. The scaling for the tension requires further explanation. It is a func-
tion of e so as a characteristic magnitude for the tension we use the value T at a
representative value of e. However, the variation of T with e is nonlinear so this
representative value for e should be characteristic of the final displacement state,
and not the initial displacement ei, at which the value of T is significantly smaller.
We have (somewhat arbitrarily) chosen for this purpose the value e = εE, where
E = ẽi + cos2φ/a2, since this equals ẽ0|r=a, i.e. the value at r = a of the lowest
order term in the asymptotic expansion that we derive later. Note also that we
have expressed S as a function of ẽ. This is because the argument of any dimen-
sionless function, as well as its magnitude, should be an O(1) quantity and e itself,
although dimensionless, only varies on the scale of ε. This is equivalent to writing
S = S(e/ε) which physically represents the fact that the tension is very sensitive to
e and achieves its typical magnitude when e is only O(ε). Dropping the tildes for
clarity, the model equations (8), (15),(16) and (17), become

εe(r) =
cosφ

r

[
(εαr tanφuz)

2 + (r + εu)2(1 + εαr tanφ vz)
2

+ r2 tan2 φ (1 + εwz)
2
] 1

2 (1 + εei)− 1; (19)

r2 tan2 φ(r + εu)(1 + εwz)(1 + εαr tanφvz)wzz − r2 tan2 φ×[
(1 + εwz)

2 + ε2u2z
]

[2uz(1 + εr tanφvz) + αr tanφ(r + εu)vzz]

+ε α2 r2 tan2 φ (r + εu)(1 + ε α r tanφ vz)uzuzz

−(r + εu)2(1 + ε α r tanφ vz)
3uz = 0; (20)

(1 + εwz)
∂P

∂r
− εwr

∂P

∂z
= −S(e)

α(1 + εwz)

(r + εu)(dl/ds)N2 tanφ
×

{
(1 + εwz)

[
(r + εu)(1 + εα r tanφ vz)− εα2 r2 tan2 φuzz

]
+ ε2 α2 r2 tan2 φuzwzz

}
, (21)

and

2r2 =

∫ 1

−1
(r + εu)2(1 + εwz) dz, (22)

respectively.

4.6. Perturbation expansion. We look for an asymptotic solution based on ε→
0. For this we express the displacement as

u ∼ u0 + εu1 + · · · ,

with similar expansions for v and w. The leading order term of the volume dis-
placement equation (22) is an identity, 2r = 2r. At order ε it yields the equation∫ 1

−1
(2ru0 + r2

∂w0

∂z
) dz = 0. (23)

The second term can be integrated explicitly and then evaluated, using the boundary
condition w(±L) = ∓h. This condition transforms to εLW (±1) = ∓2εL, so that
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w0(±1) = ∓2. The equation (23) therefore reduces to∫ 1

−1
u0 dz = 2r. (24)

We now use this to determine the strain. The dimensionless first order approxima-
tion for the strain is given by

r (e0(r)− ei) = cos2 φu0 + α cosφ sinφ r2
∂v0
∂z

+ r sin2 φ
∂w0

∂z
. (25)

We integrate over −1 ≤ z ≤ 1 and apply (24) to obtain

e0 − ei = cos2 φ− 2 sin2 φ. (26)

We see that the change in strain is the difference of two terms. The individual
terms can be interpreted as the strains due to the azimuthal and vertical changes in
length of the fibres. With the value of φ = π/6 quoted in the literature, the change
in strain is positive, so the fibres remain under tension. For the interpretation,
first suppose that the fibres are entirely radial in orientation (the limit of φ → 0;
a dense coil). Then the compression would create an average radial displacement
δ determined from the condition that the volume increase caused by the radial
displacement (circumference×height×average displacement = 2πr(2L)δ) is equal
to the volume lost by compression of the disc (area×total displacement = πr2(2h))
from which it follows that δ = ε r. Then each loop of the coil would be strained
by (2π(r + δ) − 2πr)/ 2πr = ε. This is a positive strain. Now suppose that the
fibres are entirely vertical. Then the strain produced would be (−2h)/2L = −2ε.
This is a negative extension and the fibres would slacken. Note that as in (26) the
extension for the vertical stretching has a factor of 2 compared to the extension due
to the radial stretching. When the fibres are inclined (in a helix) we get a balance
of these two effects that depends on the angle of orientation. It is interesting to
note that if φ exceeds arctan (1/

