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Abstract. We consider global asymptotic properties of compartment staged-

progression models for infectious diseases with long infectious period, where

there are multiple alternative disease progression pathways and branching. For
example, these models reflect cases when there is considerable difference in vir-

ulence, or when only a part of the infected individuals undergoes a treatment

whereas the rest remains untreated. Using the direct Lyapunov method, we es-
tablish sufficient and necessary conditions for the existence and global stability

of a unique endemic equilibrium state, and for the stability of an infection-free

equilibrium state.

1. Introduction. Mathematical modelling of infectious diseases is based on a con-
cept adopted from chemical kinetics. According to this, a population is divided into
a number of sub-populations, or compartments, and the interaction between these
compartments is considered as a reaction. The whole population and each of these
compartments are assumed to be homogeneously mixed, and the interaction be-
tween the compartments occurs according to the laws of chemical kinetics. In the
simplest case, which goes back to the pioneering work of Kermack and McKendrick
[17], the system is composed of three compartments, namely the susceptible S, the
infectious I and the recovered (or removed) R, and transmission of individuals from
the susceptible into the infectious compartment is assumed to occur according to
the mass action law; the corresponding model is known as a SIR model. This sim-
ple concept is proved to be extremely successful, and mathematical models based
on these assumptions brought important insight into the dynamics of infectious
diseases, and in particular for childhood infections that were primary objects of
modelling [2, 13]. However, these simple models lack the level of details that is
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needed, for instance, for understanding the dynamics of prolonged infections, or for
studying community effects and human reaction on the threat of infection.

The diversity of individuals and conditions may be incorporated into this tra-
ditional modelling framework by introducing additional compartments for specific
groups. Thus, to include the latency period (the time from infection to infectious-
ness) into a compartment model, an additional “exposed” compartment, that is
usually denoted E, can be introduced into the model; the resulting models are
known as the SEIR or SEIRS model (the latter is for the case when the recovery
implies temporary immunity, and the recovered individuals after some time become
susceptible again).

Additional compartments could be used to describe in detail the dynamics of
long-lasting infections, where an infected individual progresses through a number
of stages which significantly vary in the level of infectiousness. The most notorious
example of an infection that has a variety of infectious stages is HIV infection. Typ-
ically, HIV-infected individuals are highly infectious in the acute stage that lasts for
the first few weeks after infection. The acute stage is followed by a chronic asymp-
tomatic stage of low contagiousness that in the absence of antiretroviral therapy
lasts for nine to ten years on average. Then the patient becomes gradually more
infectious as the immune system becomes compromised and AIDS develops. In
order to model the variability of infectiousness for long infectious period, staged
progression models were proposed [1, 14, 16, 26, 29]. These models usually include
a succession of infectious compartments (infectious stages) that are characterised by
different infectiousness, and it is assumed that an infected individual enters the first
of these infectious compartments at the moment of infection and then progresses
through all these compartments up to the last one. A typical transfer diagram for
a staged progression model with n infectious stages is

S −→ I1 −→ I2 −→ · · · −→ In−1 −→ In −→ R.

The SEIR model can be considered as a particular case of a staged progression
model with two infectious stages (the exposed stage E and the infectious stage
I). To model amelioration, a stage progression model may include a possibility
of “reversing the flow” [10, 12, 29]. More advanced models, which are sometimes
termed “infection-age models”, may assume a continuous distribution of infectivity
as a function of the infection time instead of discrete stages [37]. These models,
however, also usually assume “linear” progression from the first to the last stage.

The dynamics of the staged progression models was studied by a number of au-
thors [7, 10, 11, 12]. Global properties of the staged progression models, including
the models with amelioration, were addressed by Guo and Li [11, 12]. The global
properties of models with continuous distribution of the infectivity were systemati-
cally studied by McCluskey and his collaborators [32, 34].

For a staged progression model, introduction of additional compartments is jus-
tified when the infectivity significantly varies. However, for infections with longer
infectious period the level of infectivity is not necessary determined by the time
of infection, and may depend on a number of other factors. Firstly, the virulence
can greatly vary from case to case. For example, for Hepatitis B the infection may
be entirely asymptomatic and may go unrecognized, and the level of contagious-
ness for asymptomatic cases is usually notably lower then that for acute infection.
Clinical disease progression of HIV also varies widely between individuals, taking
for progression from HIV infection to AIDS from two weeks up to 20 years [35].
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Moreover, the infection could be undetected (and hence untreated), or it can be
detected at very different stages. The detected infection can be properly treated,
or it could be left untreated (the latter is not uncommon in developing countries),
and the treatment can be either effective or non-effective. Furthermore, the level
of contagiousness to a very large extend may depend of a personal attitude of an
infectious individual: while some patients recognize the threat that they possess for
a community and behave conscientiously restraining from potentially endangering
contacts or decreasing the number of contacts to a necessary minimum, others disre-
gard the threat and do not change their usual life style thereby effectively spreading
the infection.

In the framework of a compartment model, this diversity of the possibilities can
be modelled by introducing branching and alternative pathways for disease pro-
gression. A number of models with alternative pathways was developed for specific
situations. For instance, tuberculosis provides an example of infection with the
possibility of multiple alternative pathways, and a number of such models was con-
sidered. Thus, to model tuberculosis in Nigeria, Okuonghae and Korobeinikov [36]
considered a model with two alternative pathways (detected and treated and unde-
tected); McCluskey [30, 31] studied the dynamics of models for tuberculosis where
there are alternative progressions. The global properties of SIR and SEIR models
with multiple pathways were systematically considered in [24]. However, for more
complex models it so far remains an open question whether the diversity of condi-
tions can affect the qualitative dynamics of a pathogen in a population. In this paper
we address this issue studying the global properties for staged progression models
with multiple alternative pathways and branching. We consider two multi-staged
models assuming constant recruitment and density-dependent incidence. Using the
direct Lyapunov method, we prove that these models are globally asymptotically
stable.

