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Abstract. In this paper, based on an SEIR epidemiological model with dis-
tributed delays to account for varying infectivity, we introduce a vaccination

compartment, leading to an SVEIR model. By employing direct Lyapunov

method and LaSalle’s invariance principle, we construct appropriate function-
als that integrate over past states to establish global asymptotic stability con-

ditions, which are completely determined by the basic reproduction number

RV
0 . More precisely, it is shown that, if RV

0 ≤ 1, then the disease free equilib-

rium is globally asymptotically stable; if RV
0 > 1, then there exists a unique

endemic equilibrium which is globally asymptotically stable. Mathematical

results suggest that vaccination is helpful for disease control by decreasing
the basic reproduction number. However, there is a necessary condition for

successful elimination of disease. If the time for the vaccinees to obtain im-

munity or the possibility for them to be infected before acquiring immunity
can be neglected, this condition would be satisfied and the disease can always

be eradicated by some suitable vaccination strategies. This may lead to over-
evaluating the effect of vaccination.

1. Introduction. Communicable disease models describing a directly transmitted
viral or bacterial agent in a closed population and consisting of susceptibles (S ), in-
fectives (I ), and recovers (R) were considered by Kermack and Mckendrick (1927).
For some diseases, such as influenza and tuberculosis, on adequate contact with an
infectious individual, a susceptible becomes exposed for a while; that is, infected but
not yet infectious. Thus it is realistic to introduce a latent compartment (usually
denoted by E), leading to an SEIR model. Such type of models with or without
time delays have been widely discussed in recent decades. Local and global stabil-
ity analysis of the disease-free and endemic equilibria have been carried out using
different assumptions and contact rates (see [2, 14, 15, 17] and references therein).
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Vaccination is important for the elimination of infectious disease. Usually, the
vaccination process are different schedules for different disease and vaccines. For
some disease, such as hepatitis B virus infection [4], doses should be taken by vac-
cinees several times and there must be some fixed time intervals between two does.
Considering the time for vaccinees to obtain immunity and possibility to be in-
fected before vaccination, Liu et al. [18] studied the vaccination effects via two
SVIR models according to continuous vaccination strategy and pulse vaccination
strategy (PVS), respectively. Their models assumed that susceptible individuals
need some time to obtain immunity after vaccinated, and then join into the recov-
ered individuals. Those distinguished from the earlier vaccination models in which
vaccinees gain immunity immediately. The results in [18] described that both sys-
tems exhibit strict threshold dynamics which depend on the basic reproduction
number. When this number is below unity, the disease can be eradicated. And if it
exceeds unity, the disease is endemic in the sense of global asymptotic stability of a
positive equilibrium for continuous vaccination strategy and disease permanence for
PVS. The qualitative analysis suggest that vaccination is helpful for disease control
by decreasing the basic reproduction number.

Recently, Röst and Wu [23] presented an SEIR model for an infectious disease
that includes infected individuals with infection-age structure to allow for varying
infectivity. The incidence is of mass action type, because of the varying infectivity,
has the form βS(t)

∫∞
0
k(a)i(t, a)da. The authors established the basic reproduc-

tion number as a threshold quantity regarding the local asymptotic stability of the
disease free equilibrium and endemic equilibrium. They also proved disease free
equilibrium is globally asymptotically stable and the uniform persistence when the
endemic equilibrium exists. However, the global stability of the endemic equilib-
rium was left as an open problem. McCluskey [21] resolved elegantly the issue
proposed by [23] using Lyapunov functional which includes an integral over all pre-
vious states. Such type of Lyapunov functions has also been used for infection-age
epidemiological models [20]. Recently, this kind of Lyapunov functions are exten-
sively used to nonlinear delay differential equations describing the disease spread
and virus infection (see, McCluskey [21, 22], Liu and Wang [19], Li and Shu [16]
and Huang et al. [9, 10]).

Motivated by these works, in this paper, we consider an SVEIR epidemiological
model with varying infectivity. The model also assumes that individuals obtain
partial immunity just after vaccinated and need the time for them to obtain com-
plete immunity. In fact, as soon as the susceptible individuals enter the vaccination
process, they are different from susceptible individuals. And they should also be
distinguished from recovered individuals who has complete immunity against the
disease. Hence when the vaccinees gain immunity, they would be considered as
recovered individuals. By transforming the model to distributed delays differen-
tial equations, we establish the global dynamics by constructing suitable Lyapunov
functionals.

The rest of the paper is organized as follows. In Section 2, taking into account the
age of infection as a parameter, we formulate a new SVEIR model with distributed
delays. The basic reproduction number RV0 and the existence of the equilibria
are presented in the Section 3. In Section 4, by constructing suitable Lynapunov
functionals, we identify the basic reproduction number RV0 as a threshold quantity
regarding the global asymptotic stability of the equilibria. In section 5, we give
two special case of probability distribution function k(a) for reducing the system.
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Vaccination effects implied by the mathematical analysis are considered in Section
6. In the last section, we give some briefly summaries and discussions on our results.