√
2) ' 350 the change in strain would be negative

so that the disc would be unstable to small deformations.
Substituting for e0 − ei from (26) into (25) we obtain

cos2 φu0
r

+ α cosφ sinφ r
∂v0
∂z

+ sin2 φ
∂w0

∂z
= cos2 φ− 2 sin2 φ. (27)

Also, with the perturbations of u, w as above, and P = P0 + εP1 + · · · , e =
e0 + εe1 + · · · , the leading order terms of the tangential and radial equations are

cosφ
(
sin2 φ+ 1

)
r

∂u0
∂z

+ α sin3 φ r
∂2v0
∂z2

− cosφ sin2 φ
∂2w0

∂z2
= 0; (28)

∂P0

∂r
+

cos2 φ

sinφ r
S0(r) = 0. (29)

Integrating equation (29) with respect to r over [1, γ] and applying the boundary
condition P0 = 0 at r = γ we have

P0 =
cos2 φ

sinφ

(∫ γ

1

S0(r)

r
dr

)
. (30)

We need to solve for the three unknowns u0, v0 and w0 from equations (27) and
(28). A third equation is required for this to be done. We are missing an equation
because the radial force equation (21) was degenerate and its zero order expansion
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did not contain any displacement variables. We find the required equation from the
ε order term in the expansion of this equation and it is given by

S0(r)

[
α
(
cos2 φ− 1

)(
α
∂2u0
∂z2

− cosφ sinφ
∂v0
∂z

)
+ cos2 φ (cos2 φ− 2)r−1

∂w0

∂z

− cos4 φ r−2 u0

]
+ e1 cos2 φS1(r)r−1 + sinφ

∂P1

∂r
= 0. (31)

5. Solution. Now we use equations (27), (28) and (31) to solve for the displacement
fields u0, v0 and w0. The structures of u0, v0 and w0 permit a similarity solution
in simple powers of r. In particular, we assume that

u0 = r U(z), v0 =
V(z)

αr sinφ
, w0 =W(z),

so that the equations can then be expressed, respectively, as

cos2 φU + cosφ
∂V
∂z

+ (1− cos2 φ)
∂W
∂z

= cos2 φ− 2 sin2 φ; (32)

cosφ
(
sin2 φ+ 1

) ∂U
∂z

+ sin2 φ
∂2V
∂z2
− cosφ sin2 φ

∂2W
∂z2

= 0; (33)

and

S0(r)

[ (
cos2 φ− 1

)(
α2 r

∂2U
∂z2
− cosφr−1

∂V
∂z

)
+ cos2 φ (cos2 φ− 2)r−1

∂W
∂z

− cos4 φ r−1 U
]

+ e1 cos2 φS1(r)r−1 + sinφ
∂P1

∂r
= 0. (34)

Now we integrate (34) over r from 1 to γ. In order to reduce the complexity of
the algebra later on, we denote the integral of S0(r) r−1 as j−1, that of S0(r) r as
j+1 and the ratio (α2 j+1)/j−1 as j2. The P1 and e1S1 terms are both functions
of r and generate unknown constants. These can be combined into a single joint
constant which we can denote as −j−1 k. We divide the resulting equation by j−1
to obtain (

cos2 φ− 1
)
j2
∂2U
∂z2
− cos4 φU

+ cosφ (1− cos2 φ)
∂V
∂z

+ cos2 φ (cos2 φ− 2)
∂W
∂z
− k = 0. (35)

With cosφ = c and sinφ =
√

1− c2, equations (32), (33) and (35) can be expressed
in rational combinations of cosφ as

c2 U + c
∂V
∂z

+ (1− c2)
∂W
∂z

= 3c2 − 2; (36)