2. Models. In this paper we consider two models for infectious diseases with mul-
tiple progression pathways. For the first model we assume that after infection
individuals enter an exposed compartment; the exposed individuals are not infec-
tious, and hence this compartment is assumed to be common for all pathways and
hence the branching starts when the infected hosts progress to the next stage. In
contrast, for the second model we assume that branching into alternative pathways
starts immediately at the moment of infection. Transfer diagrams for these models
are given in Fig. 1. We consider these models separately, as they require different
treatment.

2.1. A model with a common exposed state. We assume, that the infection
progress through n infectious stages, and that at each stage there is a possibility
of alternative further progression (and hence a possibility of branching). We also
assume in this subsection that after infection an individual enters the exposed com-
partments; the exposed individuals are non-infectious, and hence this compartment
is common for all pathways. Accordingly, we assume that the total population is
partitioned into following compartments: the susceptible compartment S, the ex-
posed compartment I0

0 (that is usually denoted by E; however we prefer notation
I0
0 for the sake of consistency of notation), the infectious compartments Iij (where
i = 1, 2, . . . , n and j = 0, 1, . . . ,m − 1) and the removed compartment R. Indi-
viduals in the exposed and the infectious compartments may die, or progress with
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Figure 1. Transfer diagrams for models of infections with multiple
progression pathways; left diagram is for the model with a common
exposed state I0

0 , and right diagram is for the model where branch-
ing into alternative pathways starts immediately after an instance
of infection.

the probability pj (where
∑m

1 pj ≤ 1) into one of m next-stage compartments ac-
cording to the transfer diagram (Fig. 1). Accordingly, infectious compartment Iij
(i = 1, . . . , n−1) has a parent-compartment Ii−1

[j/m] and m next stage compartments

Ii+1
m·j , I

i+1
m·j+1, . . . , I

i+1
m·(j+1)−1 (see Fig. 2). Here and below, [x] denotes the integer

part of x.

Ii+1
m·j

↗ ↗ ↗
· · · −→ Ii−1

[j/m] −→ Iij −→ Ii+1
m·j+1 −→ · · ·

↘ ↘ · · · ↘
Ii+1
m·(j+1)−1

Figure 2. The order of numbering for the infectious compartments.

This model can be described by the following system of differential equations

d

dt
S = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS,

d

dt
I0
0 =

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ0

0I
0
0 ,

d

dt
Iij = ωijI

i−1
[j/m] − φ

i
jI
i
j .

(1)

Here, i = 1, . . . , n, j = 0, . . . , Ni; Λ is the recruitment rate into the susceptible
class; βijI

i
jS is the standard density-dependent bilinear incidence rate of the infection
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transmission; µ is per capita natural mortality rate; φ0
0 and φij are the rates at which

the individuals in the exposed and infectious compartments, respectively, leave their
compartments due to either disease progression, or mortality (and hence duration of
stage Iij is 1/φij), and ωij is the average progression rate from Ii−1

[j/m] to Iij . Equation

for R is omitted as it is assumed that the individuals in this compartment are
removed from the infection process. We assume that all variables are non-negative,
and all coefficients are positive. It is naturally to expect that ωij < φi−1

[j/m] holds;

however our results and conclusions do not depend on this condition. We consider
system (1) in the non-negative octant R≥0 = {(S, I0

0 , I
i
j), S ≥ 0, I0

0 ≥ 0, Iij ≥ 0},
which is the phase space for the system.

To simplify the notation, we assume without loss of generality that each of the
infectious compartments has the same number of the next generation compart-
ments. It is obvious that this assumption does not affect the generality of results
and conclusions as one always can “remove” compartment Iij and all subsequential

pathways simply assuming ωij , β
i
j = 0.

2.2. A model where there is no common exposed state. We assume now that
branching into alternative pathways starts immediately after infection. Accordingly,
there is no common compartment I0

0 , and the population is partitioned into follow-
ing compartments: the susceptible compartment S, the infectious compartments Iij
and the removed compartment R (see Fig. 1, right diagram). After infection an
individual immediately moves, with the probability pj (where j = 0, . . . ,m− 1 and∑m−1
j=0 pj = 1) into one of m compartments I1

j . This model can be described by the
following system of differential equations:

d

dt
S = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS,

d

dt
I1
k = pk

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ1

kI
1
k , k = 0, . . . , N1

d

dt
Iij = ωijI

i−1
[j/m] − φ

i
jI
i
j , for i = 2, . . . , n; j = 0, . . . , Ni.

(2)

Here all parameters are defined as above; the equation for R(t)is omitted.
We have to stress that the absence of the common compartment I0

0 does not
necessary implies the absence of a latent state, as one can always assume that
β1
j = 0 for any or all of j (in fact, one can assume βij for any i, j as well).

3. Properties of the models. It is easy to see that systems (1) and (2) always
have an infection-free equilibrium state with S = Λ/µ and Iij = 0. Apart from this
equilibrium state, both models can also have an endemic equilibrium state.