2. Model derivation and well-posedness. A population is divided into the fol-
lowing categories: susceptible (those who are capable of contracting the disease);
vaccinees (those who are vaccinated to defeat disease); exposed (those who are in-
fected but not yet infectious); infectious (those who are infected and capable of
transmitting the disease); and recovered (those who are permanently immune), de-
noted by S(t), V (t), E(t), I(t), R(t), respectively. The infectious class is structured
by age of infection (i.e., time since entry into class I(t)). The density of individu-
als with infection-age a at time t is given by i(t, a) with I(t) =

∫∞
0
i(t, a)da. The

relative infectivity of individuals of infection-age a is k(a), where k(a) is a kernel
function taking values in the interval [0, 1]. In what follows, Λ denotes the constant
recruitment rate. β, β1 are the baseline transmission rates for susceptibles or vac-
cinees, respectively. We assume that before obtaining immunity the vaccinees still
have the possibility of infection with a disease transmission rate β1 while contacting
with infected individuals. β1 be assumed to be less than β because the vaccinating
individuals may have some partial immunity during the vaccination process or they
may recognize the transmission characters of the disease and hence decrease the
effective contacts with infected individuals. We also assume that only susceptibles
receive vaccination in this model, and exposed and recovered individuals not. d
is the natural death rate, δ is the disease-induced death rate, 1/µ is the average
latency period and 1/γ is the average recovery period. Let α be the rate at which
susceptible individuals are moved into the vaccination process. They will obtain
vaccine-induced immunity during or after the process. Let γ1 be the average re-
covery rate (and hence 1/γ1 is the average recovery period) for vaccinees to obtain
immunity and move into recovered population. All these constants are assumed to
be positive. Then, we arrive at the following system of differential equations

dS(t)

dt
= Λ− βS(t)

∫ ∞
0

k(a)i(t, a)da− (d+ α)S(t),

dV (t)

dt
= αS(t)− β1V (t)

∫ ∞
0

k(a)i(t, a)da− (d+ γ1)V (t),

dE(t)

dt
= [βS(t) + β1V (t)]

∫ ∞
0

k(a)i(t, a)da− (d+ µ)E(t), (1)

dI(t)

dt
= µE(t)− (d+ δ + γ)I(t),

dR(t)

dt
= γ1V (t) + γI(t)− dR(t).

The evolution of the density of the infected is given by

(
∂

∂t
+

∂

∂a
)i(t, a) = −(d+ δ + γ)i(t, a), (2)

subject to the boundary condition i(t, 0) = µE(t). Solving (2) gives

i(t, a) = µe−(d+δ+γ)aE(t− a). (3)
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Substituting (3) into system (1), we can rewrite system (1) as

dS(t)

dt
= Λ− βS(t)

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ α)S(t),

dV (t)

dt
= αS(t)− β1V (t)

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ γ1)V (t),

dE(t)

dt
= [βS(t) + β1V (t)]

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ µ)E(t), (4)

dI(t)

dt
= µE(t)− (d+ δ + γ)I(t),

dR(t)

dt
= γ1V (t) + γI(t)− dR(t).

Since the variables I(t) and R(t) do not appear in the first three equations of (4), we
can consider the following reduced system with distributed time delays and general
kernel function

dS(t)

dt
= Λ− βS(t)

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ α)S(t),

dV (t)

dt
= αS(t)− β1V (t)

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ γ1)V (t), (5)

dE(t)

dt
= [βS(t) + β1V (t)]

∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada− (d+ µ)E(t).

We will establish the global dynamics of system (5).
Since system (5) contains terms with infinite delays, it is necessary to address

the question of well-posedness of system (5). We introduce the following notation.
Given a non-negative function E defined on the interval (−∞, T ], for any t < T ,
we define the function Et : R≤0 → R≥0 by Et(θ) = E(t+ θ) for θ ≤ 0. For system
(5), an equation with infinite delays, the initial condition should satisfy S(0) ≥ 0,
V (0) ≥ 0 and E0 : R≤0 → R≥0. Due to the infinite delays, it is necessary to
determine an appropriate phase space. For any 4 ∈ (0, d+ δ + γ), let

C∆ = {ϕ : R≤0 → R such that ϕ(θ)e∆θ is uniformly continuous for

θ ∈ (−∞, 0], and sup
θ≤0
|ϕ(θ)|e∆θ <∞}

and

Y∆ = {ϕ ∈ C∆ : ϕ(θ) ≥ 0 for all θ ≤ 0}.
Define the norm on C∆ and Y∆ by

‖ ϕ ‖= sup
θ≤0
| ϕ(θ)e∆θ | .

