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Abstract. Mutations of the SCN5A gene can significantly alter the function

of cardiac myocyte sodium channels leading to increased risk of ventricular

arrhythmia. Over the past decade, detailed Markov models of the action po-
tential of cardiac cells have been developed. In such models, the effects of a

drug can be treated as alterations in on- and off rates between open and inac-

tivated states on one hand, and blocked states on the other hand. Our aim is
to compute the rates specifying a drug in order to: (a) restore the steady-state

open probability of the mutant channel to that of normal wild type channels;

and (b) minimize the difference between whole cell currents in drugged mutant
and wild type cells. The difference in the electrochemical state vector of the

cell can be measured in a norm taking all components and their dynamical

properties into account. Measured with this norm, the difference between the
state of the mutant and wild-type cell was reduced by a factor of 36 after the

drug was introduced and by factors of 4 over mexitiline and 25 over lidocaine.
The results suggest the potential to synthesize more effective drugs based on

mechanisms of action of existing compounds.

1. Introduction. Instabilities in cardiac myocyte cellular dynamics can trigger or
maintain arrhythmias, that can be life threatening. Gene mutations or adverse drug
effects that prolong myocyte action potential duration are associated with prolon-
gation of the QT interval of the electrocardiogram and increased risk of reentrant
ventricular tachy-arrhythmias such as Torsades de Pointes (TdP).

Advances in the understanding of the genetic basis of cardiac ion channels have
revealed that mutant alleles of several cardiac ion channel genes are associated with
long QT syndrome (LQTS) in humans. Gain-of-function mutations of the SCN5A
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gene encoding the cardiac sodium channel are associated with the LQT3 variant
of Long QT Syndrome. The wild-type sodium channel has both a fast inactiva-
tion and a slow inactivation process. However, the ∆KPQ mutant can enter into
a bursting mode, where channel can only switch between open and closed states
with no inactivation, and lead to a large late sodium current that prolong action
potential duration (APD) and genesis of early after-depolarizations (EAD). EADs
are membrane osillations that interrupt or retard repolarization during phase 2 or
phase 3 of the cardiac AP, and EAD-induced triggered APs appear when EAD
amplitude bring the membrane above its threshold potential [1]. Delayed after de-
polarizations (DAD) can also trigger cardiac arrhythmias, however, they arise after
full repolarization of AP, and can be induced with agents that overload intracellular
calcium [3]. Mutations or proarrhythmic drug effects that alter cardiac action po-
tential duration (APD), can also lead to amplification of electrical heterogeneities
in the ventricular myocardium. This can result in a prolongtion of the QT interval
in electrocardigram (ECG) recordings, and finally development of TdP.

Experiments have shown that the wild-type sodium current inactivates quickly,
whereas in the mutant case there is an additional late sodium current. Clancy and
Rudy [4] have proposed a Markov model that is in agreement with these findings.
Clancy, Zhu and Rudy [5] extended the model to incorporate the putative mecha-
nisms of action of two anti-arrhythmic drugs; mexiletine and lidocaine, which block
the open-state or inactivated-state of the channel, respectively.

In the present paper a bicomponent drug is introduced targeting both the open-
and inactivation states. The properties of the drug is thus characterized by four free
parameters, its binding and off binding rates to open state and inactivation state
(d1, d2, d3, d4). It is the purpose of the present paper to compute advantageous val-
ues of these parameters. We assume that drug function is fully specified when these
rates are determined, and we determine the rates such that the drugged mutant cell
resemble the properties of a wild type cell as good as possible. Specifically, the drug
will inhibit late opening of the mutant sodium channel, and the action potential
of the drugged mutant cell will be similar to the action potential of the wild type
cell. We show that only one degree of freedom in the drug is needed to assure that
the channel closes normally; the three other degrees of freedom were then used to
optimize the overall action potential of the drugged mutant cell. Here, we have used
the updated LRd model by Livshitz and Rudy [8].

The concept of treating the drug in terms of free parameters that can be op-
timized in order to alter the properties of a cell in an advantageous manner was
introduced in [12]. Computer simulations based on mathematical models of car-
diomyocytes have been extensively used to examine the effects of various drugs;
overviews are provided by Noble et al [10] and by Brennan et al [2]. In particular,
models of the Long-QT syndrome have been analyzed in a series of papers; see e.g.
[5, 15, 6, 11, 14, 13]. In all these papers, the effect of a certain drug is implemented
in the mathematical model and the effect on the mutant cell is recorded based on
computations.

