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Abstract. We consider a simple mathematical model of distribution of mor-
phogens (signaling molecules responsible for the differentiation of cells and the
creation of tissue patterns). The mathematical model is a particular case of the
model proposed by Lander, Nie and Wan in 2006 and similar to the model pre-
sented in Lander, Nie, Vargas and Wan 2005. The model consists of a system
of three equations: a PDE of parabolic type with dynamical boundary condi-
tions modelling the distribution of free morphogens and two ODEs describing
the evolution of bound and free receptors. Three biological processes are taken
into account: diffusion, degradation and reversible binding. We study the sta-
tionary solutions and the evolution problem. Numerical simulations show the
behavior of the solution depending on the values of the parameters.

1. Introduction. Morphogenesis (the creation “genesis” of shapes “morphe”) has
been studied from the early 20th century, but only in recent years, growth factors
have been identified as morphogens. The formation of the embryo can be understood
only as a global process and therefore global phenomena as differentiation of tissues,
formation of organs and its organization have to be considered to understand it.
The differentiation of the cell, the key process on the formation of embryos, depends
on its position. The cell receives the information of its position by measuring the
concentration of signaling molecules, named morphogens.

Morphogens are synthesized at signaling localized sites and spread into the body
creating gradients in its concentration, otherwise, a constant distribution of mor-
phogens would create an homogeneous differentiation of cells. How the gradients
arise is an unclear and controversial question and central issue in Development
Biology. Theoretical and experimental scientists consider two main theories to ex-
plain the formation of gradients of morphogens: diffusion theory, where morphogens
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are spread by diffusion through the extracellular matrix and the positional theory
(see Kerszberg and Wolpert [7]) which suggests that morphogen is transferred by
contact.

Once the morphogens arrive to the cell surface they bind to receptors and other
kind of molecules. The diffusion theory considers slow degradation of products and
reversible binding (see Lander, Nie, Wan [10]) in contrast the positional theory does
not consider degradation (see Kerszberg and Wolpert [7]).

Lander, Nie and Wan [10] studied numerically several mathematical models and
focused on the Drosophila wing disc. They obtain that diffusion process and non-
homogeneous distribution of morphogen are not in contradiction. Tello [18] studied
the mathematical model and the asymptotic behavior of the solutions of the model
proposed in Lander, Nie and Wan [10].

Lander, Nie, Vargas and Wan [9] and Lander, Nie and Wan [11] proposed several
models of differential equations. The models consider a PDE of parabolic type to
describe the evolution of morphogens and several ODEs to model the receptor and
the bound-receptor. They study the steady states and the linear stability of them
under the action of a source in a region of the domain. In the present work, we
shall analyze the evolution problems, corresponding to some particular cases of the
model proposed by Lander, Nie, Vargas and Wan [9].

Merkin and Sleeman [15] have studied the system proposed by Lander, Nie and
Wan [10] with degradation and without it. They provide an analysis of the models
under the assumption of constant concentration of morphogens at the boundary
x = 0 and gradient of morphogens equals to zero at infinity. The authors prove that
the case where the bound morphogen complex is not degraded, the free morphogen
profile is essentially linear and spreads as a square root law.

Recently Merkin, Needham and Sleeman [14] have introduced a chemosensitivity
term in the model to describe morphogen concentration. They have presented
results on the existence and uniqueness of classical solutions and self-similarity.
Their numerical simulations have showed periodic pulse solutions.

Lou, Nie andWan [13] consider a model with two species of morphogens, Dpp and
Sog. The system consists of three PDEs of parabolic type and one ODE. The authors
study the steady states of the system and prove the existence of nontrivial gradients
in the solution under biologically meaningful assumptions. Numerical simulations
of the evolution of the system show the behavior of the solutions for different Sog
production rates. For high Sog production rates, the solution exhibits an intense
concentration of the complex Dpp-receptor in the region of Dpp production. The
magnitude of the concentration increases as Sog production rate increases.

In this work we study the case of diffusive transport of morphogens. In Section
2 we consider the mathematical model proposed by Lander, Nie and Wan [11],
the simplifications we shall consider and the resulting mathematical model to be
treated throughout the present work. The particular case does not consider the
effects of the processes in the interior of the cell. The resulting model is similar
to the model described by Lander, Nie, Vargas and Wan [9]. Section 4 is devoted
to the steady states. The boundary conditions are studied in Section 5 and the
results concerning existence and uniqueness of solutions are introduced in Section
6. Finally, Section 7 is about the numerical resolution of the model. We present
some numerical results and simulations of the model for some particular values of
the parameters and enumerate some conclusions which can be derived from the
results. The description of the scheme of resolution is presented in the Appendix.
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2. The mathematical model. Different models of distribution of morphogens
have been introduced by several authors in the last decade. We study, in the fol-
lowing sections, a particular case of a mathematical model proposed by Lander, Nie
and Wan [11]. They considered a 1D reaction-diffusion system of partial differential
equations and auxiliary conditions governing the morphogen activities along the
anterior-posterior axis of a Drosophila wing disc.
We consider below the mathematical model proposed by Lander, Nie and Wan [11],
see also Lander, Nie, Vargas and Wan [9] for the details of the modeling.
The unknowns of the problem represent the normalized concentrations of the fol-
lowing species:

• u is the concentration of morphogen,
• b is the concentration of ligand-receptor complexes bound to cell surface mem-
brane,

• c is the concentration of ligand-receptor complexes in the cell interior
• d is the extracellular receptor concentration,
• e is the concentration of receptors in the interior of the cell.

The system of equations is defined in I := (0, 1) and I ′ := [0, 1]

∂u

∂t
=
∂2u

∂x2
− h0ud+ f0b, t > 0, x ∈ I (1)

∂b

∂t
= h0ud− (f0 + j0)b+ k0c, t > 0, x ∈ I ′ (2)

∂c

∂t
= j0b− (k0 + g0)c, t > 0, x ∈ I ′ (3)

∂d

∂t
= −h0ud+ f0b− j1d+ k1e, t > 0, x ∈ I ′ (4)

∂e

∂t
=
j1g1
k1

ω0 − (k1 + g1)e+ j1d, t > 0, x ∈ I ′ (5)

with the boundary condition

x = 0 :
∂u

∂t
= ν − h0ud+ f0b+ σ0

∂u

∂x
(t > 0), (6)

x = 1 : u = 0 t > 0, (7)

and the initial data

u = b = c = 0, d = 1, e = e0 (x ∈ I ′), (8)

where h0, f0, g0, j0, j1, k0, k1, ν, σ0, e0 and ω0 are parameters of the problem.
The partial differential equation (1) governs the rate of change of morphogen

concentration “u”, h0 and f0 are the binding and disassociation rate constants.
Equations (2) and (3) model the processes of endocytosis (process by which cells
absorb material) and exocytosis (process by which cells secret components to the
extracellular matrix) and consider degradation of the ligand-receptor complexes.