We consider solutions of system (5), (S(t), V (t), Et) with the initial condition

(S(0), V (0), E0) ∈ R≥0 ×R≥0 × Y4. (6)

Standard theory of functional differential equation [6] implies Et ∈ Y4 for t > 0.
Moreover, if (S(t), V (t), E(t)) is bounded for t ≥ 0, then the positive orbit Γ+ =
(S(t), V (t), Et) : t ≥ 0 has compact closure in R≥0 × R≥0 × Y4. For the general
theory and application, see ([1], [5], [6]) and references found therein.

We consider system (5) in the phase space

X = (R≥0 ×R≥0 × Y4). (7)
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It can be verified that solution of (5) in X with initial condition (6) remains
nonnegative. In particular, from the first equation of (5), we obtain S′(t) ≤
Λ− (d+α)S(t). Hence, lim supt→∞ S(t) ≤ Λ

d+α . Adding the three equations in (5)

gives (S′(t)+V ′(t)+E′t(0)) ≤ Λ−d(S(t)+V (t)+Et(0)). Hence lim supt→∞(S(t)+
V (t) + Et(0)) ≤ Λ

d . Moreover, let K be the maximum of E(t) on [0, T ]. For

any t > T , we have ‖Et‖ = sups≤0Et(s)e
∆s = supu≤tE(u)e∆ue−∆t ≤ M , where

M := max{e−∆t‖φ‖,Ke∆T e−∆t}. Therefore, the following set is positively invari-
ant for system (5),

Θ ={(S(t), V (t), Et) ∈ X |

0 ≤ S(t) ≤ Λ

d+ α
, 0 ≤ S(t) + V (t) + Et(0) ≤ Λ

d
, ‖Et‖ ≤M, for all t}.

Lemma 2.1. System (5) is positively invariant in Θ. Moreover, there exists a
positive constant ∆ such that 0 < S(t), V (t), E(t) ≤ ∆ for all t > 0.

3. Basic reproduction number and equilibria. System (5) always has a disease-
free equilibrium P0 = (S0, V0, 0), where S0 = Λ

d+α and V0 = αΛ
(d+α)(d+γ1) . Following

the theory of van den Driessche and Watmough [24], Introducing a single exposed
individual into a totally susceptible or vaccinated population in the disease-free
equilibrium at t = 0, the survival probability of this individual in the E-class af-
ter time t is given by e−(µ+d)t. So the expected number of generated secondary
infections can be calculated by

RV0 = (βS0 + β1V0)

∫ ∞
0

∫ ∞
0

k(a)µe−(d+δ+γ)ae−(µ+d)tdadt,

which is reduced to

RV0 =
βS0 + β1V0

µ+ d

∫ ∞
0

k(a)µe−(d+δ+γ)ada. (8)

We denote µ
∫∞

0
k(a)e−(d+δ+γ)ada as Φ, then

RV0 =
(βS0 + β1V0)

µ+ d
Φ.

Next, we prove the existence of the endemic equilibrium. If the constant solution
P ∗(S∗, V ∗, E∗) is the endemic equilibrium of (5), the positive constants, S∗, V ∗

and E∗ should satisfy the algebraic equations

0 = Λ− (d+ α)S∗ − βΦS∗E∗, (9)

0 = αS∗ − (d+ γ1)V ∗ − β1ΦV ∗E∗, (10)

0 = [βS∗ + β1V
∗]ΦE∗ − (d+ µ)E∗. (11)

After simple computation, it has S∗ = Λ
d+α+βΦE∗ , V ∗ = Λα

(d+α+βΦE∗)(d+γ1+β1ΦE∗) ,

which are determined by E∗. E∗ is the positive root of the following equation

G(E) = a0E
2 + a1E + a2, (12)

where

a0 =ββ1Φ2(d+ µ);

a1 =Φ[β(d+ µ)(d+ α) + β(d+ µ)(d+ γ1)− ββ1ΛΦ];

a2 =(d+ µ)(d+ α)(d+ γ1)(1−RV0 ).
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Since a0 > 0, it has G(±∞) = +∞. When RV0 ≤ 1, we know G(0) ≥ 0 and have

G′(E) = 2a0E + a1 = 2a0E + ββ1Φ(d+ µ)

{
d+ α

β
+
d+ γ1

β1
− ΛΦ

d+ µ

}
.

And RV0 ≤ 1 is equivalent to

ΛΦ

d+ µ
≤ d+ α

β + ε
, where ε =

αβ1

d+ γ1
,

which implies that ΛΦ
d+µ <

d+α
β . Therefore, G′(E) > 0 for any E ≥ 0 when RV0 ≤ 1.