At an equilibrium state of the model (1), the equalities

Λ−
n∑
i=1

Ni∑
j=0

βijI
i
jS − µS = 0, (3)

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ0

0I
0
0 = 0, (4)

ωijI
i−1
[j/m] − φ

i
jI
i
j = 0, (5)
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hold for all i = 1, . . . , n, j = 0, . . . , Ni. At an equilibrium state of model (2), the
equalities

Λ−
n∑
i=1

Ni∑
j=0

βijI
i
jS − µS = 0, (6)

pk

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ1

kI
1
k = 0, (7)

ωijI
i−1
[j/m] − φ

i
jI
i
j = 0, (8)

where k = 0, . . . , N1, i = 2, . . . , n and j = 0, . . . , Ni, hold. Equalities (5) and (8)
imply that the equilibrium level for each of Iij can be expressed as a fraction of the

equilibrium level for I1
k . Let

κ1
j = β1

j , κij = βij

i−2∏
l=0

ωi−l
[j/ml]

φi−l
[j/ml]

, κk =

n∑
i=1

(k+1)mi−1−1∑
j=k·mi−1

κij , (9)

where i ≥ 2 and k = 0, . . . , N1. Then βijI
i
j = κijI1

[j/mi−1]. Furthermore, for any k, l

such that pk, pl 6= 0, equality (7) implies that

φ1
k

pk
I1
k =

φ1
l

pl
I1
l .

For model (2) we denote φ0
0 = 1, ω1

k = pk and

φ1
k

pk
I1
k =

φ1
l

pl
I1
l = I0

0 . (10)

Then

n∑
i=1

Ni∑
j=0

βijI
i
jS =

N1∑
k=0

κkI1
kS = κφ0

0I
0
0S, where κ =

N1∑
k=0

κkω1
k

φ1
kφ

0
0

,

hold at an equilibrium state for both systems. Substituting these into (3–5), or into
(6–8) yields

Λ− µS = κI0
0S, I0

0φ
0
0(κS − 1) = 0, ωijI

i−1
[j/m] = φijI

i
j .

The second equation has two solutions: either I0
0 = 0, or S = κ−1 holds. Sub-

stituting either of these into the first equation, we obtain that either S = Λ
µ , or

I0
0 = 1

φ0
0

(
Λ− µ

κ
)
, respectively, holds. Since in either case I0

0 is known, we can now

find sequentially all Iij from (5), or (8) and (10). Hence, the equilibrium states of
the systems are found.

Either of the systems has two equilibrium states:

(i) disease-free equilibrium state Q0 = (S̃, Ĩ0
0 , Ĩ

i
j), where S̃ = Λ

µ and Ĩ0
0 = Ĩij = 0

for all i, j; and
(ii) endemic equilibrium state Q∗ = (S∗, I∗00 , I

∗i
j), where S∗ = κ−1, I∗00 = 1

φ0
0
(Λ−

µ
κ ), I∗ij =

ωi
j

φi
j
I∗i−1

[j/m] (i = 1, . . . , n, j = 0, . . . , Ni) for (1), or S∗ = κ−1, I∗1k =

pk
φ1
k

(
Λ− µ

κ
)
, I∗ij =

ωi
j

φi
j
I∗i−1

[j/m] (i = 2, . . . , n, j = 0, . . . , Ni) for (2).
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Note that while the disease-free equilibrium state Q0 always exists, the endemic
equilibrium state Q∗ exists if and only if R0 = Λκ/µ > 1; if R0 ≤ 1 then Q0 is
the only equilibrium state of the systems (1) and (2). Here R0 = Λκ/µ is the basic
reproduction number for these systems [6, 39].

The following theorem addresses the properties of the equilibrium states.

Theorem 3.1. Systems (1) and (2) are globally asymptotically stable. That is,
(i) if R0 > 1, then the endemic equilibrium state Q∗ exists and is globally asymp-

totically stable in R+;
(ii) if R0 ≤ 1, then disease-free equilibrium state Q0 is globally asymptotically

stable in R≥0.

4. Proof of the Theorem.

4.1. Global stability of endemic equilibrium state Q∗ when R0 > 1. Let
R0 > 1, and hence S∗, I∗00 , I

∗i
j > 0. We consider a function

V (S, I0
0 , I

i
j) = S − S∗ lnS +A(I0

0 − I∗00 ln I0
0 ) +

n∑
i=1

Ni∑
j=0

Bij(I
i
j − I∗ij ln Iij). (11)

Here A = 1 for model (1), or A = 0 for (2), and Bij satisfy

Bnj φ
n
j = βnj S

∗, j = 0, . . . , Nn, (12)

Bijφ
i
j = βijS

∗ +

m−1∑
k=0

Bi+1
m·j+kω

i+1
m·j+k, (13)

for j = 0, . . . , Ni, i = 1, . . . , n− 1.

The coefficients Bij obviously exist and are non-negative. It is easy to see that

function V (S, I0
0 , I

i
j) is continuously differentiable in R+, and that point Q∗ is its

global minimum in R+.
For model (2) we note, that, by (13) and (8),

Ni∑
j=0

Bijφ
i
jI
∗i
j =

Ni∑
j=0

βijS
∗I∗ij +

Ni∑
j=0

m−1∑
k=0

Bi+1
m·j+kω

i+1
m·j+kI

∗i
j

=

Ni∑
j=0

βijS
∗I∗ij +

Ni∑
j=0

m−1∑
k=0

Bi+1
m·j+kφ

i+1
m·j+kI

∗i+1
m·j+k.

(14)

Applying this equality recurrently and recalling (12) yields

Bijφ
i
jI
∗i
j = Bijω

i
jI
∗i−1
[j/m] =

n∑
l=i

(j+1)ml−i−1∑
k=jml−i

βlkI
∗l
kS
∗, (15)

Ni∑
j=0

Bijφ
i
jI
∗i
j =

n∑
l=i

Nl∑
j=0

βljI
∗l
jS
∗, (16)

and hence
n∑
i=1

Ni∑
j=0

Bijφ
i
jI
∗i
j =

n∑
i=1

Ni∑
j=0

iβijI
∗i
jS
∗. (17)
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We now observe that for Bij the following equalities hold:

N1∑
k=0

B1
kpk = 1, (18)

B1
kpkκqI∗1q = B1

qpqκkI∗1k , k = 0, . . . , N1; q = 0, . . . , N1. (19)

Indeed, (17) holds for coefficients B1
k, and, by (7),

n∑
i=1

Ni∑
j=0

βijI
∗i
jS =

φ1
k

pk
I∗1k =

φ1
q

pq
I∗1q .