(c3 − 2c)
∂U
∂z

+ (c2 − 1)
∂2V
∂z2

+ (c− c3)
∂2W
∂z2

= 0; (37)

and

j2 (c2 − 1)
∂2U
∂z2
− c4 U + c (1− c2)

∂V
∂z
− c2(c2 − 2)

∂W
∂z
− k = 0, (38)

respectively.
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We construct the eigenvalue matrix for the above system of equations: c2 c λ
(
1− c2

)
λ(

c3 − 2 c
)
λ

(
c2 − 1

)
λ2

(
c− c3

)
λ2

(c2 − 1) j2 λ2 − c4
(
c− c3

)
λ c2

(
c2 − 2

)
λ

 ,
from which we obtain the eigenvalues as λ = 0 (with multiplicity 3), λ = −i ν and

λ = i ν, where ν = c
√

2− c2/
(
1− c2

)
j.

Two of the solutions associated with λ = 0 are constants, V = vcon (constant)
and W = wcon (constant). The last of these solutions takes the form U = ulin,
V = vlin z, W = wlin z, where ulin, vlin, and wlin are constants. A solution of this
type also generates the nonhomogeneous terms in the equations so we can solve
these together. The solution is

ulin = −k + (c2 − 1) c2 + r1 + 2

c2
, vlin =

k + 3 c4 + (r1 − 2) c2

c
, wlin = r1,

where r1 is a constant of integration.
Now we find the harmonic component of the solution. We first consider the case

where U is the cosine, and V andW are the sine components of the solution. These
are of the form U = ucos cos νz, V = vsin sin νz, W = wsin sin νz. Using these
in the associated homogeneous forms of (36) and (38) we find that

ucos = r2, vsin =
2
(
c2 − 1

)
j r2√

2− c2
, wsin =

c j r2√
2− c2

,

where r2 is a constant of integration. The proposed form of the solution is found
to be consistent with the tangential force equation (37).

We next consider the case where U is the sine, and V and W are the cosine
components of the solution. The proposed form of the solution is U = usin sin νz,
V = vcos cos νz, W = wcos cos νz. By substituting these in the associated homo-
geneous forms of equations (36) and (38), and solving we obtain

usin = r3, vcos =
2
(
1− c2

)
j r3√

2− c2
, wcos = − c j r3√

2− c2
,

where r3 is a constant. The proposed form of the solution is also found to satisfy
the tangential force equation (37).

We now use the various solutions obtained above to construct the general solution
of the above system of equations:

U(z) = ulin + ucos cos νz + usin sin νz

V(z) = vcon + vlinz + ucos cos νz + usin sin νz

W(z) = wcon + wlinz + ucos cos νz + usin sin νz

where r1, r2 and r3 are constants and ν = c
√

2− c2/
(
1− c2

)
j. Observing that

vcon and wcon are both zero from the boundary conditions, the general solution is
given as follows:

U(z) = −k+(3 c2−5)c2+r1+2
c2 + r2 cos νz + r3 sin νz

V(z) = k+3 c4+(r1−2) c2
c z − 2 (1−c2) j√

2−c2 (r2 sin νz − r3 cos νz)

W(z) = r1z + c j√
2−c2 (r2 sin νz − r3 cos νz).

(39)
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Applying the boundary conditions U(±1) = 0, V(±1) = 0, W(±1) = ±2 we obtain
the constants r1, r2, r3, and k as

r1 =
j
(
c2 − 2

)
sin ν + 2 c

√
2− c2 cos ν

j (1− c2) sin ν − c
√

2− c2 cos ν
, r2 =

c
√

2− c2

j (1− c2) sin ν − c
√

2− c2 cos ν
,

r3 = 0, and k =
c2
[
(3 c4 − 8 c2 + 6)j sin ν + c

√
2− c2 cos ν

]
j (1− c2) sin ν − c

√
2− c2 cos ν

respectively,

where ν = c
√

(2− c2)/(1−c2)j. With e0 = 3 cos2 φ−2+ei/ε, we obtain S0(r) = 1
and

j = α

√
γ2 − 1

2 ln (γ)
.