In this case, it is obvious that equation (12) has not positive root.
On the other hand, when RV0 > 1, it has that G(0) = a2 < 0. From the second

order function properties of G(E), equation (12) has a unique positive real root E∗.
We have the following Proposition for system (5).

Proposition 1. System (5) has an endemic equilibrium P ∗(S∗, V ∗, E∗) if and only
if RV0 > 1.

For a solution for which disease is present under the initial condition, we say the
disease is initially present.

Theorem 3.1. Consider system (5). Assume that RV0 > 1 and the disease is
initially present, then system (5) is uniformly persistent; that is, there exists η > 0
such that lim inft→∞ S(t) ≥ η, lim inft→∞ V (t) ≥ η and lim inft→∞E(t) ≥ η.

Since there are similar methods and techniques which have been recently em-
ployed in Theorem 6.1 of [23], we omit the proof of the above theorem.

4. Global asymptotic stability. It is important to analyze the stability of these
equilibria, as it will indicate whether the disease will die out eventually, or it will
persist for all time. In this section , we will establish the global stability of disease-
free equilibrium and endemic equilibrium.

Theorem 4.1. If RV0 ≤ 1, then the disease free equilibrium P0 is globally asymp-
totically stable.

Proof. Let a = inf{a :
∫∞
a
k(σ)dσ = 0}. For a system with infinite delays, we

have a = ∞, however, for a system with a bounded distributed delays, we have
0 < a <∞. Let

ρ(a) = µ(βS0 + β1V0)

∫ ∞
a

k(σ)e−(d+δ+γ)σdσ. (13)

Note that ρ(a) > 0 for each a ∈ [0, a). Using the fact that h(z) = z − 1 − ln z for

all z > 0, has the global minimum at z = 1 and h(1) = 0, we have S0h(S(t)
S0

) ≥ 0,

V0h(V (t)
V0

) ≥ 0. We will study the behavior of the Lyapunov functional

U = U1 + U2,

where

U1 = S0h

(
S(t)

S0

)
+ V0h

(
V (t)

V0

)
+ E(t), (14)

U2 =

∫ ∞
0

ρ(a)E(t− a)da. (15)
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The Lyapunov functional U is nonnegative and defined with respect to the disease
free equilibrium P0 = (S0, V0, 0), which is a global minimum. Differentiating U1

along the solution of system (5), we obtain

dU1(t)

dt
= Λ− dS(t)− (d+ γ1)V (t)− (d+ µ)E(t)

− ΛS0

S(t)
+ µβS0

∫ ∞
0

k(a)E(t− a)e−(d+δ+γ)ada+ (d+ α)S0

− αSV0

V (t)
+ µβ1V0

∫ ∞
0

k(a)E(t− a)e−(d+δ+γ)ada+ (d+ γ1)V0

= dS0

[
2− S(t)

S0
− S0

S(t)

]
+ αS0

[
3− V (t)

V0
− S0

S(t)
− S(t)V0

S0V (t)

]
+ (µβS0 + µβ1V0)

∫ ∞
0

k(a)E(t− a)e−(d+δ+γ)ada− (d+ µ)E(t). (16)

Differentiating U2 along the solution of system (5) and using integration by parts,
we obtain

dU2(t)

dt
=

d

dt

∫ ∞
0

ρ(a)E(t− a)da

=

∫ ∞
0

ρ(a)
d

dt
(E(t− a))da

= −
∫ ∞

0

ρ(a)
d

da
(E(t− a))da

= − ρ(a)E(t− a) |∞a=0 +

∫ ∞
0

d

da
(ρ(a))E(t− a)da.

Noting that

0 ≤ ρ(a) ≤ (µβS0 + µβ1V0)

∫ ∞
a

e−(d+δ+γ)σdσ =
(µβS0 + µβ1V0)

(d+ δ + γ)
e−(d+δ+γ)a

and E(t− a) is bounded above and below, it follows that lima→∞ ρ(a)E(t− a) = 0.
Also, by d

daρ(a) = −(µβS0 + µβ1V0)k(a)e−(d+δ+γ)a, we obtain

dU2(t)

dt
= (µβS0 + µβ1V0)

∫ ∞
0

k(a) [E(t)− E(t− a)] e−(d+δ+γ)ada. (17)

Combining (16) and (17), we obtain

dU(t)

dt
= dS0

[
2− S(t)

S0
− S0

S(t)

]
+ αS0

[
3− V (t)

V0
− S0

S(t)
− S(t)V0

S0V (t)

]
+ (d+ µ)(RV0 − 1)E(t). (18)

Since the arithmetic mean is greater than or equal to the geometric mean, it is clear
that

2− S(t)

S0
− S0

S(t)
≤ 0 and 3− V (t)