The evolution of the receptor concentrations, in the intracellular and in the ex-
tracellular, are considered in equations (4) and (5). Formation, dissociation and
degradation of morphogen-receptor complexes, degradation of receptors, synthesis
of new receptors are also considered in (4) and (5).
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Lander et al. [11] focus their studies on the analysis of the steady state corre-
sponding to this model, considering both cases, σ0 = 0 and σ0 > 0. For simplifica-
tion we consider throughout the paper the particular case

σ0 = 0. (9)

We assume that the influence of the concentration of the ligand-receptor complex
in the interior of the cell is not relevant for the evolution of the complex in the cell
surface membrane, i.e.

k0 = 0, (10)

Then, equation (3) is uncoupled and c is obtained after integration

c(t) = c0

∫ t

0

eg0(s−t)j0b(s)ds

To simplify, we consider the concentration of receptors in the interior of the cell is
constant on time, i.e.

e = e0 (constant) t > 0. (11)

The system is reduced to a system of three equations with dynamical boundary
conditions. We introduce the new unknowns

v := f0b; w := h0d,

and the parameters

µ :=
j0
f0
, η :=

j1
h0

; κ := k1e0.

Then, under assumptions (9)-(11) the system (1)-(8) becomes

∂u

∂t
−
∂2u

∂x2
= −uw + v, t > 0, x ∈ I, (12)

∂v

∂t
= f0(uw − v − µv), t > 0, x ∈ I ′, (13)

∂w

∂t
= h0(κ− uw + v − ηw), t > 0, x ∈ I ′ (14)

with boundary conditions

∂u

∂t
= ν − uw + v, at x = 0 for t > 0, u = 0 at x = 1 (15)

and initial data

u = v = 0, w = 1 at t = 0, x ∈ I ′. (16)

Notice that ν in (15) represents the secretion of morphogen at x = 0.
In section 5 we study the boundary conditions. We will prove that the dynamical

system at x = 0 presents a unique steady state for κ 6= ν, infinitely many for
κ = ν = 0 and no steady states for κ = ν 6= 0.

In sections 4 and 5 we distinguish different cases depending on the parameters κ
and ν:

• Case I

κ− ν > 0, (17)

• Case II

κ− ν = 0, (18)

• Case III

κ− ν < 0. (19)
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(17) represents the case where the production rate κ of receptors in the cell is
larger than the production rate at x = 0 of the morphogen. (18) and (19) consider
the case where the balance is zero and negative respectively.

Assumptions (17) guarantees the non negativity of the values of the concentra-
tions and therefore we exclude the non-biological admissible solutions.

3. Known results on functional analysis. In order to study the system of
differential equations we introduce some functional spaces frequently used to solve
partial differential equations.
Let Ω ⊂ IRn be an open and bounded set with regular boundary. Then we define
the following spaces:

Lp(Ω) :=

{

u : Ω → IR, such that

∣

∣

∣

∣

∫

Ω

|u|p
∣

∣

∣

∣

1

p

<∞

}

, for 1 ≤ p <∞

L∞(Ω) := {u : Ω → IR, such that |u| <∞}

‖u‖Lp(Ω) :=

∣

∣

∣

∣

∫

Ω

|u|p
∣

∣

∣

∣

1

p

for 1 ≤ p <∞; ‖u‖L∞(Ω) := inf{c ≥ 0 such that |u| ≤ c}

(Lp(Ω), ‖ · ‖Lp(Ω)) is a Banach space for 1 ≤ p ≤ ∞.

H1(Ω) :=

{

u : Ω → IR, such that

∫

Ω

(|u|2 + |∇u|2) <∞

}

‖u‖H1(Ω) :=

(
∫

Ω

(|u|2 + |∇u|2)

)
1

2

H1
0 (Ω) := {u ∈ H1(Ω) such that u = 0 in ∂Ω}; ‖u‖H1

0
(Ω) :=

(
∫

Ω

|∇u|2
)

1

2

(H1(Ω), ‖ · ‖H1(Ω)) and (H1
0 (Ω), ‖ · ‖H1

0
(Ω)) are Hilbert Spaces .

Let X(Ω) be a Banach space and ‖ · ‖X be the norm defined in X(Ω) then

L2(0, T : X(Ω)) :=

{

u : Ω× (0, T ) → IR, such that

∫ T

0

∫

Ω

‖u‖2X <∞

}

W 1,∞(0, T : L∞) :=

{

u : Ω× (0, T ) → IR, s. t. |u|+

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

<∞ in Ω× (0, T )

}

.

The proof of Theorem 6.1 is based in Schauder fixed point theorem. In order to
obtain the needed estimates we used several inequalities, listed below.

• Young′s Inequality.
Let a and b be nonnegative real numbers and p and p′ positive real numbers
satisfying 1 ≤ p ≤ p′ ≤ ∞ with 1/p+ 1/p′ = 1 then

ab ≤
ap

p
+
bp

′

p′
.
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• Hölder′s Inequality.
Let p and p′, positive numbers satisfying 1 ≤ p ≤ p′ ≤ ∞ with 1/p+1/p′ = 1
and let f and g be real functions defined over Ω, then

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lp′(Ω).

• Poincarè′s Inequality.
Let u ∈ H1

0 (Ω), then
∫

Ω

u2 ≤ C(Ω)

∫

Ω

|∇u|2.

Notice that for Ω = I = (0, 1) we have that
∫ 1

0

u2 ≤
1

π2

∫ 1

0

|ux|
2.

See for instance Gilbarg and Trudinger [5] for more details and proofs.