The functions U(z), V(z) and W(z) represent the displacement of the collagen
fibres when the disc bulges. The way the disc bulges, and the collagen fibres are
displaced, depends on the value of j and their orientation with the horizontal plane
before they are compressed. Assuming that the fibres have an average orientation
of 30o with respect to the horizontal plane, Figures 4, 5 and 6 illustrate respectively
the radial, azimuthal and axial displacements of the fibres.
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Figure 4. Radial fibre displacement with φ = 300.

6. Axial load and fluid pressure balances. When the disc is loaded, the force
transmitted through the vertebral/intervertebral disc interface can not be directly
equated to the loading force. This is because the body has to balance the moment
of forces on the spine as well as the force itself. It does this by providing additional
forces through the action of muscles (and ligaments). There are no direct practical
methods to measure the loads imposed on the spine and the forces experienced by
the muscles as a result of different physical activities. These are indirectly inferred
from measurements of intradiscal pressures.
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Figure 5. Azimuthal fibre displacement with φ = 300.
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Figure 6. Axial fibre displacement with φ = 30o.

Firstly, the inward force generated by the fibres must be balanced by the outward
effect of the pressure. We can express this as an equation using (14). This equation
is valid in the initial as well as the final state, but in the initial state u, v and w are
all zero and the equation reduces to the form

∂P

∂r
= −ρi T (ei)

1

r secφ tanφ
. (40)
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On integrating with respect to r over [a, b] and we obtain

Pi =
cos2 φ

sinφ

∫ b

a

ρiT (ei)

r
dr

= ρi T (ei)
cos2 φ

sinφ
ln(

b

a
), (41)

where the first line is generally true and the second line follows when our assumption
about the uniformity of ei is correct. In the experiment of Andersson and Schultz
[3] the pressure in the nucleus before injection is cited and substitution of this value
in (41) enables us to determine the initial strain ei.

Let W be the force that is transmitted directly through the intervertebral disc.
Then W must be equal to the net force provided by the pressure and tension forces
at the vertebra interface. Denoting the pressure in the nucleus by Pn, the balance
of forces is given by

W = πa2Pn + (1− η)

∫ b

a

2πPr dr −
∫ b

a

2π ρiTr sinφdr, (42)

where η is the fibre volume fraction. The terms of the right hand side of the equation
have the following interpretation:

• The first term is the pressure force of the nucleus pulposus.
• The second term is the pressure of the ground substance within the annulus.

The factor (1− η) allows for the volume taken up by the collagen fibres.
• The third term is the force resulting from the tension in the collagen fibre

network. The sinφ factor comes from taking the vertical component of the
tension force.

Performing an integration by parts on the first integral in (42) and using the con-
dition P |r=b = 0, we get

W = η π a2 Pn − π(1− η)

∫ b

a

r2
∂P

∂r
dr − 2π sinφ

∫ b

a

ρiTr dr, (43)

where P |r=a = Pn. The pressure gradient to zero order can be determined from
equation (29), which in dimensional form is

∂P

∂r
= −cos2 φ

sinφ

ρiT

r
. (44)

On substitution of this in (43) we get

W = η π a2 Pn + π
(1− η) cos2 φ− 2 sin2 φ

sinφ

∫ b

a

ρiT r dr. (45)

We had earlier assumed that the tension is uniform throughout the annulus. It is
one of the simplest assumptions that we can make and allows convenient evaluation
of the integrals. Our equations show that the tension is then uniform everywhere
after displacement. The final result can then be expressed entirely in terms of Pn
using the relation

Pn =
cos2 φ

sinφ
ρiT ln(γ), (46)

which follows from (41). Thus

W =

[
η a2 +

(1− η) cos2 φ− 2 sin2 φ

2 ln(γ) cos2 φ
(b2 − a2)

]
π Pn.
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In order to compare our predictions with experimental results, we rewrite the above
equation in the form