V0
− S0

S(t)
− S(t)V0

S0V (t)
≤ 0. (19)

The above equalities strictly hold only at S(t) = S0 and V (t) = V0.
Therefore, it follows fromRV0 ≤ 1 that U ′(t) ≤ 0. Define Ψ = {(S(t), V (t), E(t)) |

U ′ = 0} and let M be the largest invariant set in Ψ. It is easy to show M = {P0}.
In fact, when RV0 < 1, Ψ = {(S(θ), V (θ), E(θ)) | S(θ) = S0, V (θ) = V0, E(θ) = 0}.
When RV0 = 1, Ψ = {(S(θ), V (θ), E(θ)) | S(θ) = S0, V (θ) = V0} and E(θ) = 0
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from the first equation of (5). Again we haveM = {P0}. Note thatM is invariant,
by the LaSalle’s invariance principle for delay systems (see [7], [8]), P0 is globally
asymptotically stable in Θ when RV0 ≤ 1. This completes the proof of Theorem
4.1.

Theorem 4.2. If RV0 > 1, then the endemic equilibrium P ∗ is globally asymptoti-
cally stable.

Proof. Let

α(a) = (µβS∗E∗ + µβ1V
∗E∗)

∫ ∞
a

k(σ)e−(d+δ+γ)σdσ. (20)

Similarly, it has that α(a) > 0 for each a ∈ [0, a). Using the fact that h(z) =
z − 1 − ln z for all z > 0, has the global minimum at z = 1 and h(1) = 0, we note

that S∗h
(
S(t)
S∗

)
≥ 0, V ∗h

(
V (t)
V ∗

)
≥ 0, E∗h

(
E(t)
E∗

)
≥ 0 and h

(
E(t−a)
E∗

)
≥ 0. Define

a Lyapunov functional for P ∗,

W = V1 + V2,

where

V1 = S∗h

(
S(t)

S∗

)
+ V ∗h

(
V (t)

V ∗

)
+ E∗h

(
E(t)

E∗

)
, (21)

V2 =

∫ ∞
0

α(a)h

(
E(t− a)

E∗

)
da. (22)

So the Lyapunov functional W is nonnegative and defined with respect to the in-
fected equilibrium P ∗ = (S∗, V ∗, E∗), which is a global minimum.

Differentiating V1 along the solution of system (5) and using equilibrium equa-
tions (9)-(11), we obtain

V ′1 = Λ− dS(t)− (d+ γ1)V (t)− (d+ µ)E(t)

− ΛS∗

S(t)
+ µβS∗

∫ ∞
0

k(a)E(t− a)e−(d+δ+γ)ada+ (d+ α)S∗

− αSV ∗

V (t)
+ µβ1V

∗
∫ ∞

0

k(a)E(t− a)e−(d+δ+γ)ada+ (d+ γ1)V ∗

−
[
µβS(t)E∗

E(t)
+
µβ1V (t)E∗

E(t)

] ∫ ∞
0

k(a)E(t− a)e−(d+δ+γ)ada+ (d+ µ)E∗

= dS∗
[
2− S(t)

S∗
− S∗

S(t)

]
+ αS∗

[
3− V (t)

V ∗
− S∗

S(t)
− S(t)V ∗

S∗V (t)

]
+ (µβS∗ + µβ1V

∗)

∫ ∞
0

k(a)[−E(t) + E(t− a)]e−(d+δ+γ)ada

+ µβS∗E∗
∫ ∞

0

k(a)

[
2− S∗

S(t)
− S(t)E(t− a)

S∗E(t)

]
e−(d+δ+γ)ada

+ µβ1V
∗E∗

∫ ∞
0

k(a)

[
V (t)

V ∗
− V (t)E(t− a)

V ∗E(t)

]
e−(d+δ+γ)ada. (23)
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Differentiating V2 along the solution of system (5) and using integration by parts,
we obtain

V ′2 =
d

dt

∫ ∞
0

α(a)h

(
E(t− a)

E∗

)
da

= −
∫ ∞

0

α(a)
d

da
h

(
E(t− a)

E∗

)
da

= − α(a)h

(
E(t− a)

E∗

)
|∞a=0 +

∫ ∞
0

d

da
(α(a))h

(
E(t− a)

E∗

)
da.

Noting that

0 ≤ α(a) ≤ µ(βS∗ + β1V
∗)E∗

∫ ∞
a

e−(d+δ+γ)σdσ =
µ(βS∗ + β1V

∗)E∗

d+ δ + γ
e−(d+δ+γ)a.

Further, h
(
E(t−a)
E∗

)
is bounded above from the persistence of system, it follows that

lim
a→∞

α(a)h

(
E(t− a)

E∗

)
= 0.