4. The steady states. The steady states of the problem are given by the system:

−
∂2

∂x2
u = −uw + v, x ∈ I, (20)

0 = uw − v − µv, x ∈ I ′, (21)

0 = κ− uw + v − ηw, x ∈ I ′, (22)

with the boundary conditions:

0 = ν − uw + v, at x = 0, t > 0; u = 0, at x = 1, t > 0. (23)

We combine (21) with (22) to obtain

w =
κ

η
−
µ

η
v,

which replaced in (21), it yields

0 = u

(

κ

η
−
µ

η
v

)

− (1 + µ)v.

Then
v (µu+ η + µη) = κu

and therefore

v =
κu

µu+ η + µη
and − uw + v = −µv =

−µκu

µu+ η + µη
=

−κu

u+ η
µ
+ η

.

Let

k2 :=
η

µ
+ η, k :=

κ

k2
;

then equations (20)-(22) become

−
∂2

∂x2
u+ kk2

u

u+ k2
= 0, in x ∈ I. (24)

We introduce the normalized unknown ũ

ũ :=
u

k2
, (25)

for simplicity, we drop the tilde and the equation (24) becomes

−
∂2

∂x2
u+ k

u

u+ 1
= 0, in x ∈ I. (26)



MATHEMATICAL STUDY OF A MODEL OF MORPHOGENESIS 1041

(26) has been also obtained in Lou, Nie and Wan [13], for the time-independent
solutions of a system considering blind- and free-morphogens. Explicit solutions
may be found with an unknown parameter (c1) implicitly defined (see equation
(31)) as suggested in [13] which gives a range of admissible boundary condition.
However it is necessary to analyze the integral (31) to obtain that the studied
boundary conditions are admissible. Uniqueness of solutions is a byproduct of this
analysis.

Lander, Nie, Vargas and Wan [9] have consider the problem with a source term
and nonlinear mixed boundary conditions. The problem with nonlinear boundary
condition is more complicated and a monotone method is used to prove the existence
of solutions. In [9], the existence and uniqueness of solutions is obtained by using a
monotonicity method of Amman and Sattinger based on upper and lower solutions.
The proof presented below is slightly more simpler and self-contained. We only use
basic integration formulas and limits. The monotonicity of solutions is also studied
in [13] and [9].

If κ 6= 0 and thanks to (23) we get

0 = ν − κ
u(0)

u(0) + 1
,

hence, the boundary conditions for (26) for κ 6= 0 are the following

• If κ 6= ν

u(0) =
ν

κ− ν
:= α̃, u(1) = 0, (27)

• If κ = ν 6= 0 there is no solution to (21)-(23) in x = 0.

Notice that in the case κ 6= 0 where assumption (17) is satisfied, we have non
negativity of the values of the concentrations. When assumption (17) is not satisfied
we obtain non-biological admissible boundary conditions.

The case κ = 0 is simpler and two different options are possible:

• If κ = 0, ν 6= 0
the problem becomes −uxx = 0. By (21) and (23), v(0) = ν

µ
and w(0) = − ν

η

and by (21)

u(0) = (1 + µ)
v(0)

w(0)
= (1 + µ)

η

µ
.

Since u(1) = 0, the solution is given by

u(x) = (1 + µ)
η

µ
(1 − x), x ∈ I.

• If κ = ν = 0
the problem becomes −uxx = 0, u(1) = 0 for any u(0), and the solutions are
given by

u(x) = A(1 − x), x ∈ I,

for any positive constant A.

The main result of this section is the following proposition:
Proposition 3. For every k 6= ν there exists a unique solution “u” to (26), (27).
Proof. We consider two different cases:
Case I, α̃ = ν

κ−ν > 0.

We multiply equation (26) by the negative part of u, then after integration by
parts we obtain that any solution satisfies u ≥ 0 on I. Uniqueness of solutions is
a consequence of the monotonicity and regularity of the function u

u+1 for u ≥ 0.
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The case α̃ = 0 is the trivial case with a unique solution u = 0. We introduce the
system of ODEs

u′ = z,

z′ = k u
u+1 .

(28)

Then, after integration we obtain

1

2
z2 − ku+ k ln(u+ 1) = const. (29)

Let c1 be a positive constant such that

1

2
|u′|2 − ku+ k ln(u+ 1) =

c1
2
,

and hence
u′

(2ku− 2k ln(u+ 1) + c1)
1

2

= −1. (30)

The case
u′

(2ku− 2k ln(u+ 1) + c1)
1

2

= 1

has been excluded because there is no solution satisfying u′ > 0, u(0) = α̃ > 0 and
u(1) = 0. Notice that by mean value theorem, if such solution u exists, it has to
satisfy u′(x0) = u(1)−u(0) = −α̃ < 0 for some x0 ∈ (0, 1), since u′ > 0, we have to
exclude such case.

Let F (c1, k, α̃) be defined by

F :=

∫ 0

α̃

du

(2ku− 2k ln(u + 1) + c1)
1

2

(31)

then, after integration in (30), we have that there exists a solution if and only if
there exists a constant c1 such that

F (c1, k, α̃) = −1.

Since F is a continuous and monotone function in c1,

lim
c1→∞

F (c1, k, α̃) = 0 and lim
c1→0

F (c1, k, α̃) = −∞

we have the existence of a unique c1 > 0 for every α̃ > 0 and therefore the existence
of a unique solution u, implicitly defined by

∫ u

α̃

ds

(2ks− 2k ln(s+ 1) + c1)
1

2

= −x.

Notice that from (30) we deduce that the steady state u is monotone decreasing.
Notice also that if c1 < 0, the solution satisfies u(1) > 0 which contradicts (6).

Case II, α̃ = ν
κ−ν < 0.

We multiply equation (26) by the positive part of u and after integration by parts
we obtain that u ≤ 0 on I. Since u represents the concentration of morphogens,
the solutions for κ− ν < 0 are non-biological admissible solutions. To complete the
mathematical analysis of the problem we consider the solutions to (26) for α̃ < 0.