The approach here is different in that we assume that drug properties can be
characterized in terms of a set of parameters that we optimize to identify theoretical
therapeutic objectives. First, the mathematical models are presented. In Section 3,
we derive a sufficient condition on the drug to properly close the sodium channel,
and in Section 4 we define an optimization procedure for determining the remaining
degrees of freedom of the drug. Furthermore, we compute the parameters defining
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the drug, and we present numerical computations comparing the wild type, mutant
and drugged mutant cells.

2. Methods.

2.1. The mathematical model. The purpose of this section is to introduce the
mathematical models under considerations. Mathematical models of the cardiac
action potential are generally written on the form

vt = − 1

Cm
(Iion + Is), (1)

st = F (v, s), (2)

where v denotes the transmembrane potential, Cm denotes the membrane capaci-
tance, Iion denotes the sum of individual ionic currents (voltage-gated, pumps and
exchangers), Is denotes a stimulus current, and s denotes a vector containing gat-
ing variables and ionic concentriations governed by the non-linear vector-valued
function F = F (v, s).

The ionic current can be written on the form

Iion = INa + IR (3)

and we apply the model introduced by Livshitz and Rudy in [8]. Since we are
concerned with the effects of mutations affecting the sodium channel, we present
the details of the modeling for that channel and refer to [8] for the remaining parts
of the model. The sodium current takes the form

INa = GNaO(v − ENa) (4)

where ENa is the sodium equilibrium potential, GNa denotes the maximum con-
ductance, and O denotes the open state probability of the sodium channel. We will
consider three versions of this current; the wild type case, the mutant case and the
case of a mutant cell that is affected by a drug. These three cases are distinguished
in the way the open probability is modeled. We refer to the three cases as W, M
and D, and thus OW , OM , and OD denotes the open probability for a wild type
cell, a mutant cell and a mutant cell affected by the drug, respectively.

The Markov model of the open probability of a wild type cell was established by
Clancy and Rudy in [4]. It can be presented schematically as illustrated in Figure
1A and, equivalently, as a system of ordinary differential equations on the following
form

d

dt


C3
C2
C1
O
IF
IS

 =


−γ1 β11 · · · ·
α11 −γ2 β12 · · ·
· α12 −γ3 β13 α3 ·
· · α13 −γ4 β2 ·
· · β3 α2 −γ5 β4
· · · · α4 −γ6




C3
C2
C1
O
IF
IS


where γi is the sum of the off-diagonal elements of column i:

γ1 = α11,
γ2 = β11 + α12,
γ3 = β12 + α13 + β3,
γ4 = β13 + α2,
γ5 = α3 + β2 + α4,
γ6 = β4.



864 ASLAK TVEITO, GLENN T. LINES, PAN LI AND ANDREW MCCULLOCH

Wild type Mutant

α1i = 3.802
0.1027·e−V/p1i+p2i·e−V/150 α̂1i = 1.25 · α1i

β1i = p3i · e−V/p4i β̂1i = β1i
α2 = 9.178 · eV/29.68 α̂2 = 9.178 · eV/100
β2 = α13·α2·α3

β13·β3
β̂2 = α̂13·α̂2·α̂3

β̂13·β̂3

α3 = 3.7933 · 10−9e−V/5.2 α̂3 = 20 · α3

β3 = 0.0084 + 0.00002V β̂3 = 2 · β3
α4 = α2/100 α̂4 = α̂2/100

β4 = α3 β̂4 = α̂3

α̂0 = 2 · 10−6

β̂0 = 1 · 10−4

Table 1. The rate functions of the sodium channel model taken
from [3].

i p1i p2i p3i p4i
1 17 0.20 0.1917 0
2 15 0.23 0.20 5
3 12 0.25 0.22 10

Table 2. Values of the constants pji for the functions α1i and β1i
in Table 1.

Here, the open probability O is the essential variable since only that variable
affects the rest of the system. In fact, the Na current of the model is proportional
to open state probability; see Equation (4) above. In addition to the open state
probability, the model includes three closed states (C1, C2, C3), and two inactivated
states; IS (slow) and IF (fast). The functions involved in the system are specified
in Table 1.