W =

[
η

γ2
+

(1− η) cos2 φ− 2 sin2 φ

2 ln(γ) cos2 φ
(1− 1

γ2
)

]
π b2 Pn, (47)

where γ = b/a. Then π b2 is the cross-sectional area of the disc so π b2 Pn is the
natural estimate of the loading force obtained by multiplying the total disc area by
the nucleus pressure. The square bracket factor in front of this term expresses the
reduction in the force due to the tapering off of the pressure in the annulus fibrosus
and the opposing effect of the fibres. Taking the values η = 0.16 and γ2 = 2, this
factor can be evaluated and we find

W ' 0.205π b2 Pn. (48)

The axial compressive load on a disc can thus be calculated from measured intradis-
cal pressures using this formula.

7. Results and discussion. The evaluation of loads upon the spine is quite a
difficult task. The literature offers several conflicting estimates of axial load for
the same posture [24, 25, 31]. Our belief is that the variation in the measurements
is caused by the axial component of the forces in the muscles (and ligaments)that
surround the spine. In most postures, especially flexion and extension, forces re-
sulting from muscle activity are required to stabilize the spine. The compressive
force down the axis of the spine is then due to the sum of the body weight and the
tensile forces in the muscles.

In vivo studies show that intradiscal pressures increase with increasing load in
all modes of loading but pressure increases due to flexion and lateral bending are
significantly larger than those caused by either symmetric compression of the same
magnitude or torsional moments [4]. Most of the existing experimental investiga-
tions have attempted to measure the increase in intradiscal pressure when the disc
is loaded. Changes in intradiscal pressures associated with postural change have
also been measured [6, 11]. Though experimental results suggest that the pressure
in the disc is directly related to the compressive load on it, there has never been
any explicit method to determine the load directly.

We will compare the model predictions with the results from two groups of ex-
periments, one with the subject sitting and the second with the subject standing.
Most of the experimental values are taken from Nachemson and Morris [25]. The
fourth lumbar disc results reported in Table 1 is taken from Wilke et al. [36]. In
their experiments Nachemson and Morris measured the pressure in the nucleus of
the third and fourth lumbar discs for different loads held by the subject. They also
estimated the body mass that was supported by the disc. The influence of posture
was studied by measuring the intradiscal pressures in sitting and standing positions.
The effect of added loads was determined with the subjects carrying weights of zero,
9.1 kg and 22.7 kg in their hands. They also estimated the body mass supported to
be 26 kg at the third lumbar disc and 44.4 kg at the fourth lumbar disc. We use
the units of measurement of Nachemson and Morris [25]: cm2 for area, kg for load
(weight) and kg/cm2 for pressure.

By using the intradiscal pressure measurements ( Pn) in [25] and applying equa-
tion (47), we predict the load on the disc under consideration. Our findings are
given in Table 1. The ’Net Load’denotes the sum of the Load and body mass. The
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last two columns of the table indicates whether the angle φ = 30o or φ = 25o has
been used in the calculation.

Table 1. Load predictions in sitting position with and without
added external load at φ = 30o and φ = 25o

Disc Load Pn Net load W30 W25

Third lumbar disc None 10.4 26.0 28.4 51.7
Cross-section area = 13.3 cm2 9.1 15.3 35.1 41.7 76.0
Load above = 26 kg 22.7 23.3 48.7 63.5 115.7

Fourth lumbar disc None 9.9 44.4 43.8 79.9
Cross-sectional area = 21.6 cm2 9.1 12.7 53.5 56.2 102.5
Load above = 44.4 kg 22.7 17.1 67.1 75.7 138.0

In situations where the muscles apply no additional stresses to the spine one
would expect the predicted load W to equal the Net Load. Using the commonly
accepted angle of φ = 30o (column W30) we find that there is excellent agreement
when there is no loading or light loading. As the load increases, however, the
predicted load rises significantly above the Net Load. This is to be expected since
a load of 22.7 kg is likely to produce significant stress in the muscles, even with the
body in a seated position.