The analysis is similar to case I, and u satisfies

u′

(2ku− 2k ln |u+ 1|+ c1)
1

2

= 1, (32)
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and F is defined by

F (c1, k, α̃) :=

∫ α̃

0

du

(2ku− 2k ln(u+ 1) + c1)
1

2

for c1 > c∗1 = −2kα̃+ 2k ln(−α̃+ 1) and k > 0. The proof ends in the same way as
previous case. 2

5. The boundary condition. We study in this section the boundary condition of
the system. For reader′s convenience we denote the variable (u(0, t), v(0, t), w(0, t)
by (u, v, w). Then the boundary conditions at x = 0 are described by

∂

∂t
u = ν − u w + v, x = 0, t > 0, (33)

∂

∂t
v = f0(u w − v − µv), x = 0, t > 0, (34)

∂

∂t
w = h0(κ− u w + v − ηw), x = 0, t > 0 (35)

and the initial data
u = 0, v = 0, w = 1. (36)

Lemma 5.1. If κ 6= ν there exists a unique steady state of the system (33)-(35),
given by

u0 :=
νη(µ + 1)

µ(κ− ν)
, v0 :=

ν

µ
, w0 :=

κ− ν

η
.

If κ = ν 6= 0 there is no steady states.
If κ = ν = 0 there exists infinitely many steady states given by (u, 0, 0).

Proof. If κ 6= ν the steady states of the problem are given by the solutions of the
equations

ν − u w + v = 0, (37)

u w − v − µv = 0, (38)

κ− u w + v − ηw = 0. (39)

Since u w − v = ν, we have that ν − µv = 0 and κ− ν − ηw = 0 which implies

v =
ν

µ
, w =

κ− ν

η
,

and hence

u =
ν + v

w
=
νη(µ+ 1)

µ(κ− ν)
.

If κ = ν, we subtract equation (37) to (39) and we obtain w = 0. We substitute
in (38) to obtain v = 0. Then equations (37)-(39) have solutions if and only if
κ = ν = 0 which proves the case κ = ν. 2

Remark. Notice that the positivity of the steady state is a direct consequence of
assumption (17).

In order to study the existence of solutions for t ∈ (0,∞) we first obtain some a
priori estimates.

Lemma 5.2. u, v and w satisfy

u ≥ 0; v ≥ 0, w ≥ 0.
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Proof. The result is a consequence of the following facts

du

dt

∣

∣

∣

∣

u=0

> 0 for v ≥ 0, w ≥ 0

dv

dt

∣

∣

∣

∣

v=0

≥ 0 for u ≥ 0, w ≥ 0

dw

dt

∣

∣

∣

∣

w=0

> 0 for u ≥ 0, v ≥ 0.

2

Lemma 5.3. v and w are uniformly bounded.

Proof. We consider equations (34), (35) and the functions v
f0

and w
h0

, such that

∂

∂t

v

f0
+
∂

∂t

w

h0
= κ− µv − ηw.

Since

κ−min{µf0, ηh0}

(

v

f0
+
w

h0

)

≥ κ− µv − ηw ≥ κ−max{µf0, ηh0}

(

v

f0
+
w

h0

)

.

Then we have after integration that

v

f0
+
w

h0
≥

κ

max{f0µ, h0η}
+

(

1−
κ

max{f0µ, h0η}

)

e−tmax{f0µ,h0η},

and

v

f0
+
w

h0
≤

κ

min{f0µ, h0η}
+

(

1−
κ

min{f0µ, h0η}

)

e−tmin{f0µ,h0η},

which implies that v and w are uniformly bounded. 2

Lemma 5.4. u ≤ νt.

Proof. We divide equation (34) by f0 and add to equation (33) to obtain

d

dt

(

u+
v

f0

)

= ν − µv ≤ ν.

After integration we get that

u(t) ≤ νt−
v(t)

f0
≤ νt,

which proves the Lemma. 2

Lemma 5.5. For ν − κ > 0, we have that u ≥ − 1
h0

+ (ν − κ)t.

Proof. We divide equation (35) by h0 and combine with (33) to obtain

d

dt

(

u−
w

h0

)

= ν − κ+ ηw.

Then, since w ≥ 0
d

dt

(

u−
w

h0

)

≥ ν − κ

and after integration we get that

u(t) ≥ −
1

h0
+
w(t)

h0
+ (ν − κ)t ≥ −

1

h0
+ (ν − κ)t.
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Lemma 5.3 implies u(t) → ∞ as t→ ∞. 2

Proposition. There exists a unique solution (u, v, w) ∈ [C∞(0,∞)]3 to (33)-(36).

Proof. We denote by g = (g1, g2, g3) the right hand sides in (33)-(35), i.e.

g1(u, v, w) := ν − uw + v;

g2(u, v, w) := f0((u w − v)− µv);

g3(u, v, w) := h0(κ− u w − v − ηw).

Since g is a C∞ function, there exists T > 0 and a unique solution (u, v, w) ∈
[C∞(0, T )]3 to (33)-(36). Lemmas 5.3 and 5.5 implies that T = ∞. Regularity of
solutions is a consequence of the regularity of g. 2

6. Existence and uniqueness of solutions.

Theorem 6.1. There exists a unique solution to the system (12) - (16).

In order to apply a fixed point argument of Schauder type, we introduce the
functional space H1

0 (I) and L2(0, T : H1
0 (I)) defined in Section 3. Let T ∈ (0,∞)

and k′ defined by

k′ := max

{

1, ν,
κ

min{µ, η}

}

, (40)

and A defined by

A := {u ∈ L2(0, T : H1(I)), such that u−u(1−x) ∈ L2(0, T : H1
0 (I)), 0 ≤ u ≤ k′t}.

Notice that since u(1, t) = 0, the norm L2(0, T : H1(I)) in A is equivalent to the
norm in L2(0, T : H1

0 (I)).
We consider the functional

J : A ⊂ L2(0, T : H1(I)) → L2(0, T : H1(I))

defined by J(ũ) = u where u is the solution to the problem

∂

∂t
u−

∂2

∂x2
u = −uw + v, x ∈ I, 0 < t < T, (41)

∂

∂t
v = f0(ũw − v − µv), x ∈ I, 0 < t < T, (42)

∂

∂t
w = h0(κ− ũw + v − ηw), x ∈ I, 0 < t < T, (43)

with the boundary conditions:

u(0, t) = u, u(1, t) = 0, t ∈ (0, T ) (44)

and the initial data:

u = v = 0, w = 1 at t = 0, x ∈ I. (45)

Before presenting the proof of the Theorem 6.1 we obtain the necessary a priori
estimates.