Similarly, the model of a mutant cell is illustrated in Figure 1 B. This model is also
adopted from [4] and the functions involved are given in Table 1. The model can be
written on the form of a system of ordinary differential equations in exactly the same
manner as for the wild-type system. In the mutant model the open state probability
is given by the sum of an upper and a lower open state probability; OM = UO+LO.
Furthermore, there are three upper closed states (UC1, UC2, UC3), and three lower
closed states (LC1, LC2, LC3). Finally, the system modeling the open probability
of a drugged mutant cell is sketched in 1 C. In the model of a drugged mutant cell,
three states are added. The cell can be in an inactivated, upper or lower blocked
state represented by the variables (IB,UB,LB), respectively.

The model takes the form introduced by Clancy, Zhu and Rudy [5] with the
exception that we regard the parameters (d1, d2, d3, d4) describing the properties of
the drugs to free; indeed it is the purpose of this paper to compute advantageous
values of these parameters. The mathematical problem at hand can be under-
stood by comparing Figure 1 A and C. We want to compute the free parameters
(d1, d2, d3, d4) of Figure 1 C (mutant cell with drugged states) such that the solution
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of the associated system resembles the solution of the system associated Figure 1 A
(wild type cell) as well as possible.

Figure 1. Target identification of a potential drug treat-
ing LQTS caused by a Na+ channel mutation. The markov
Na+ channel models for a wild type cell (A) and a mutant cell
(B) were reproduced, based on Clancy and Rudy [4]. Red arrows
indicates alternations in transition rates in the mutant model. A
potential drug with unknow properties, presumably targeting both
inactivation and open states, with binding and off binding rates of
d1, d2, d3, d4, was modeled as extra states to the mutant model,
IB, UB and LB, based on methodologies proposed by Clancy, Zhu
and Rudy [5]. By parameter optimization of d1, d2, d3 and d4,
the mutant + drug model (C) can behave with minimal differences
compared to the wild type model (A) on both single channel and
whole cell levels.

2.2. Computing probability at equilibrium. As mentioned above, it has been
observed that there is non-negligible late sodium current in the mutant case, that
can significantly prolong action potential duration, and it was demonstrated in [4]
that this current may generate instabilities in the action potential. More specifi-
cally, the sodium channel of the mutant cell does not close in the same manner as
the wild type cell. Our aim is to understand how the drug can be set up to force
this difference to be minimized. This is done by considering the steady-state open
probabilities as a function membrane voltage in all three cases (W,M,D). As men-
tioned above, the drug is characterized four parameters and it turns out that only
one of them is needed to rectify late Sodium current. The other three parameters
will be used to optimize the dynamic properties of the drugged cell.
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Note that the model of the open probability in all three cases can be written on
the general form

zt = Z(v)z (5)

and thus the equilibrium state obtained by putting zt = 0, will be a function of the
transmembrane potential v.

Figure 2. A generic cyclic reaction involving three states.

It turns out that the equilibrium open probability in all three cases can be com-
puteted explicitly as functions of v. In order to see this, we consider a prototypical
Markovian model of a channel that can take on one of the three states; A, B and
C, see Figure 2.

The associated system of ordinary differential equation is given by

at = −(k−1 + k2)a+ k1b+ k−2c (6)

bt = k−1a− (k1 + k−3)b+ k3c (7)

ct = k2a+ k−3b− (k3 + k−2)c (8)

Here a, b and c denotes the probability of the channel being in the states A, B and
C respectively, and we assume that the reaction rates satisfies the condition

k1k2k2 = k−1k−2k−3, (9)

which is necessary for the system to satisfy the principle of detailed balance; see
Keener and Sneyd[7]. We assume that the channel can only be in the states A, B or
C initially, and thus a(0) + b(0) + c(0) = 1. Furthermore, by adding the equations
above, we note that (a+ b+ c)t = 0, and thus

a(t) + b(t) + c(t) = 1 (10)

for all time. According to the principle of detailed balance, the equlibrium solution
satisfies the following condtions

k−1a = k1b, k2a = k−2c, k−3b = k3c. (11)

By combining these equations and the fact that a+ b+ c = 1, we get the following
equlibrium states,

a =

(
1 +

k−1

k1
+

k2
k−2

)−1

, (12)

b =
k−1

k1

(
1 +

k−1

k1
+

k2
k−2

)−1

, (13)

c =
k2
k−2

(
1 +

k−1

k1
+

k2
k−2

)−1

. (14)
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In Figure 1A, the reaction scheme of the wild type model is given. At equilibrium,
we obtain the following relations

α4IF = β4IS, α3IF = β3C1, β2IF = α2O,
α13C1 = β13O, α12C2 = β12C1, α11C3 = β11C2.