In the final column of Table 1 we have calculated W with φ = 25o. It is noticeable
that W25 significantly exceeds W30 and the agreement with the Net Load is very
poor. This result has been given to illustrate the strong sensitivity of W to the
value of φ. This should be borne in mine since it is unlikely that the value of φ is
exactly equal to 30o in practice. A slightly larger value for φ could even improve
the fit with the Net Load. However, φ has not be determined with such precision.
Indeed it seems quite possible from the variation observed in experiments that φ
varies from specimen to specimen.

A similar comparison of Net and predicted loads are made in Table 2 where the
data is again for the third and fourth lumbar discs but with more than one subject
and now in a standing position.

Table 2. Load predictions in standing position with and without
added external load at φ = 30o

Disc Load Disc area Pn Net load W30

Third lumbar disc None 19.9 7.4 47.5 30.2
None 13.8 9.6 43.3 27.2
None 15.7 8.2 36.5 26.4

(Nachemson & Morris [25]) None 20.6 10.9 53.2 46.0

Fourth lumbar disc None 17.8 8.8 39.2 32.1
(Nachemson & Morris [25]) None 21.6 8.6 44.4 38.1

Fourth lumbar disc None 18.0 5.1 m. 18.8
(Wilke et al. [36]) 19.8 18.0 17.5 19.8+m 64.6

Here we find inconsistency for many of the load predictions. The effect of muscle
action can only increase the nucleus pressure and so lead to a load prediction that
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is in excess of the weight that is supported by the spine. Many of our predicted
loads, however, are significantly less than the experimentally applied load, which
should not be possible.

A possible explanation of this is that the experimental results of Nachemson and
Morris may have been in error. Althoff et al. [2] performed a series of experiments
(but whose results are in a form that we were not able to use) and reported that
their results were considerably higher than those of Nachemson and Morris in the
standing position. If the correct pressure values are the higher measured readings
then this would lead to a larger load prediction and so could explain the discrepancy.

Model predictions based on the experimental results of Wilke et al. [36] for the
fourth lumbar disc are presented at the bottom of Table 2. However, they made no
estimates of the lumbar compressive forces (loads) in their study. So an unknown
estimate, denoted by m, has been entered in the table. Note that if we assume that
m = 18.8 kg (so that the first readings are in agreement) then the predicted load
for the second measurement is in excess of the Net Load, which is consistent with
our model interpretation that excess loading can occur through muscle activity.

8. Conclusion. A model of an intervertebral disc has been developed in which
the annulus fibrosus is represented as a series of fibre sheets separated by liquid-
like layers of ground substance. Thus it does not behave as a rigid composite. The
model has been applied to predict the compressive loads on a disc in both sitting and
standing positions with and without additional external loads. In spite of the many
assumptions and simplifications made in formulating the analytical model, results
are found to be in agreement with estimated compressive forces on the disc for data
from seated subjects by Nachemson and Morris [25]. There is poor agreement with
data from standing subjects but other literature sources (Althoff et al. [2]) have
stated that the experimental measurements were in error for this case. Our results
are consistent with the results of Wilke et al. [36].
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Appendix - The force balance equations. Here we show how equations (15)
and (16) were derived from the raw form of the force equations. The main problem
is the expression of the final coordinate system (R, Θ, Z) with its associated coor-

dinate basis, (R̂, Θ̂,k), in terms of the original coordinate frame (r, θ, z) and the
displacement fields (u, v, w).

The tangential force equation. We begin by converting (11). A typical fibre

point in its displaced location has position vector X = RR̂ + Zk where the co-
ordinates (R, Θ, Z) are given in (2). Then a tangent vector to the displaced fibre
is given by

t =
∂X

∂s
=
∂R

∂s
R̂ +R

∂Θ

∂s
Θ̂ +

∂Z

∂s
k

= q tanφu∗z R̂ + (q + u∗)(1 + q tanφ v∗z)Θ̂ + q tanφ (1 + w∗z) k, (A-1)

where the asterisk denotes that the quantity is being evaluated at (q, qs tanφ). The
final equation is an identity which is true for all values of q and s, and remains
true if we replace q → r, qs tanφ → z. This also holds in subsequent equations to
be derived. The asterisk is therefore unnecessary in the final form of any derived
equation and will be omitted henceforth.