Lemma 6.2. Let ũ ∈ A, then, the solutions v and w to (42), (43) and (45) satisfy

v, w ∈ W 1,∞(0, T : L∞(I)),

and

0 ≤ v ≤ f0max

{

1,
κ

min{µ, η}

}

; 0 ≤ w ≤ h0 max

{

1,
κ

min{µ, η}

}

.
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Proof. (42), (43) is a linear system of two equations with bounded coefficients and
therefore there exists a unique solution (v, w), moreover, it is bounded and for fixed
x ∈ I the solutions v, w ∈ C0([0, T ]).
We introduce the functions ψε, ψ, Ψε and Ψ : IR → IR defined by

ψε(s) :=







−1, s ≤ −ε,
1
ε
s, −ε < s < 0,

0, s ≥ 0,
ψ(s) :=

{

−1, s < 0,
0, s ≥ 0,

(46)

Ψε(s) :=







−s− ε
2 , s ≤ −ε,

1
2εs

2, −ε < s < 0,
0, s,≥ 0,

Ψ(s) :=

{

−s, s ≤ 0,
0, s > 0.

(47)

Notice that Ψ′
ε = ψε and

lim
ε→0

ψε = ψ, lim
ε→0

Ψε = Ψ, sψ(s) = Ψ(s) and Ψ′(s) = ψ(s).

We multiply equation (42) by ψε(v)
f0

, and (43) by ψε(w)
h0

and integrate over (0, 1)

to obtain:
d

dt

∫

I

Ψε(v)

f0
dx =

∫

I

(wũψε(v)− (1 + µ)vψε(v)) dx;

d

dt

∫

I

Ψε(w)

h0
dx =

∫

I

(κψε(w) + (−wũψε(w) + vψε(w)) − ηwψε(w)) dx.

We take limits when ε→ 0 to obtain

d

dt

∫

I

Ψ(v)

f0
dx =

∫

I

(wũψ(v)− (1 + µ)Ψ(v)) dx;

d

dt

∫

I

Ψ(w)

h0
dx =

∫

I

(κψ(w)− ũΨ(w) + vψ(w) − ηΨ(w)) dx.

Since ũ ≥ 0 and κ ≥ 0 we have that

wũψ(v) ≤ ũΨ(w); vψ(w) ≤ Ψ(v); κψ(w) ≤ 0,

and then
d

dt

∫

I

Ψ(v)

f0
dx ≤

∫

I

ũΨ(w)dx − (1 + µ)

∫

I

Ψ(v)dx;

d

dt

∫

I

Ψ(w)

h0
dx ≤

∫

I

(−ũΨ(w) + Ψ(v)− ηΨ(w)) dx.

We add above expressions to get

d

dt

∫

I

Ψ(v)

f0
dx+

d

dt

∫

I

Ψ(w)

h0
dx ≤ −µ

∫

I

Ψ(v)dx− η

∫

I

Ψ(w)dx,

which implies, by Gronwall′s Lemma, Ψ(v)
f0

+ Ψ(w)
h0

≤ 0 and prove

v ≥ 0, w ≥ 0. (48)

We divide equation (42) by f0 and equation (43) by h0, adding both expressions,
we have

∂

∂t

v

f0
+
∂

∂t

w

h0
= κ− µv − ηw,

since

κ−min{f0µ, h0η}(
v

f0
+
w

h0
) ≥ κ− µv − ηw ≥ κ−max{f0µ, h0η}

(

v

f0
+
w

h0

)
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we have, after integration that

v + w ≥
κ

max{f0µ, h0η}
+

(

1−
κ

max{f0µ, h0η}

)

e−tmax{f0µ,h0η},

and

v

f0
+
w

h0
≤

κ

min{f0µ, h0η}
+

(

1−
κ

min{f0µ, h0η}

)

e−tmin{f0µ,h0η},

which implies

v + w ≤ max

{

1,
κ

min{f0µ, h0η}

}

. (49)

(48) and (49) prove the Lemma. 2

Lemma 6.3. Let ũ ∈ A and v, w the solutions to (42), (43) satisfying (45) then,
the solution u to (41), (44) with the initial data given by (45) satisfies

0 ≤ u ≤ k′t.

Proof. Since u satisfies the equation (41), by Lemma 6.2, we have that

ut − uxx + uw ≤ k′ in I × (0, T ). (50)

we multiply (50) by (u−k′t)+ (where (·)+ is the positive part function) and integrate
by parts to obtain

d

dt

1

2

∫

I

(u−k′t)2+dx+

∫

I

∣

∣

∣

∣

∂

∂x
(u − k′t)2+

∣

∣

∣

∣

dx− [ux(u−k
′t)+]

1
0 ≤ −

∫

I

uw(u−k′t)+dx.

Since

u(0, t) = u ≤ νt ≤ k′t, u(1, t) = 0,

we have (u − k′t)+ = 0 at x = 0, 1 and therefore

[ux(u− k′t)+]
1
0 = 0.

Since w ≥ 0 and u(u− k′t)+ ≥ 0, we have

d

dt

1

2

∫

I

(u − k′t)2+dx+

∫

I

∣

∣

∣

∣

∂

∂x
(u− k′t)2+

∣

∣

∣

∣

dx ≤ 0. (51)

By Gronwall′s lemma we have u ≤ k′t. In the same way we multiply equation (41)
by ψε(u) integrate by parts to obtain

d

dt

1

2

∫

I

Ψ(u)dx+

∫

I

∣

∣

∣

∣

∂

∂x
Ψ(u)

∣

∣

∣

∣

2

dx ≤ 0. (52)

Again, by applying Gronwall′s lemma we have Ψ(u) = 0 which ends the proof of
the Lemma. 2

Proof of Theorem 6.1. In order to obtain the existence of a fixed point of J we
consider the following:
I.- J is well defined.
Let T < ∞. Since u ∈ C∞(0, T ) and w, v ∈ L∞(I × (0, T )) we have that there
exists a unique solution u to (41) satisfying

u, ut, ux, uxx ∈ Lp((0, T )× I), for p <∞. (53)
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II.- J is continuous.
Let ũi ∈ A for i = 1, 2, ui := J(ũi), vi and wi the solution to (42) and (43) for
ũ = ũi. Then

d

dt
(u1 − u2)− (u1 − u2)xx + w1(u1 − u2) = −u2(w1 − w2) + (v1 − v2) (54)

d

dt
(v1 − v2) = ũ2(w1 − w2) + w1(ũ1 − ũ2)− (1 + µ)(v1 − v2) (55)

d

dt
(w1 − w2) + ũ2(w1 − w2) + w1(ũ1 − ũ2) = (v1 − v2)− η(w1 − w2). (56)