Also, we have d
daα(a) = −(µβS∗E∗ + µβ1V

∗E∗)k(a)e−(d+δ+γ)a, this implies that

dV2(t)

dt
= (µβS∗E∗ + µβ1V

∗E∗)

·
∫ ∞

0

k(a)

[
E(t)

E∗
− E(t− a)

E∗
+ ln

E(t− a)

E(t)

]
e−(d+δ+γ)ada.

(24)

Combining (23) and (24), we obtain

dW

dt
= dS∗

[
2− S(t)

S∗
− S∗

S(t)

]
+ (d+ γ1)V ∗

[
3− V (t)

V ∗
− S∗

S(t)
− S(t)V ∗

S∗V (t)

]
+ (µβS∗E∗ + µβ1V

∗E∗)

∫ ∞
0

k(a)

[
1− S∗

S(t)
+ ln

S∗

S(t)

]
e−(d+δ+γ)ada

+ µβS∗E∗
∫ ∞

0

k(a)

[
1− S(t)E(t− a)

S∗E(t)
+ ln

S(t)E(t− a)

S∗E(t)

]
e−(d+δ+γ)ada

+ µβ1V
∗E∗

∫ ∞
0

k(a)

[
1− S(t)V ∗

S∗V (t)
+ ln

S(t)V ∗

S∗V (t)

]
e−(d+δ+γ)ada

+ µβ1V
∗E∗

∫ ∞
0

k(a)

[
1− V (t)E(t− a)

V ∗E(t)
+ ln

V (t)E(t− a)

V ∗E(t)

]
e−(d+δ+γ)ada.

Since the arithmetic mean is greater than or equal to the geometric mean, it is clear
that

2− S(t)

S∗
− S∗

S(t)
≤ 0 and 3− V (t)

V ∗
− S∗

S(t)
− S(t)

S∗
V ∗

V (t)
≤ 0. (25)

Further, since the function h(z) = 1 − z(t) + ln z(t) is always non-positive for any
function z(t) > 0, and h(z) = 0 if and only if z(t) = 1. Thus, dW/dt ≤ 0 with the
equality if and only if S(t) = S∗, V (t) = V ∗ and E(t − a) = E(t) for almost all
a ∈ [0, ā). By Theorem 5.3.1 of Kuang [13], solutions tend to the largest invariant
subset of M = {dW/dt = 0}.
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Since S(t) = S∗, V (t) = V ∗ and E(t− a) = E(t) in M, from the third equation

of (5), we know that dE(t)
dt at each point in M satisfies

E′(t) = (βS∗ + β1V
∗)

∫ ∞
0

k(a)µE(t)e−d+δ+γda− (d+ µ)E(t)

= (βS∗ + β1V
∗)ΦE(t)− (d+ µ)E(t)

= 0.

It implies that E(t) is a constant in M. From the first equation in (5) and
dS(t)/dt = 0 inM, it gives E(t) = E∗ for all t. Hence, we haveM = (S∗, V ∗, E∗).
Using a similar argument as that in the proof of Theorem 4.1, by the LaSalle’s
invariant principle, the global asymptotic stability of P ∗ follows. This completes
the proof.

Remark 1. The above analysis resolve the global stability of two equilibria of
system (5), which is subsystem of (4). When RV0 > 1, by Theorem 4.2, we know
that E(t) converges to positive constant E∗. Now the equation I ′(t) = µE(t) −
(d + δ + γ)I(t) in (4) is an asymptotic autonomous ordinary differential equation
for which solutions of the limiting equation go to a hyperbolic equilibrium. Thus,

lim
t→+∞

I(t) = I∗ = µE∗/(d+ δ + γ).

Similarly, from the equation R′(t) = γ1V (t)+γI(t)−dR(t), we also obtain that solu-
tionsR(t) approach to equilibriumR∗ since limt→+∞ V (t) = V ∗ and limt→+∞ I(t) =
I∗, that is

lim
t→+∞

R(t) = R∗ =
1

d
(γ1V

∗ + γI∗) =
1

d
(γ1V

∗ +
γµE∗

d+ δ + γ
).

When RV0 ≤ 1, similar argument to the above, it has limt→+∞ I(t) = 0 and
limt→+∞R(t) = γV0/d. Hence, although system (4) has five variables and (5)
just has three ones, the global stability of system (5) implies the global stability of
system (4).

5. Two cases for kernel function k(a). Usually, the kernel function k(a) is
assumed to probability distribution function, and satisfies 0 ≤ k(a) ≤ 1 for all
a > 0. In this section, we study the two special cases for k(a).

Case where k(a) = 1 for all a ≥ 0, then∫ ∞
0

k(a)µE(t− a)e−(d+δ+γ)ada =

∫ ∞
0

i(t, a)da = I(t).