(15)

By letting γ = α/β, we get

IS = γ2γ4O, IF = γ2O,
C1 = γ−1

13 O, C2 = γ−1
12 γ

−1
13 O, C3 = γ−1

11 γ
−1
12 γ

−1
13 O,

(16)

and since IS + IF +O+C1 +C2 +C3 = 1, the open probability at equilibrium is
given by

OW (v) =
1

η + γ2(1 + γ4)
, (17)

where

η = 1 + γ−1
13 + γ−1

12 γ
−1
13 + γ−1

11 γ
−1
12 γ

−1
13 . (18)

Note that in the mutant case, the open probability is given by OM = UO+LO and
we find that

IS = γ̂2γ̂4UO, IF = γ̂2UO, LO = γ̂0UO,
UC1 = γ̂−1

13 UO, UC2 = γ̂−1
12 γ̂

−1
13 UO, UC3 = γ̂−1

11 γ̂
−1
12 γ̂

−1
13 UO,

LC1 = γ̂−1
13 γ̂0UO, LC2 = γ̂−1

12 γ̂
−1
13 γ̂0UO LC3 = γ̂−1

11 γ̂
−1
12 γ̂

−1
13 γ̂0UO.

(19)

Since the sum of the states is one, we get

OM (v) =
1

η̂ + γ̂2
1+γ̂4
1+γ̂0

, (20)

where

η̂ = 1 + γ̂−1
13 + γ̂−1

12 γ̂
−1
13 + γ̂−1

11 γ̂
−1
12 γ̂

−1
13 . (21)

Similarly, in the case of a drugged mutant cell, we find that at equilibrium the
following relations hold

IS = γ̂2γ̂4UO, IF = γ̂2UO, LO = γ̂0UO,
UC1 = γ̂−1

13 UO, UC2 = γ̂−1
12 γ̂

−1
13 UO, UC3 = γ̂−1

11 γ̂
−1
12 γ̂

−1
13 UO,

LC1 = γ̂−1
13 γ̂0UO, LC2 = γ̂−1

12 γ̂
−1
13 γ̂0UO, LC3 = γ̂−1

11 γ̂
−1
12 γ̂

−1
13 γ̂0UO,

IB = yγ̂2UO, UB = xUO, LB = xγ̂0UO.

(22)

Here we have defined

x =
d1
d2

and y =
d3
d4
, (23)

where we recall that the parameters d1, d2, d3, d4 specify the drug; see Figure 1B.
The equilibrium open state probability (UO+LO) of the drugged mutant cell (see
the reaction scheme given in Figure 1C) is given by

OD(v, x, y) =
1

η̂ + x+ γ̂2
1+y+γ̂4
1+γ̂0

. (24)

Note that OD(v, 0, 0) = OM (v).
Motivated by the concentrations applied in [5], we take 1000µM to be the maxi-

mal drug concentration. The forward rates will then satisfy

d1, d3 ≤ [D] · kon = 100/ms,

where kon = 0.1/(µM ms). The backward rates can be written as Kd ·kon, where Kd

is the dissociation constant, which is 2.5µM and 4µM for mexiteline and lidocaine,
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respectivly. Thus, in that case d2 = 0.25/ms and d4 = 0.4/ms. Based on these
considerations we assume that x = d1

d2
≤ 400 and y = d3

d4
≤ 250.

3. Results.

−90 −80 −70 −60 −50 −40 −30
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4
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12

x 10
−4

mV

Figure 3. Open probability of the sodium channel in
steady state. Wild type (solid) and mutant (dashed).