Hence

N1∑
k=0

B1
kpk =

N1∑
k=0

B1
kφ

1
kI
∗1
k

pk
φ1
kI
∗1
k

=

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗/

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗ = 1,

and

B1
kpkκqI∗1q = B1

kφ
1
kI
∗1
k

pk
φ1
kI
∗1
k

κqI∗1q =

n∑
i=1

mi−1(k+1)−1∑
j=mi−1k

βijI
∗i
jS
∗ · pk
φ1
kI
∗1
k

κqI∗1q

= κkI∗1kS∗ ·
pk

φ1
kI
∗1
k

κqI∗1q = κkI∗1k ·
pq

φ1
qI
∗1
q

κqI∗1qS∗

= κkI∗1k
pq

φ1
qI
∗1
q

n∑
i=1

mi−1(q+1)−1∑
j=mi−1q

βijI
∗i
jS
∗ = κkI∗1kB1

qpq.

Using (6) and (18), the derivative
dV

dt
for model (2) satisfies

d

dt
V = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS − Λ

S∗

S
+

n∑
i=1

Ni∑
j=0

βijI
i
jS
∗ + µS∗

+

N1∑
k=0

B1
kpk

n∑
i=1

Ni∑
j=0

βijI
i
jS

(
1− I∗1k

I1
k

)
−B1

kφ
1
kI

1
k +B1

kφ
1
kI
∗1
k


+

n∑
i=2

Ni∑
j=0

[
Bijω

i
jI
i−1
[j/m] −B

i
jφ
i
jI
i
j −BijωijIi−1

[j/m]

I∗ij
Iij

+Bijφ
i
jI
∗i
j

]

= µS∗
(

2− S∗

S
− S

S∗

)
+

n∑
i=1

Ni∑
j=0

βijI
i
jS
∗

−
N1∑
k=0

B1
kφ

1
kI

1
k −

n∑
i=2

Ni∑
j=0

Bijφ
i
jI
i
j +

n∑
i=2

Ni∑
j=0

Bijω
i
jI
i−1
[j/m]

+

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗ +

N1∑
k=0

B1
kφ

1
kI
∗1
k +

n∑
i=2

Ni∑
j=0

Bijφ
i
jI
∗i
j −

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗S
∗

S

−
n∑
i=1

Ni∑
j=0

N1∑
k=0

B1
kpkβ

i
jI
i
jS
I∗1k
I1
k

−
n∑
i=2

Ni∑
j=0

Bijω
i
jI
i−1
[j/m]

I∗ij
Iij

= µS∗
(

2− S∗

S
− S

S∗

)
+X + Y.
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Here,

X =

n∑
i=1

Ni∑
j=0

βijI
i
jS
∗ −

n∑
i=1

Ni∑
j=0

Bijφ
i
jI
i
j +

n∑
i=2

Ni∑
j=0

Bijω
i
jI
i−1
[j/m]

=

n−1∑
i=1

Ni∑
j=0

Iij

[
βijS

∗ +

m−1∑
k=0

Bi+1
jm+kω

i+1
jm+k −B

i
jφ
i
j

]
+

Nn∑
j=0

Inj
(
βnj S

∗ −Bnj φnj
)
,

and hence, by definition of Bij (12), (13), X = 0.

Y =

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗ +

n∑
i=1

Ni∑
j=0

iβijI
∗i
jS
∗ −

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗S
∗

S

−
n∑
i=1

Ni∑
j=0

N1∑
k=0

B1
kpkβ

i
jI
i
jS
I∗1k
I1
k

−
n∑
i=2

Ni∑
j=0

i−2∑
l=0

βijI
∗i
jS
∗
I∗i−l

[j/ml]

Ii−l
[j/ml]

I
i−(l+1)

[j/ml+1]

I
∗i−(l+1)

[j/ml+1]

=

N1∑
j=0

N1∑
k=0

B1
kpkβ

1
j I
∗1
j S
∗

(
2− S∗

S
−

I1
j

I∗1j

I∗1k
I1
k

S

S∗

)
+

+

N1∑
k=0

n∑
i=2

Ni∑
j=0

B1
kpkβ

i
jI
∗i
jS
∗ (1 + i− Cki,j

)
,

where Cki,j = S∗

S +
IijI

∗1
kS

I∗ijI
1
kS∗

+
i−2∑
l=0

I∗i−l

[j/ml]
I
i−(l+1)

[j/ml+1]

Ii−l

[j/ml]
I
∗i−(l+1)

[j/ml+1]

, for any k = 0, . . . , N1, i = 2, . . . , n,

j = 0, . . . , Ni.
The subset of pairs (i, j), i = 2, . . . , n, j = 0, . . . , Ni that satisfy j/mi−1 = q,

q = 0, . . . , N1 (or, what is the same, q ·mi−1 ≤ j ≤ (q + 1)mi−1 − 1) is denoted by
D(q). Note, that if (i, j) ∈ D(q) then the product of terms of Cki,j ,

prod(Cki,j) =
S∗

S
·
IijI
∗1
kS

I∗ijI
1
kS∗

·
i−2∏
l=0

I∗i−l
[j/ml]

I
i−(l+1)

[j/ml+1]

Ii−l
[j/ml]

I
∗i−(l+1)

[j/ml+1]

=
I∗1kI

1
q

I1
kI
∗1
q

.