System (5) is simply reduced to an ordinary differential equation (ODE) model as
follows:

S′(t) = Λ− βS(t)I(t)− (d+ α)S(t),

V ′(t) = αS(t)− β1V (t)I(t)− (d+ γ1)V (t),

E′(t) = (βS(t) + β1V (t))I(t)− (d+ µ)E(t). (26)

I ′(t) = µE(t)− (d+ δ + γ)I(t).

Now the basic reproduction number for system (26) is rewritten as

R̄V0 =
(βS0 + β1V0)µ

(d+ µ)(d+ δ + γ)
.
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The ODE system (26) means the susceptible and vaccinated individuals are infected
by infectious individuals with mass action type incidence. Susceptible individuals
(regardless of whether they have been previously vaccinated) are further vaccinated
at the rate α. Obviously, system (26) has disease free equilibrium P̄0(S0, V0, 0, 0),
and the endemic equilibrium P̄ ∗(S̄∗, V̄ ∗, Ē∗, Ī∗) (when R̄V0 > 1). A similar system
regard to (26) was considered in [3], which prove the global stability of the endemic
equilibrium by using Li-Muldowney techniques. Here we use Lyapunov functions
as follows

L1(t) = S0h

(
S

S0

)
+ V0h

(
V

V0

)
+ E + I,

L2(t) = S∗h

(
S

S∗

)
+ V ∗h

(
V

V ∗

)
+ E∗h

(
E

E∗

)
+
d+ µ

µ
h

(
I

I∗

)
.

Omitting the proof in detail, we establish the global dynamics for (26).

Corollary 1. Consider system (26). (i) If R̄V0 ≤ 1, then the disease free equilibrium
P̄0 of (26) is globally asymptotically stable. (ii) If R̄V0 > 1, then the endemic
equilibrium P̄ ∗ of (26) is globally asymptotically stable.

Case where k(a) = δ(a−r), the incidence terms become µβe−(d+δ+γ)rS(t)E(t−
r) and µβ1e

−(d+δ+γ)rV (t)E(t − r) with discrete delays. Thus, system (5) reduces
to

S′(t) = Λ− µβe−(d+δ+γ)rS(t)E(t− r)− (d+ α)S(t),

V ′(t) = αS(t)− µβ1e
−(d+δ+γ)rV (t)E(t− r)− (d+ γ1)V (t), (27)

E′(t) = [µβS(t) + µβ1V (t)]e−(d+δ+γ)rE(t− r)− (d+ µ)E(t).

I ′(t) = µE(t)− (d+ δ + γ)I(t).

The basic reproductive number for system (27) is rewritten as

R̃V0 =
µβS0 + µβ1V0

(d+ µ)(d+ δ + γ)
· e−(d+δ+γ)r.

Corollary 2. Consider system (27). (i) If R̃V0 ≤ 1, then the disease free equilibrium

P̄0 of (27) is globally asymptotically stable. (ii) If R̃V0 > 1, then the endemic
equilibrium P̄ ∗ of (27) is globally asymptotically stable.

Comparing the above two corollaries, we find that incorporating time delays does
not affect the stability of the equilibrium if the sign of R̄V0 − 1 is uncharged when
the delays are set to 0, i.e., if no Hopf bifurcation occurs in a model without delays,
incorporating time delays will not produce periodic oscillations.

6. Vaccination effects. Theorems 4.1 and 4.2 imply that the global dynamics of
system (5) is completely determined by the basic reproduction number RV0 . Hence
the vaccination effects depend on whether the basic reproduction number can be
reduced to below unity or not. Recall that when vaccination rate α = 0, system (5)
will become the same model of Röst and Wu [23] with a basic reproduction number

R0 = βΛµ
d(d+µ)

∫∞
0
k(a)e−(d+δ+r)ada. By Theorem 5.1 of Röst and Wu [23], when

R0 ≤ 1, the disease free equilibrium P0 is globally asymptotically stable and so is
the endemic equilibrium P ∗ = (S∗, E∗) when R0 > 1 by Theorem 4.3 of McCluskey
[21]. We now consider the vaccination effects by the continuous vaccination strategy.
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Let

RV1 := RV0 |β1=0 or γ1→∞=
βΛµ

(d+ α)(d+ µ)

∫ ∞
0

k(a)e−(d+δ+γ)ada,

which is the basic reproduction number of system (5) when we neglect the possibility
for vaccinees to be infected (β1 = 0) or neglect the time for them to obtain immunity
(γ1 →∞). It is obvious that RV1 ≤ RV0 . Since β ≥ β1, calculating the derivative of
RV0 with respective to α, we obtain

∂RV0
∂α

= − Λµ[(β − β1)d+ βγ1]

(d+ µ)(d+ γ1)(d+ α)2

∫ ∞
0

k(a)e−(d+δ+γ)ada < 0.