We multiply (54) by (u1 − u2) and integrate over I to obtain

1

2

d

dt

∫

I

(u1 − u2)
2dx+

∫

I

|(u1 − u2)x|
2dx+

∫

I

w1(u1 − u2)
2dx =

∫

I

u1(w1 − w2)(u1 − u2)dx +

∫

I

(v1 − v2)(u1 − u2)dx

applying Holder and Young inequalities and Lemma 6.3, it results

1

2

d

dt

∫

I

(u1 − u2)
2dx+

∫

I

|(u1 − u2)x|
2dx ≤

k′T 2 + 1

2δ2

∫

I

(w1 − w2)
2 + (v1 − v2)

2dx + δ2
∫

I

(u1 − u2)
2dx.

We take δ := π
√
2

2 and k3 := k′T 2+1
2π2 , then, Poincare′s Inequality implies

d

dt

∫

I

(u1 − u2)
2dx+

1

2

∫

I

|(u1 − u2)x|
2dx ≤ k3

∫

I

(w1 − w2)
2 + (v1 − v2)

2dx. (57)

After integration in (57) over (0, T ) it results
∫

I

(u1 − u2)
2dx

∣

∣

∣

∣

T

0

+
1

2

∫ T

0

∫

I

|(u1 −u2)x|
2dxdt ≤ k3

∫ T

0

∫

I

(w1 −w2)
2 +(v1 − v2)

2dxdt,

in particular we deduce

1

2

∫ T

0

∫

I

|(u1 − u2)x|
2dxdt ≤ k3

∫ T

0

∫

I

(w1 − w2)
2 + (v1 − v2)

2dxdt. (58)

We integrate (57) over (0, t) to obtain
∣

∣

∣

∣

∫

I

(u1 − u2)
2dx

∣

∣

∣

∣

t

≤ k3

∫ t

0

∫

I

(w1 − w2)
2 + (v1 − v2)

2dxds, (59)

and (59) over (0, T ) to have
∫ T

0

∫

I

(u1 − u2)
2dx ≤ k3

∫ T

0

(
∫ t

0

∫

I

(w1 − w2)
2 + (v1 − v2)

2dxds

)

dt

since
∫ T

0

(
∫ t

0

∫

I

(w1 − w2)
2 + (v1 − v2)

2dxds

)

dt ≤ T

∫ T

0

∫

I

(w1 −w2)
2+(v1− v2)

2dxdt

we have
∫ T

0

∫

I

(u1 − u2)
2dxdt ≤ k3T

∫ T

0

∫

I

((w1 − w2)
2 + (v1 − v2)

2)dxdt. (60)
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We introduce the constant k4 := k3(1+T ) and we combine (58) and (60) to obtain

‖u1 − u2‖
2
L2(0,T :H1

0
)
≤

k4

(

‖v1 − v2‖
2
L2(0,T :L2(I)) + ‖w1 − w2‖

2
L2(0,T :L2(I))

)

.

(61)

We take (v1−v2) and (w1−w2) as test functions in (55) and (56) and apply Holder
and Young inequalities to get

d

dt

∫

I

(v1 − v2)
2dx ≤ k5

∫

I

(ũ1 − ũ2)
2 + (w1 − w2)

2 + (v1 − v2)
2dx (62)

d

dt

∫

I

(w1 − w2)
2dx ≤ k5

∫

I

(ũ1 − ũ2)
2 + (w1 − w2)

2 + (v1 − v2)
2dx (63)

for a positive constant k5. (62) and (63) imply

d

dt

∫

I

(v1 − v2)
2 + (w1 − w2)

2dx ≤ k5

∫

I

(ũ1 − ũ2)
2 + (w1 − w2)

2 + (v1 − v2)
2dx,

i.e.

ek5t
d

dt

(

e−k5t
∫

I

[

(v1 − v2)
2 + (w1 − w2)

2
]

dx

)

≤ k5

∫

I

(ũ1 − ũ2)
2dx,

after integration over (0, t) we have
∫

I

(

(v1 − v2)
2 + (w1 − w2)

2
)

dx ≤ kk5t5

∫ t

0

e−k5s
∫

I

(ũ1 − ũ2)
2dxds. (64)

We integrate (64) over (0, T ) to obtain

‖v1 − v2‖
2
L2(0,T :L2(I)) + ‖w1 − w2‖

2
L2(0,T :L2(I)) ≤

(ek5T − 1)‖ũ1 − ũ2‖
2
L2(0,T :L2(I)).

(65)

(61) and (65) prove the continuity of J .
III.- J(A) ⊂ A.
It is a consequence of (53) and Lemma 6.3.
IV.- J(A) is a precompact set of A.
Let

B0 := H2(I) ∩H1
0 (I); B := H1

0 (I); B1 := L2(I).

Notice that B0 ⊂ B ⊂ B1 and B0 ⊂ B is a compact imbedding and

W =

{

z; z ∈ L2(0, T : B0), z
′ =

dz

dt
∈ L2(0, T : B1)

}

,

with the norm

‖z‖W = ‖z‖L2(0,T :B0) + ‖z′‖L2(0,T :B1)

is a Banach space.
Let u, v and w the solutions to (41)-(45) for ũ ∈ A, we define f(x, t) := −uw + v,
then, by Lemma 6.2 and Lemma 6.3 we have that

|f(x, t)| ≤ (k′T + 1)max

{

1,
k

min{µ, η}

}

. (66)
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Lemma 5.5, Lemma 5.2 and (66) imply
∫ T

0

∫

I

|ut|
2dxdt+

∫ T

0

∫

I

|uxx|
2dxdt+

∫ T

0

∫

I

|ux|
2dxdt+

∫ T

0

∫

I

|u|2dxdt ≤ k7(T )

(67)

where k7 is a continuous function of T and defined for T < ∞ (see for instance
Friedman [4]). Since the imbedding

W ⊂ L2(0, T : B)

is compact (see J.L. Lions [12] Theorem 5.1 p. 58) we have that J(A) is a precom-
pact subset of A.