From the above equation it follows that

|t| =
{
u∗z

2q2 tan2 φ+ (q + u∗)2(1 + v∗zq tanφ)2 + (1 + w∗z)2q2 tan2 φ
} 1

2 ,

=

∣∣∣∣dXds
∣∣∣∣ =

dl

ds
. (A-2)

This can be used in turn to calculate a unit tangent,

t̂ =
t

|t|
=

1

dl/ds
t. (A-3)

A normal to the plane of the sheet can be calculated by the following argument.
Consider two adjacent points on the same displaced sheet with the same Θ- co-
ordinate. Let these be (R,Θ, Z) and (R + dR,Θ, Z + dZ). Then a normal will be

given by a multiple of −dZ R̂+dRk. Now these points originally lay at (r, θ, z) and
(r, θ+dθ, z+dz). They had the same radial value r, since they lay on the same sheet
but they had distinct values of θ and z. Because of the axial symmetry the displaced
value of θ is irrelevant for the calculation of the normal, but the displacement dz is
relevant. From the displacement mapping we know that R+ dR = r + u(r, z + dz)
and Z + dZ = z+ dz+w(r, z+ dz). From these we can find expressions for dR and
dZ, and so (cancelling the dz factor) deduce that

n = −(1 + wz)R̂ + uzk. (A-4)

The unit normal can then be found by dividing by the modulus of this vector.

n̂ =
1

N

{
−(1 + wz)R̂ + uzk

}
, (A-5)
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where N = |n̂| =
{

1 + 2wz + w2
z + u2z

} 1
2 . We now calculate b̂ from its definition as

b̂ = t̂ ∧ n̂.

b̂ = F
{
uz(r + u)(1 + r tanφ vz)R̂−

[
(1 + wz)

2 + u2z
]
q tanφ Θ̂

+ (1 + wz)(r + u)(1 + r tanφ vz)k
}
, (A-6)

where F (eventually irrelevant) is a scalar factor, F = 1/[N(dl/ds)]. We are now
in a position to obtain the final form of (11). First we write it as

1

dl/ds

∂t̂

∂s
. b̂ = 0. (A-7)

From (A-3) we deduce that

∂t̂

∂s
=

1

dl/ds

∂t

∂s
− ∂

∂s

(
1

dl/ds

)
t. (A-8)

However, t is perpendicular to b so when this is substituted into (A-7) the dot
product with the second term of (A-8) equals zero and so (A-7) reduces to

∂t

∂s
. b̂ = 0. (A-9)

From (A-1) we find

∂t

∂s
=

[
r2 tan2 φuzz − (r + u)(1 + r tanφ vz)

2
]
R̂

+
[
2r tanφuz(1 + r tanφ vz) + r2 tan2 φ(r + u)vzz

]
Θ̂

+ r2 tan2 φwzzk, (A-10)

where we have used

∂R̂

∂s
=
∂Θ

∂s
Θ̂ = (1 + q tanφ vz)Θ̂,

∂Θ̂

∂s
= −∂Θ

∂s
R̂ = −(1 + q tanφ vz)R̂.

We now substitute (A-6) and (A-10) into (A-9) and take the dot product to obtain

r2 tan2 φ(r + u)(1 + wz)(1 + r tanφ vz)wzz − (r + u)2(1 + r tanφ vz)
3uz

−r2 tan2 φ
[
(1 + wz)

2 + u2z
]

[2uz(1 + r tanφ vz) + r tanφ(r + u)vzz]

+r2 tan2 φ(r + u)(1 + r tanφ vz)uzuzz = 0. (A-11)

The radial force equation. In this section we express (14) in terms of the
displacement fields. We begin by converting the derivative with respect to R on the
left hand side of the equation into derivatives with respect to the original co-ordinate
system, (r, θ, z):

∂P

∂R
=
∂P

∂r

∂r

∂R
+
∂P

∂z

∂z

∂R
.