It follows that RV0 ≤ RV0 |α=0= R0. Moreover, we have

lim
α→∞

RV1 = 0 and lim
α→∞

RV0 =
β1Λµ

(d+ γ1)(d+ µ)

∫ ∞
0

k(a)e−(d+δ+γ)ada := R2.

When R0 < 1, without vaccinations the disease will disappear ultimately. Since
RV0 ≤ R0, Theorem 4.1 implies that the disease also will be extinct when continuous
vaccination strategy is executed. To understand the effects of vaccinations, we
should suppose that without vaccinations the disease is in endemic state, i.e. R0 >

1. Since
∂RV

0

∂α < 0, vaccination always has a good effect for disease control by
decreasing the basic reproduction number. Next, we will discuss this issue in the
following two cases:

Case I If we neglect the possibility for vaccinees to be infected β1 = 0 or neglect

the time for them to obtain immunity γ1 → ∞, then by
∂RV

1

∂α < 0, limα→∞RV1 =
0, we can conclude that the disease always can be eradicated by some suitable
vaccination strategy.

Case II If we consider the possibility for vaccinees to be infected β1 > 0 and the

time for them to obtain immunity (γ1 is finite), by
∂RV

0

∂α < 0 we have limα→∞RV0 =

R2. If R2 < 1, then there is a unique α0 for continuous strategy such that RV0 = 1
for α = α0. Hence RV0 < 1 for α > α0. By Theorem 4.1, the disease can be
eliminated by some suitable vaccination strategies (satisfying α > α0). If R2 ≥ 1,
then RV0 > R2 ≥ 1. By Theorem 4.2, the situation is so serious that disease
cannot be eradicated by any vaccination strategies (for any values of α). Note
that R2 means the average new infections produced by one infected individual
during his lifespan when the whole population is vaccinated. And clearly, R2 < 1
is the necessary condition for disease elimination. The validity of the necessary
condition requires that the possibility for the vaccinees to be infected is small (β1

is small) or the time for them to gain immunity is short (γ1 is large). These two
improvements of the efficacy of vaccines may lead to disease eradication. If the time
for the vaccinees to obtain immunity or the possibility for them to be infected before
gaining immunity is neglected, this necessary condition is automatically satisfied
and the disease can always be eradicated by some suitable vaccination strategies.
This warns over-evaluating the effect of vaccination.

7. Summary and discussion. We studied the vaccination effects based on an
SVEIR epidemic model with distributed delays to account for varying infectivity.
By employing direct Lyapunov method and LaSalle’s invariance principle, we con-
structed appropriate functionals that integrate over past states to establish global
asymptotic stability results. We have identified the basic reproduction number RV0
as threshold quantity for stability of equilibria. More precisely, it is shown that,
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if RV0 ≤ 1, then the disease free equilibrium is globally asymptotically stable; if
RV0 > 1, then there exists a unique endemic equilibrium which is globally asymp-
totically stable.

In particular, when α = 0, it means there are no vaccinations, then we have
limt→∞ V (t) = 0 in system (1). And system (1) is reduced to the same model of
[23], of which global asymptotic stability was given in [21]. On the other hand, when
α → ∞ in system (1), then the vaccination is executed so fast at any time such
that all susceptible population will become vaccinated immediately. And system
(1) is reduced to the continuous VEIR model, which has similar global properties
as SEIR model in [23].

The proofs in this paper use the function of the form V1(x) = x−x∗−x∗ ln(x/x∗).
This function was applied to Lyapunov functions for the Lotka-Volterra system at
first. Recently, it is extremely successful for a broad variety of epidemics models by
Korobenikov [11, 12]. McCluskey ([21],[22]) extended it as V2 =

∫∞
0
α(θ){xθ−x∗−

x∗ ln(xθ/x
∗)}dθ to some delay model, it appears to be a sound basis to construct

Lyapunov functions for more advanced problem that arise in mathematical biology.
Obviously, here V2 ≥ 0 for all x ≥ 0, and V2 = 0 if and only if xθ = x∗. It
should be pointed out here that uniform persistence result of Theorem 3.1 implies
the existence of integral V2. Thus, combined with the boundedness of solutions in
Θ, the Lyapunov functional calculation for solutions are separated away from zero,
lying in the omega limit sets. As incorporating infinite delays into our model, kernal
function k(·) is bounded above by a decaying exponential function, we choose fading
memory space C∆ as the phase space. Mathematical results suggest that vaccination
is helpful for disease control by decreasing the basic reproduction number. However,
this model gives a necessary condition for successful elimination of disease. If the
time for the vaccinees to obtain immunity or the possibility for them to be infected
before acquiring immunity can be neglected, this necessary condition will be satisfied
and the disease can always be eradicated by some suitable vaccination strategies.
This warns over-evaluating the effect of vaccination.
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