We now apply Schauder’s fixed point Theorem to Ã and J̃ defined by

Ã := {u ∈ L2(0, T : H1
0 ) such that u+ u(1− x) ∈ A}

J̃(u) = J(u + u(1− x))− u(1− x).

Thanks to I-IV there exists a fixed point of J̃ in Ã and consequently a fixed point
of J in A which proves the existence of at least one solution to the problem (12)
– (16). (61) and (65) prove the uniqueness of solutions for T small enough and
therefore uniqueness of solutions of the problem for all T <∞. 2

7. Numerical results. In this section we shall present some numerical results ob-
tained with different parametric values in the numerical resolution of the problem
(12) – (16). In doing this we intent to show how the parameters determine the
qualitative behavior of the three variables. The description of the scheme of reso-
lution of the problem (12) – (16) is presented in the Appendix. The fact that we
are dealing with evolution problems, suggests to consider an iterative decoupling
scheme. We shall solve separately in each step (in time) of the iterative scheme, a
stationary problem for each of the three variables, the concentration of morphogens
“u”, the concentration of ligand-receptor complexes “v” and the concentration of
receptors “w”. The results show the influence of the parameters in the evolution
of the variables u, v and w, from the quantitative and qualitative point of view.
Some of the conclusions that we deduce from the computations are commented in
the captions below Figure 2, Figure 3 and Figure 4.

We also solve numerically the initial value problem at x = 0 defined by (13) – (16)
for some parameters satisfying the constraints κ− ν = 0, κ− ν > 0 and κ− ν < 0
respectively. In order to do this, we use a finite difference iterative scheme of step in
time dt = 10−6. To precise, we solve first the evolution problem for u, considering
an explicit Euler scheme. Next we solve the problem for v using again an explicit
Euler scheme where the value of u has been already update. Finally we use the same
solver for the problem for w, considering the updated values of v and u. In Figure 1
we present the graphics obtained for the three variables for some parametric values.
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Figure 1. The variables u, v and w at x = 0 in the graphics
are represented by blue crosses, red diamonds and green circles,
respectively. On the left, we present the results obtained for the
parameters κ = 1, ν = 1, µ = 1 and η = 1. On the right, the values
considered are κ = 10, ν = 1, µ = 1 and η = 1.
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Figure 2. The spatial domain is x ∈ [0, 1], and time varies from
t = 0 to t = 4.2 in all the computations. On the left, the values of
the parameters are: κ = 1, µ = 1, η = 0.001 and ν = 0.5. On the
right, the values are κ = 10, µ = 1, η = 0.001 and ν = 0.5.
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Figure 3. On the left, the values of the parameters are κ = 100,
µ = 100, η = 10 and ν = 0.5. On the right, the values are κ = 100,
µ = 100, η = 100 and ν = 100.
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Figure 4. On the left, we present the results obtained for the
parameters κ = 1, µ = 10, η = 10 and ν = 0.5. On the right, the
values considered are κ = 10, µ = 10, η = 10 and ν = 1000.

8. Conclusions. We consider a mathematical model of distribution of morphogens,
where morphogens are secreted in signaling points and transported by diffusion in
the extracellular matrix. Mathematical analysis shows that gradients of morphogens
may be produced by diffusion. We study a particular case of a mathematical model
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proposed by Lander et al [9] and [10]. To simplify the problem we consider that
the concentration of free receptors at the interior of the cells is constant on time.
The problem is reduced to a system of three equations with dynamical boundary
conditions. The behavior of the system is given by the evolution of morphogens at
the secretion point x = 0 which stabilizes when the rate of production of receptors
at the surface of the cell is larger than the rate of production of morphogens at
x = 0. Small perturbations in the initial data will not produce any change in the
final result. The other case (rate production of morphogens larger than the produc-
tion of receptors) gives unbounded solutions with no Biological meaning. Several
mathematical questions remain open concerning the behavior of the boundary con-
ditions: Global boundedness for κ > ν and stability of the steady states which have
been shown numerically.

The existence of steady states is studied when the parameters κ ν are positive.
The proof given here is much simpler than the one presented in Lander, Nie, Vargas
and Wan [9].

When the rate of production of receptors at the surface of the cell is larger than
the rate of production of morphogens at x = 0, i.e. under assumption

κ− ν > 0,

the existence of positive steady state is guaranteed, otherwise negative steady state
may appear.

Numerical simulations show an intensive concentration of morphogens and com-
plex morphogen-receptor near the signaling point x = 0. The slope of the gradient
of morphogens is mainly determined by the evolution of the morphogen at x = 0
which fast goes close to a constant value ( ν

κ−ν ) and the distribution of free receptors

remains almost homogeneous in space from the beginning of the experiment (see
Figures 2, 3 and 4). The consequence of this distribution is a clear differentiations of
cells close to the signaling point different than the one in the other part of domain.
The large slope of the distribution of complex gives small measure for the amount
of cells at the threshold value. The numerical simulations show that, for κ > ν, the
solution tends to the steady state as fast as the concentration of morphogens at the
signaling point stabilizes in the steady state given in Lemma 5.1. The system at
the signaling point x = 0 is also analyzed numerically, where the solution stabilizes
in a constant value (for κ > ν) and goes to ∞ for κ = ν = 1. In the case κ < ν the
solution u goes to ∞ (see Lemma 5.5).

As a final conclusion we want to point out the relevance of the balance between
the production of morphogens and the production of receptors, which determines
the behavior of the system. We have simplified the model in Section 2 in order to
focus in the process in the extracellular matrix. It is clear that the production of
receptors at the surfaces cell depends on more complex mechanisms in the interior
of the cell than those considered here where the production rate ν is assumed to be
constant.