By differentiating the identities

R = r + u(r, z), Z = z + w(r, z)

with respect to R and Z we obtain four equations which may be solved to obtain
expressions for the partial derivatives of r and z. In particular,

∂r

∂R
=

1 + wz
D

,
∂z

∂R
= −wr

D
, (A-12)
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where

D = 1 + (uz + wz) + (urwz − uzwr).

Next we find an expression for ρs in terms of ρ
(0)
s , where ρ

(0)
s is the equivalent

linear density in the initial configuration of a sheet, i.e., the number of fibres per unit
length that pass through a circular arc of constant (r, z) within the sheet. Consider
such an arc that initially extends between θ1 and θ2. After displacement this will
still be a circular arc subtending the same angle θ2−θ1, but with a different radius,
r + u(r, z). The vertical co-ordinate is also different, but this does not affect the
calculation. The number of fibres passing through each arc is the same, so

ρ(0)s [r(θ2 − θ1)] = ρs [(r + u)(θ2 − θ1)] .

It then follows that

ρs = ρ(0)s
r

r + u
.

We shall assume that ρ
(0)
s is a constant, i.e., the fibres have the same constant

spacing in any sheet. For this to be so, more fibres must be present in the outer
(larger radius) sheets.

Next we calculate ρR in terms of ρ
(0)
r , where ρ

(0)
r is the equivalent linear density

in the original configuration, i.e., the number of sheets per unit length that pass
through a radial line of constant (θ, z). Consider an element of a radial line in
the final configuration that extends from (R,Θ, Z) to (R+ dR,Θ, Z). The number
of sheets intersecting this line is ρRdR. Now consider the original line element
that transformed into this line element after displacement. The endpoints of the
original element lie at (r, θ, z) and (r + dr, θ + dθ, z + dz). Now we need to find an
expression for the number of sheets that cross between the two original end points.
The path chosen for this is irrelevant. Thus we may choose the path to first go

from (r, θ, z) to (r + dr, θ, z), during which it crosses ρ
(0)
r dr sheets, and from there

to (r+dr, θ+dθ, z+dz), during which it crosses no sheet (since they are all vertical
circular cylinders in the original configuration). The number of sheets is the same
for the initial and final configurations, so it follows that

ρRdR = ρ(0)r dr = ρ(0)r
∂r

∂R
dR.

Thus from (A-12), we have

ρR = ρ(0)r
1 + wz
D

.

We shall assume that ρ
(0)
r is a constant, i.e. that sheets are originally spaced at fixed

intervals as we move outward through the disc.
Next we derive an expression for sin Φ. We can obtain cos Φ by taking the dot

product of the azimuthal vector Θ̂ with the unit tangent t̂ along a fibre. The unit
tangent was calculated earlier and its formula is given by (A-1), (A-2) and (A-3).
From these we find that

sin Φ =
√

1− cos2 Φ =
Nr tanφ

dl/ds
.

Next we derive an expression for (∂t̂/∂l) . n̂. The separate parts are given by
(A-5) and (A-8). We note that an expression for the final term in (A-8) is not
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required since t is perpendicular to n̂. Thus

∂t̂

∂l
. n̂ =

1

dl/ds

∂t

∂s
. n̂

=
1

N(dl/ds)

{
(1 + wz)

[
(r + u)(1 + r tanφ vz)

2

− r2 tan2 φuzz
]

+ r2 tan2 φuzwzz
}

(A-13)

Finally we define ρi = ρ
(0)
r ρ

(0)
s . Substituting all these results in (14) we obtain

the radial component of the force balance equation as

(1 + wz)
∂P

∂r
− wr

∂P

∂z
= −ρi S(e)

(1 + wz)

(r + u)(dl/ds)N2 tanφ
× (A-14)

{
(1 + wz)

[
(r + u)(1 + r tanφ vz)− r2 tan2 φuzz

]
+ r2 tan2 φuzwzz

}
.
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