3.1. Optimizing the equilibrium open probability. As shown in the methods
section the open state probability can be explicitly computed as a function of the
transmembrane potential v for all three cases; wild type (W), mutant (M) and
drugged mutant (D) cells. In Figure 3 we show the equilibrium open probability
as a function of the transmembrane potential for wild type and mutant cells, and
we observe a significant difference. This difference may cause persistant sodium
leakage, and thus it is reasonable to try to reduce this difference by using the drug.
Define the difference between the equilibrium open probability of a wild type and
a drugged mutant cell to be

d(x, y) =

∫ −20

−90

(
OD(v, x, y)−OW (v)

)2
dv. (25)

In Figure 5, we have plotted this function for x and y ranging from 0 to 500, and
we observe that the difference is strongly dependent on the y-variable. In fact, for
any value of x, the difference is small for any choice of y&150. In Figure 4, we have
plotted the equilibrium open probability of a drugged mutant cell using x = 0 and
y = 100, 200, 300. Based on these observations we choose y = 200, and thus we
have found that

d4 = d3/200. (26)

3.2. Optimizing the sodium current. It remains to determine the parameters
(d1, d2, d3). This will be done by minimizing the difference between the sodium
current of the drugged mutant cell and a wild type cell. Motivated by [12], we
define the distance function

D(d1, d2, d3) =

∫ T

0

[
IDNa(t, d1, d2, d3)− IWNa(t)

]2
dt, (27)
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Figure 4. Open probability of the sodium channel in
steady state. Wild type (solid) and mutant (dashed), and three
versions of a drugged mutant cell corresponding to three choices of
y (dash-dotted). From top to bottom: y = 100, 200, 300.
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Figure 5. Graph of the functional d(x, y) defined in (25).
Notice that shades of gray correspond to values below 10−7.

where T = 3150ms. For t < T we stimulate the cell with successively longer cycle
lengths, from 300ms to 600ms in steps of 50ms. The currents are computed based on
a full simulation of the action potential. The function is minimized using the Nelder-
Mead algorithm, see [9]. By using the initial condtion (d1, d2, d3) = (100, 0.25, 100),
(corresponding to [M] = [L] = 1000 µM and Kd = 2.5µM) we get the optimal drug

d∗ = (d∗1, d
∗
2, d

∗
3, d

∗
4) = (1.72, 0.0697, 169.7, 0.848) (28)

where d∗4 = d∗3/200. In Figure 6 we have graphed the value of the distance function
D around the the optimal value. In the left plot, d1 is varied while keeping the two
other components at their optimal values. Middle and right plot are similar for d2
and d3. We observe that the cost functional is convex along d1 and d2, while any
d3&100 seems to be a good choice.
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Figure 6. The value of the cost functional (27) around
the optimal drug marked with ×.

The optimized drug profile suggests that, an open state blocker with a fairly
slow off-binding rate to be applied at a low dosage, combined with an inactivation
state blocker with a higher off-binding rate applied at high dosage, can be most
effective in minimizing differences between mutant sodium channel and wild type.
It seems that, in this case, the inactivation blocker behaves as a fast “hit and run”
process, while the open state blocker remains for a relatively long duration to slowly
underpin the the mutant channel dynamics.

In Figure 7 we present the action potential of a wild type, mutant and a drugged
mutand cell, and in the lower plot we compare the associated sodium currents. From
both these plots, we observe that the drug changes the properties of the mutant cell
such that the behavior of the wild type cell and the drugged mutant cell are hard
to distinguish.

The optimization has been performed on the sodium channel. To meassure the
overall cell function we define a norm that encompasses all electro-chemical states
q:

||q|| =
M∑
i=1

(
sup

0≤τ≤T
|qi(τ)|

)−1 ∫ T

0

|qi(t)|dt (29)

Here M = 15 is the number of variables included in the norm. There are three
variables carrying intracellular concentration of sodium, calcium and potassium,
eight gating variables for potassium and calcium currents, three variables related to
SR dynamics and finally one for the membrane potential. Table 3 shows the results
and we observe that the optimal drug performs well also in this norm.

Table 3. Drug performance

No drug Mexiteline Lidocaine Optimal
||qW − q|| 2.5156 0.2857 1.7025 0.0686

Norm of the difference between the wild type action potential and the mutant cell
action potential where the latter is subject to three types of drugs. The norm is
defined in (29).