In particular, prod(Cki,j) = 1 if only (i, j) ∈ D(k). Now,

Y =

N1∑
k=0

N1∑
q=0

B1
kpk

(
β1
q I
∗1
qS
∗

(
2− S∗

S
−

I1
q

I∗1q

I∗1k
I1
k

S

S∗

)

+
∑

(i,j)∈D(q)

βijI
∗i
jS
∗ (1 + i− Cki,j

)
=

N1∑
k=0

B1
kpk

β1
kI
∗1
kS
∗
(

2− S∗

S
− S

S∗

)
+

∑
(i,j)∈D(k)

βijI
∗i
jS
∗ (1 + i− Cki,j

)
+

N1∑
k=1

k−1∑
q=0

Zk,q

≤
N1∑
k=1

k−1∑
q=0

Zk,q.
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Here

Zk,q =B1
kpkS

∗

β1
q I
∗1
q

(
2− S∗

S
−

I1
q

I∗1q

I∗1k
I1
k

S

S∗

)
+

∑
(i,j)∈D(k)

βijI
∗i
j

(
1 + i− Cki,j

)
+B1

qpqS
∗

β1
kI
∗1
k

(
2− S∗

S
− I1

k

I∗1k

I∗1q
I1
q

S

S∗

)
+

∑
(i,j)∈D(k)

βijI
∗i
j

(
1 + i− Cqi,j

) .

By (9) and (19), we have for any k = 0, . . . , N1, q = 0, . . . , N1

B1
kpkβ

1
q I
∗1
qS
∗ +

∑
(i,j)∈D(k)

B1
kpkβ

i
jI
∗i
jS
∗ = B1

qpqβ
1
kI
∗1
kS
∗ +

∑
(i,j)∈D(k)

B1
qpqβ

i
jI
∗i
jS
∗.

(20)
Furthermore, obviously, the following equalities hold:

S∗

S
·
I1
q

I∗1q

I∗1k
I1
k

S

S∗
· S
∗

S
· I

1
k

I∗1k

I∗1q
I1
q

S

S∗
= 1,

prod(Cki,j) · prod(Cq
ĩ,j̃

) = 1, (i, j) ∈ D(q), (̃i, j̃) ∈ D(k),

S∗

S
·
I1
q

I∗1q

I∗1k
I1
k

S

S∗
· prod(Cq

ĩ,j̃
) = 1, (i, j) ∈ D(q),

prod(Cki,j) ·
S∗

S
· I

1
k

I∗1k

I∗1q
I1
q

S

S∗
= 1, (̃i, j̃) ∈ D(k).

This guarantees that Zk,q ≤ 0 for any k, q (for clarification, see Appendix), and

hence
dV

dt
≤ 0 holds in R+, provided that S∗, I∗ij > 0. Furthermore,

dV

dt
= 0 holds

only on the straight line S = S∗,
Iij
I∗ij

=
I1
k

I∗1k
, i = 2, . . . , n − 1, j = 0, . . . , Ni, k =

0, . . . , N1. Moreover, it is easy to see that point Q∗ is the only invariant set of system

(2) in the set S = S∗,
Iij
I∗ij

=
I1
k

I∗1k
, and hence by Lyapunov-LaSalle asymptotic

stability theorem [3, 25, 27], the equilibrium state Q∗ is globally asymptotically
stable.

Likewise, for model (1), using equality Λ =
n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗ + µS∗, the derivative

of function V (S, I0
0 , I

i
j) satisfies:

d

dt
V = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS − Λ

S∗

S
+

n∑
i=1

Ni∑
j=0

βijI
i
jS
∗ + µS∗

+

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ0

0I
0
0 −

n∑
i=1

Ni∑
j=0

βijI
i
jS
I∗00
I0
0

+ φ0
0I
∗0
0

+

n∑
i=1

Ni∑
j=0

[
Bijω

i
jI
i−1
[j/m] −B

i
jφ
i
jI
i
j −BijωijIi−1

[j/m]

I∗ij
Iij

+Bijφ
i
jI
∗i
j

]

= µS∗
(

2− S∗

S
− S

S∗

)
+X + Y,
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where

X =

n∑
i=1

Ni∑
j=0

(
βijI

i
jS
∗ +Bijω

i
jI
i−1
[j/m] −B

i
jφ
i
jI
i
j

)
− φ0

0I
0
0

and

Y =

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗ + φ0

0I
∗0
0 +

n∑
i=1

Ni∑
j=0

Bijφ
i
jI
∗i
j

−
n∑
i=1

Ni∑
j=0

[
βijI
∗i
jS
∗S
∗

S
− βijIijS

I∗00
I0
0

−BijωijIi−1
[j/m]

I∗ij
Iij

]
.

Obviously, µS∗
(

2− S∗

S
− S

S∗

)
≤ 0 holds for all S, S∗ > 0. Furthermore, by (5),

(16) and (4),

N1∑
j=0

B1
jω

1
j =

1

I∗00

N1∑
j=0

B1
jφ

1
jI
∗1
j =

1

I∗00

n∑
i=1

Ni∑
j=0

βijI
∗i
jS = φ0

0, (21)

and hence, by (12), (13) and (21), X = 0.
In order to prove that Y ≤ 0 holds in R+, we firstly note that if all S∗, I∗00 , I

∗i
j ≥ 0,

then, by the theorem that the arithmetic mean is greater than or equal to the
geometric mean,

W i
j (S, I

0
0 , I

i
j) = 2 + i− S∗

S
− I∗00

I0
0

Iij
I∗ij

S

S∗
−

i−1∑
k=0

I∗i−k
[j/mk]

Ii−k
[j/mk]

I
i−(k+1)

[j/mk+1]

I
∗i−(k+1)

[j/mk+1]

≤ 0

holds for all (S, I0
0 , I

i
j) ∈ R+ and for all i = 1, . . . , n, j = 0, . . . , Ni. Our intention

is to prove that Y =
∑n
i=1

∑Ni

j=0 β
i
jI
∗i
jS
∗W i

j , and hence Y ≤ 0. By (15),

n∑
i=1

Ni∑
j=0

i−1∑
k=0

βijI
∗i
jS
∗
I∗i−k

[j/mk]

Ii−k
[j/mk]

I
i−(k+1)

[j/mk+1]

I
∗i−(k+1)

[j/mk+1]

=

n∑
i=1

Ni∑
j=0

n∑
l=i

ml−i(j+1)−1∑
k=ml−ij

βlkI
∗l
kS
∗
Ii−1
[j/m]

I∗i−1
[j/m]

I∗ij
Iij

=

n∑
i=1

Ni∑
j=0

Bijω
i
jI
∗i−1
[j/m]

Ii−1
[j/m]

I∗i−1
[j/m]

I∗ij
Iij
.