REFERENCES

[1] F. W. Cummings, A model of morphogenesis, Phys. A, 3-4 (2004), 531–547.
[2] E. V. Entchev, A. Schwabedissen and M. Gonzlez-Gaitn, Gradient formation of the TGF-beta

homolog Dpp, Cell, 103 (2000), 981–991.
[3] E. V. Entchev and M. Gonzlez-Gaitn, Morphogen gradient formation and vesicular trafficking,

Traffic, 3 (2002), 98–109.

http://dx.doi.org/10.1016/S0092-8674(00)00200-2
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Appendix. In this section we shall describe the numerical solution to (12) – (16).
The problem consists of a system of two ordinary differential equations (for v and
w) and a partial differential equation of parabolic type for u. This fact suggests
the consideration of a scheme related to the time variable that decouples the three
equations. In order to guarantee the stability, we consider a semi-implicit, time
marching scheme of step size dt described below. The notation um stands for the
numerical approximation of the function um(x) = u(mdt, x) and analogously for
the rest of the variables.

We consider the initial data u0 = v0 = 0 and w0 = 1 and we wish to solve in the
spatial domain [0, 1], the discretized problem for m = 0, 1, 2, . . .

um+1 − um

dt
=
∂2um+1

∂x2
− um+1wm + vm, (68)

vm+1 − vm

dt
= (um+1wm − vm)− µvm (69)
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wm+1 − wm

dt
= κ− (um+1wm − vm+1)− ηwm, (70)

with the boundary conditions:

um+1(0) = um(0) + dt (ν − um(0)wm(0) + vm(0)) and um+1(1) = 0. (71)

Next, we proceed to solve the problem (68) and (71) with respect to the spatial

variable x. We employ a finite element method which we describe below. Notice that
in order to solve (69) and (70), we consider, after discretizing the spatial domain,
the following equalities at each node xi of the mesh:

vm+1(xi) = vm(xi) + dt((um+1(xi)w
m(xi)− vm(xi))− µvm(xi)) (72)

wm+1(xi) = wm(xi) + dt(κ− (um+1(xi)w
m(xi)− vm+1(xi))− ηwm(xi)) (73)

We introduce the definition of weak solution of the problem.

Definition 8.1. Let us consider an arbitrary m-th level in time, m ∈ IN . We shall
say that um(x) is a weak solution of (68) and (71) if the following identity is satisfied
for all φ ∈ C1

0 (Ī) such that φ(0) = 0, φ(1) = 0:
∫ 1

0 (u
m − um−1)φdx + dt

∫ 1

0 ∂xu
m∂xφdx + dt

∫ 1

0 u
mwm−1φdx =

dt
∫ 1

0 v
m−1φdx,

(74)

along with (71) and (73).

Notice that any classical solution of (68) and (71) is also a weak solution.

Discretization in space. We consider an uniform mesh in [0, 1] consisting of the
nodes M = {x1, x2, ....xN}, 0 = x1 < x2... < xN−1 < xN = 1 of size h = 1/N − 1.
We use linear finite elements Ln, n = 1, ... N associated to the mesh M. The
discretized version of the problem is the following:

For n = 2, ..., N − 1, find umn , the numerical approximation of um(xn) satisfying:

∫

In

(umn+1Ln+1 + umn Ln + umn−1Ln−1 − um−1
n+1 Ln+1 − um−1

n Ln − um−1
n−1 Ln−1)Lndx

= −dt

∫

In

(umn+1L
′

n+1 + umn L
′

n + umn−1L
′

n−1)L
′

ndx
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+dt

∫

In

(umn+1w
m−1
n+1 Ln+1 + umn w

m−1
n Ln + umn−1w

m−1
n−1 Ln−1)Lndx

+dt

∫

In

(vm−1
n+1 Ln+1 + vm−1

n Ln + vm−1
n−1 Ln−1)Lndx

where um1 and umN are given by the boundary conditions at 0 and 1, respectively.

Simple computations show us that:
∫

In

Ln+1Ln =

∫

In

Ln−1Ln = h/6,

∫

In

LnLn = 2h/3,

∫

In

L
′

n+1L
′

n =

∫

In

L
′

n−1L
′

n = −1/h,

∫

In

L
′

nL
′

n = 2/h,

∫

In

L
′

n+1Ln = −

∫

In

L
′

n−1Ln = 1/2,

∫

In

L
′

nLn = 0.

We use the above scheme in order to obtain a system of equations for the nodal
values umn , n = 2, ... N − 1. Note that the first node, corresponding to x1 = 0, must
satisfy the boundary condition

um1 = um−1
1 + dt

(

ν − um−1
1 wm−1

1 + vm−1
1

)

,

and for x = xN = 1, we have that umN = 0. For the rest of nodes, j = 2, ...N − 1,
we obtain a system of linear equations, whose matrix of coefficients A = (aij)ij ∈
MN−2 is a tri-diagonal matrix of entries:

a(1, 1) =
2h

3
(1 + dtwm−1

2 ) +
2dt

h
,

a(1, 2) =
h

6
(1 + dtwm−1

3 )−
dt

h
,

for j = 2, ...N − 3, we have

a(j, j − 1) =
h

6
(1 + dtwm−1

j )−
dt

h
,

a(j, j) =
2h

3
(1 + dtwm−1

j+1 ) +
2dt

h
,

a(j, j + 1) =
h

6
(1 + dtwm−1

j+2 )−
dt

h
,

and finally,

a(N − 2, N − 3) =
h

6
(1 + dtwm−1

N−2)−
dt

h
,

a(N − 2, N − 2) =
2h

3
(1 + dtwm−1

N−1) +
2dt

h
.

The right hand side B = (bi)i, is defined as follows:

b1 = −um1

(

h

6
(1 + dtwm−1

2 )

)

+
h

6
(um−1

1 + dtvm−1
1 )

+
2h

3
(um−1

2 + dtvm−1
2 ) +

h

6
(um−1

3 + dtvm−1
3 )−

dt

h
,

and for i = 2, N − 2

bi =
h

6
(um−1
i + dtvm−1

i ) +
2h

3
(um−1
i+1 + dtvm−1

i+1 ) +
h

6
(um−1
i+2 + dtvm−1

i+2 ).
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The steps in time and space are, respectively dt = 10−6 and h = 10−3. The
system is solved using the Gauss Seidel method. The number of iterations depends
on a fixed tolerance regarding the relative error. In doing so, we guarantee the
convergence of the iterative scheme. In each step, the iterative scheme is started
with the final value obtained in the previous step in time. The nodal values of the
other two variables w and v, are computed via the identities given in (72) and (73).
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