The difference between the electro chemical fingerprint of the wild type and the
mutant cell, measured in this norm is 2.5156 (see Table 3). This difference is reduced
by a factor close to 9 by when mexiteline is applied and with a factor of about 1.5
when lidocaine is used. By using the optimal drug given by (28), the difference
is reduced by a factor more than 36. For mexiteline and lidocaine we have used
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Figure 7. Upper panel: The action potentials. The solid
line is the wild type cell, the dotted line is the mutant cell, and the
dotted-dashed is the drugged mutant cell (using the drug given by
(28)), which is observed to behave quite similar to the wild type
cell. The lower panels show the associated sodium currents and we
observe that the drug significantly reduce the late current of the
mutant cell.

100µM, within the range suggested in [5]. In drug vector terminology the two cases
are dM = (10, 0.25, 0, 0), dL = (0, 0, 10, 0.4).

3.3. Optimizing on EAD prevention. The approach taken above was to iden-
tify the potential drug characteristics, that minimize the differences between the
mutant and wild type Na+ channels at single channel and cellular levels. This was
achieved by both correcting the channel open probability at steady state and ad-
justing the temporal dynamics of the channel during sinus rhythm. An alternative
approach is to simply reduce arrhythmogenic effects of mutant Na+ channel, such
as eliminating occurrences of EADs, see Figure 4 of [4]), while allowing a minor
APD prolongation. Such an approach can also be effective in treating LQT syn-
drome, thus provide more options for drug development. In Figure 8 (upper panel)
we show a train of action potentials of the mutant cell pacing at cycle length of
400 ms, where EAD is seen at around 2600 ms. The mutant Na+ current has an
increased arrhythmogenic effects during pacing, since more population of the chan-
nel first entered the bursting mode, then was trapped due to a very low trasitient
rate to escape. Thus during pacing, late Na+ current further increased to prolong
APD, when a beat was stimulated within the vulnerable window of the previous
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beat, unidirectional block may occur, and lead to ventricular tachycardia. Here,
we use the first beat in Figure 8 (upper panel) as the target for the optimization
procedure to keep Na+ channel from entering its bursting mode, and finally reduc-
ing its arrhythmogenic effects. By picking 100 random initial guesses and running
the optimization procedure described earlier, the potential drug characteristics were
given by

d∗ = (d∗1, d
∗
2, d

∗
3, d

∗
4) = (1.58, 1.21, 0.23, 697) (30)

By using this drug we get the results given in Figure 8 (lower panel). Compared
to the “optimal” drug profile presented in Section 4, the potential drug character-
istics proposed here, suggested an inactivation blocker with very slow off binding
rate applied at low dosage, combined with an open state blocker with much faster
off binding rate applied at higher dosage, can reduce occurrence of EADs most
effectively, and enhance stability of the cell during pacing.
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Figure 8. Upper panel: A series of action potentials of
the mutant cell paced at 400ms. Note that an early after de-
polarization appear in the last action potential at around 2600ms.
Lower panel: The same series as above where the mutant cell is
given by the solid line, and the dashed line illustrates the behavior
of the mutant cell after applying the drug given by (30).

4. Conclusion. We have used mathematical models derived in [4, 8] and extended
in [5] to compute advantageous properties of a drug targeting mutant cardiac cells.
More specifically, we have considered mathematical models of cardiac cells affected
by mutations in the SCN5A gene. A Markov model represents the open probability
of the sodium channel and this enables a careful study of the equilibrium state
of the model. Computations reveal that, theoretically, the drug is able to change
the properties of the mutant sodium channel in a fortunate manner so that the
difference between the electro-chemical properties of the wild type and the drugged
mutant cells seems to vanish. It is worth observing that the computed optimal drug
is a compound involving an open state blocker and an inactivation state blocker.
Furthermore, we adopted an alternative approach to only reduce the arrhymogenic
effects of the mutant cell instead of targeting the exact properties of the wild type
cell. As a result, a theoretic drug that can effectively eliminate EADs was proposed.
This drug, instead of mainly targeting to reduce the late Na+ current, tolerates a
minor APD prolongation caused ∆KPQ mutation, while completely eliminating the
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occurrence of EADs, and thus cellular instabilities. It is the object of future work
to see if the same line of reasoning can be used to devise theoretical properties of
drugs for other mutations of cardiac cells.
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