Using this, (4) and (17), we obtain

n∑
i=1

Ni∑
j=0

βijI
∗i
jS
∗W i

j =

n∑
i=1

Ni∑
j=0

[
2 + i− S∗

S
− I∗00

I0
0

Iij
I∗ij

S

S∗

]
βijI
∗i
jS
∗

−
n∑
i=1

Ni∑
j=0

i−1∑
k=0

I∗i−k
[j/mk]

Ii−k
[j/mk]

I
i−(k+1)

[j/mk+1]

I
∗i−(k+1)

[j/mk+1]

βijI
∗i
jS
∗

=

n∑
i=1

Ni∑
j=0

[
2βijI

∗i
jS
∗ +Bijφ

i
jI
∗i
j − βijI∗ijS∗

S∗

S

]

−
n∑
i=1

Ni∑
j=0

[
βijI

i
jS
I∗00
I0
0

+Bijω
i
jI
i−1
[j/m]

I∗ij
Iij

]
= Y.
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Therefore, d
dtV = µS∗

(
2− S∗

S
− S

S∗

)
+ X + Y ≤ 0 holds for all (S, I0

0 , I
i
j) ∈

R+. Furthermore, d
dtV = 0 holds only on the straight line S = S∗,

Iij
I∗ij

=
I0
0

I∗00
,

i = 1, . . . , n−1, j = 0, . . . , Ni. This line is transversal to the phase flow everywhere
except Q∗, and point Q∗ is the only invariant set of the system on the line. Hence by
Lyapunov-LaSalle asymptotic stability theorem, the equilibrium state Q∗ is globally
asymptotically stable.

4.2. Stability of the disease-free equilibrium state. Let R0 ≤ 1 and consider
a function

V (S, I0
0 , I

i
j) = S − S̃ lnS +AI0

0 +

n∑
i=1

Ni∑
j=0

BijI
i
j ,

where A = 1 for model (1) and A = 0 for model (2), and Bij are defined as following:

Bnj φ
n
j = βnj S̃, j = 0, . . . , Nn, (22)

Bijφ
i
j = βijS̃ +

m−1∑
k=0

Bi+1
m·j+kω

i+1
m·j+k, (23)

for j = 0, . . . , Ni, i = 1, . . . , n− 1.

We prove that if R0 < 1 then the derivative of this function
dV

dt
≤ 0. We note that

B1
kφ

1
k = β1

kS̃ +
ω2
m·k+l

φ2
m·k+l

m−1∑
l=0

B2
m·k+lφ

2
m·k+l = . . .

=

n∑
i=1

(k+1)mi−1−1∑
j=k·mi−1

βijS̃

i−2∏
l=0

ωi−l
[j/ml]

φi−1
[j/ml]

=

n∑
i=1

(k+1)mi−1−1∑
j=k·mi−1

κijS̃ = κkS̃,

and hence
N1∑
k=0

B1
kpk = S̃

N1∑
k=0

pk
φ1
k

κk =
Λ

µ
κ = R0. (24)

Then, for model (2), using (6) and (22–24), the derivative
dV

dt
satisfies

d

dt
V = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS − Λ

S̃

S
+

n∑
i=1

Ni∑
j=0

βijI
i
jS̃ + µS̃ −

n∑
i=2

Ni∑
j=0

Bijφ
i
jI
i
j

+

N1∑
k=0

B1
kpk

n∑
i=1

Ni∑
j=0

βijI
i
jS −

N1∑
k=0

B1
kφ

1
kI

1
k +

n∑
i=2

Ni∑
j=0

Bijω
i
jI
i−1
[j/m]

= Λ

[
2− S̃

S
− S

S̃

]
+

[
N1∑
k=0

B1
kpk − 1

]
n∑
i=1

Ni∑
j=0

βijI
i
jS

+

n−1∑
i=1

Ni∑
j=0

Iij

[
βijS̃ +

m−1∑
k=0

Bi+1
jm+kω

i+1
jm+k −B

i
jφ
i
j

]
+

Nn∑
j=0

Inj

(
βnj S̃ −Bnj φnj

)

= Λ

[
2− S̃

S
− S

S̃

]
− (1−R0)

n∑
i=1

Ni∑
j=0

βijI
i
jS.
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Thus, d
dtV ≤ 0 holds in R≥0, and d

dtV = 0 holds only if S = S̃, Iij = 0 or

S = S̃, R0 = 1. The equilibrium state Q0 is the only invariant set of (2) in set

M =
{

(S, Iij) ∈ R≥0 | S = S̃
}

(where d
dtV = 0 holds). Hence by Lyapunov-LaSalle

asymptotic stability theorem, the equilibrium state Q0 is globally asymptotically
stable when R0 ≤ 1.

For model (1) note, that

N1∑
j=0

B1
jω

1
j =

N1∑
j=0

B1
jφ

1
j

ω1
j

φ1
j

=

N1∑
j=0

βijS̃
ω1
j

φ1
j

+

N1∑
j=0

ω1
j

φ1
j

m−1∑
k=0

B2
m·j+kω

2
m·j+k.

B2
l ω

2
l can be likewise represented in terms of B3

pω
3
p, then B3

pω
3
p in terms of B4

qω
4
q ,

and so on. Hence, applying this equality recurrently,

N1∑
j=0

B1
jω

1
j =

n∑
i=1

Ni∑
j=0

βijS̃
i−1∏
l=0

ωi−l
[j/ml]

φi−1
[j/ml]

=

n∑
i=1

Ni∑
j=0

κijS̃ = κS̃φ0
0 = R0φ

0
0. (25)

Using (3), (22), (23) and (25), we have for derivative dV/dt:

d

dt
V = Λ−

n∑
i=1

Ni∑
j=0

βijI
i
jS − µS − Λ

S̃

S
+

n∑
i=1

Ni∑
j=0

βijI
i
jS̃ + µS̃

+

n∑
i=1

Ni∑
j=0

βijI
i
jS − φ0

0I
0
0 +

n∑
i=1

Ni∑
j=0

Bijω
i
jI
i−1
[j/m] −

n∑
i=1

Ni∑
j=0

Bijφ
i
jI
i
j

= Λ

[
2− S̃

S
− S

S̃

]
+ I0

0

 N1∑
j=0

B1
jω

1
j − φ0

0


+

n∑
i=1

Ni∑
j=0

Iij

[
βijS̃ +

m−1∑
k=0

Bi+1
jm+kω

i+1
jm+k −B

i
jφ
i
j

]
+

Nn∑
j=0

Inj

(
βnj S̃ −Bnj φnj

)

= Λ

[
2− S̃

S
− S

S̃

]
− I0

0φ
0
0 (1−R0) .

Hence R0 ≤ 1 ensures that
dV

dt
≤ 0 holds in R≥0, and d

dtV = 0 holds only if

either S = S̃, I0
0 = 0, or S = S̃, R0 = 1. Furthermore, point Q0 is the only

invariant set of the system in the subspace S = S̃, where d
dtV = 0 holds. Hence, by

Lyapunov-LaSalle asymptotic stability theorem, the equilibrium state Q0 is globally
asymptotically stable when R0 ≤ 1. This completes the proof.

We have to remark that in the first part of the proof it was assumed that I∗ij > 0,

and we considered only the trajectories starting in Iij > 0 for all i, j. Let us consider

the case, when some (but not all) of Iij or I∗ij are zero. In this case, some expressions

do not have sense, since Iij and I∗ij occur in denominator. However, it suffices to

make a few reservations to extend the proof to this case. Note that, by (8), I∗ij = 0

holds if and only if ωij · ω
i−1
[j/m] · · ·ω

1
[j/mi−1] = 0 holds. Furthermore, I∗i−1

[j/m] = 0

implies I∗ij = 0. If I∗ij 6= 0, then it is possible to consider the asymptotic behaviour
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of trajectories, which start in Iij = 0, since ωij , ω
i−1
[j/m], . . . , ω

1
[j/mi−1] > 0 and Iij > 0

at t = t0 + ε. If I∗ij = 0 for some (i, j), then we simply exclude the corresponding

terms I∗ij ln Iij from Lyapunov function (11). Thus, any term containing such I∗ij
in numerator or denominator will disappear from our calculations, which remains
valid.

It is easy to see, that any transfer diagram, which has no cycles, can be con-
structed from our tree-like transfer diagram by eliminating excess compartments.
To “eliminate” compartment Iij , we put βij = ωij = 0, and this implies I∗ij = 0.
Therefore, the model with a common latent state can be considered as a subcase
of the model without common exposed state with parameters p1 = 1, pk = 0,
βij = ωij = 0, ∀(i, j) ∈ D(k), k = 2, . . . , N1. Hence, Theorem 3.1 holds for sys-
tem (1) as well.

5. Conclusion. In this paper, we considered the global dynamics of models for
infectious diseases with several infectious stages and with possibility for alterna-
tive progression pathways. The motivation for this study was the question whether
this diversity of stages and pathways can affect the global dynamics of a pathogen-
population system. Using the direct Lyapunov method, we proved that the consid-
ered systems are glob ally asymptotically stable and possess the only globally stable
equilibrium state. Depending on the basic reproduction number, this steady state
is either the endemic, or the disease-free, so that the infection fades out for R0 ≤ 1.
This result actually implies that the global dynamics of a pathogen in population
is robust, and that the diversity of specific conditions of the infected individuals
does not affect its basic qualitative properties. To establish the global stability for
these models, we applied the direct Lyapunov method with a remarkable Lyapunov
function of the form

V =
∑

ai (xi − x∗i lnxi) .

Lyapunov functions of this type were applied with a great success to a variety
of models in mathematical epidemiology [4, 5, 11, 12, 19, 24, 36] and in biology in
general [9, 38], and these were recently extended to models with nonlinear functional
responses [8, 20, 21, 22, 23], models with delays [15, 28, 33, 40] and systems of
PDE [32, 34].

Appendix. Let xk, yl be non-negative-valued functions and ai, bj ∈ R, where i =
1, . . . , n; j = 1, . . . ,m. Then

n∑
i=1

ai =

m∑
j=1

bj ,

k̄(i)∏
k=k(i)

xk ·
l̄(j)∏
l=l(j)

yl ≡ 1, ∀i, j,

implies

n∑
i=1

ai

(k̄(i)− k(i) + 1
)
−

k̄(i)∑
k=k(i)

xk

+

m∑
j=1

bj

(l̄(i)− l(i) + 1
)
−

l̄(j)∑
l=l(j)

yl

 ≤ 0.
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The set cq, where q = 1, . . . , qmax, such that

n∑
i=1

ai

k̄(i)− k(i) + 1−
k̄(i)∑
k=k(i)

xk

+

m∑
j=1

bj

l̄(j)− l(j) + 1−
l̄(j)∑
l=l(j)

yl


=

qmax∑
q=1

cq

(k̄(iq)− k(iq) + l̄(jq)− l(jq) + 2
)
−

k̄(iq)∑
k=k(iq)

xk −
l̄(jq)∑
l=l(jq)

yl

 = K,

exists. The principle of it’s construction is illustrated by scheme (Fig. 5).

a1 a2 a3 a4 . . . an
c1 c2 c3 c4 c5 c6 c7 c8 . . . cqmax−1 cqmax

b1 b2 b3 b4 b5 . . . bm

Figure 3. Principle of construction cq

And therefore K ≤ 0 because of inequality of arithmetic and geometric means,
and K = 0 holds only if xk = yl = 1, ∀k, l.

REFERENCES

[1] R. M. Anderson, G. F. Medley, R. M. May and A. M. Johnson, A preliminary study of the

transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of
AIDS, IMA J. Math. Med. Biol., 3 (1986), 229–263.

[2] R. M. Anderson and R. M. May, “Infectious Diseases in Humans: Dynamics and Control,”

Oxford University Press, Oxford, 1991.
[3] E. A. Barbashin, “Introduction to the Theory of Stability,” Wolters-Noordhoff, Groningen,

1970.
[4] E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic

stability, Computers & Mathematics with Applications, 12-A (1986), 677–694.

[5] E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, in
“Mathematical Ecology” (eds. T. G. Hallam, L. J. Gross and S. A. Levin), World Scientific

Publ., Teaneck, NJ, (1988), 317–342.

[6] O. Diekmann, J. A. P. Heesterbek and J. A. J. Metz, On the definition and the computation of
the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,

J. Math. Biol., 28 (1990), 365–382.

[7] Z. Feng and H. R. Thieme, Endemic model with arbitrarily distributed periods of infection I.
Fundamental properties of the model, SIAM J. Appl. Math. 61 (2000), 803–833.

[8] P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear

incidence of infection and removal, SIAM J. Appl. Math., 67 (2006/07), 337–353.
[9] B.-S. Goh, “Management and Analysis of Biological Populations,” Elsevier Science, Amster-

dam, 1980.
[10] A. B. Gumel, C. C. McCluskey and P. van den Driessche, Mathematical study of a staged-

progression HIV model with imperfect vaccine, Bull. Math. Biol., 68 (2006), 2105–2128.
[11] H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,

Math. Biosci. Eng., 3 (2006), 513–525.
[12] H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for

infectious diseases, J. Biol. Dynamics, 2 (2008), 154–168.
[13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653.

[14] H. W. Hethcote, J. W. VanArk and I. M. Longini Jr., A simulation model of AIDS in San
Francisco: I. Model formulation and parameter estimation, Math. Biosci., 106 (1991), 203–
222.

[15] G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic

models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207.
[16] J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression

models for the transmission of HIV, Math. Biosci., 155 (1999), 77–109.

http://www.ams.org/mathscinet-getitem?mr=MR0891566&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1040340&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1057044&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1788019&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2285866&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2293836&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2217225&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2427524&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1814049&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2669941&return=pdf


1034 ANDREY V. MELNIK AND ANDREI KOROBEINIKOV

[17] W. O. Kermack and A. G. McKendrick, A Contribution to the mathematical theory of epi-
demics, Proc. Roy. Soc. Lond. A, 115 (1927), 700–721.

[18] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic

models, Math. Med. Biol., 21 (2004), 75–83.
[19] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66

(2004), 879–883.
[20] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological

models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615–626.

[21] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,
Bull. Math. Biol., 69 (2007), 1871–1886.

[22] A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent

parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26
(2009), 225–239.

[23] A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model,

Math. Med. Biol., 26 (2009), 309–321.
[24] A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel

infectious stages, Bull. Math. Biol., 71 (2009), 75–83.

[25] J. P. LaSalle, “The Stability of Dynamical Systems,” SIAM, Philadelphia, 1976.
[26] X. Lin, H. W. Hethcote and P. van den Driessche, An epidemiological model for HIV/AIDS

with proportional recruitment, Math. Biosci., 118 (1993), 181–195.
[27] A. M. Lyapunov, “The General Problem of the Stability of Motion,” Taylor & Francis, Ltd.,

London, 1992.

[28] W. Ma, M. Song and Y. Takeuchi, Global stability for an SIR epidemic model with time delay,
Appl. Math. Lett., 17 (2004), 1141–1145.

[29] C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math.

Biosci., 181 (2003), 1–16.
[30] C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,

Math. Biosci. Eng., 3 (2006), 603–614.

[31] C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in
tuberculosis, J. Math. Anal. Appl., 338 (2008), 518–535.

[32] C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity

and infinite delay, Math. Biosci. Eng., 6 (2009), 603–610.
[33] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed

or discrete, Nonlinear Anal. - Real, 11 (2010), 55–59.
[34] C. C. McCluskey, P. Magal and G. F. Webb, Liapunov functional and global asymptotic

stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140.

[35] D. Morgan, C. Mahe, B. Mayanja, J. M. Okongo, R. Lubega and J. A. Whitworth, HIV-1
infection in rural Africa: Is there a difference in median time to AIDS and survival compared

with that in industrialized countries, AIDS, 16 (2002), 597–632.
[36] D. Okuonghae and A. Korobeinikov, Dynamics of tuberculosis: The effect of direct observa-

tion therapy strategy (DOTS) in Nigeria, Math. Model. Nat. Phenom., 2 (2006), 99–111.
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