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Abstract. The replicability of an oncolytic virus is measured by its burst
size. The burst size is the number of new viruses coming out from a lysis of
an infected tumor cell. Some clinical evidences show that the burst size of an
oncolytic virus is a defining parameter for the success of virotherapy. This arti-
cle analyzes a basic mathematical model that includes burst size for oncolytic
virotherapy. The analysis of the model shows that there are two threshold
values of the burst size: below the first threshold, the tumor always grows to
its maximum (carrying capacity) size; while passing this threshold, there is
a locally stable positive equilibrium solution appearing through transcritical
bifurcation; while at or above the second threshold, there exits one or three
families of periodic solutions arising from Hopf bifurcations. The study sug-
gests that the tumor load can drop to a undetectable level either during the
oscillation or when the burst size is large enough.

1. Introduction. Oncolytic viruses are genetically altered viruses that can infect
and replicate in cancer cells but leave healthy normal cells unharmed. When on-
colytic viruses are inoculated into a cancer patient or directly injected into a tumor,
they spread throughout the tumor, and infect tumor cells. The viruses that are in
the infected tumor cells replicate themselves. Upon a lysis of an infected tumor
cell, a swarm of new viruses burst out of the infected cell and infect neighboring
tumor cells. Over the last decade, great progress in understanding of the molecular
mechanisms of viral cytotoxicity of oncolytic viruses has been providing a fasci-
nating possible alternative therapeutic approach to cancer patients. This alterna-
tive approach could be especially beneficial in the case of malignant brain tumor,
glioma, since the standard therapy of surgery-radiation-chemotherapy does not typ-
ically destroy all the tumor cells; survival rate in high grade glioma is measured in
months. Recent experiments in animal brain tumors using genetically engineered
viral strains, such as adenovirus, ONYX-15 and CV706, herpes simplex virus 1 and
wild-type Newcastle disease virus show these viruses to be relatively non-toxic and
tumor specific [4]. Additionally, a wide array of viruses is being tested for potential
as oncolytic viruses.

Although oncolytic viruses have shown promising outcomes in some clinical tri-
als [1], viral oncolytic therapy has not yet lived up to its expectations. One reason
is that once inside a cell the oncolytic virus, such as herpes simplex virus type 1
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hrR3, replicate poorly; this difficulty may be overcome with advanced technology.
Another reason for the failure of efficacy of virotherapy is because of limited un-
derstanding of the dynamics that underlie the spread of oncolytic viruses through
tumors. Without such an understanding, much of the clinical research is based on
trial and error. In this aspect, mathematical modeling can allow us to see the whole
spectrum of possible outcomes, and provide the rationale to optimize treatments.
Several attempts have been made to understand and characterize viral dynamics
by mathematical models [6, 18, 12, 14, 15, 16, 2, 11]. These studies are largely of
qualitative simulation in nature and examine how variation in viral and host pa-
rameters influences the outcome of treatment. The outcome of virotherapy depends
in a complex way on interactions between viruses and tumor cells. A clear picture
of the dynamics of virotherapy seems hard to obtain.

Experimental results [10] have shown that a novel glioma-selective HSV-1 mu-
tant (rQNestin34.5) has a high replication ability and doubles the life span of glioma
mice. Our work [6] has suggested that viral replication ability is a major factor for
the success of virotherapy. Our model in [6] describes interactions among glioma
cells, infected glioma cells, viruses, and immune cells. It also includes the im-
munosuppressive agent, cyclophosphamide. It is a free boundary problem with five
nonlinear parabolic partial differential equations. Our study of a space-free virother-
apy model [13] suggests that the oscillation is an intrinsic property of virotherapy
dynamics and relates to virus replication ability. This paper aims to analyze the
dynamics of oncolytic viruses related to replication ability in a relatively simpler
setting. We will only consider tumor cells and viruses in a space-free fashion.

This paper is organized as follows. In section 2, we review models of the dynamics
of oncolytic viruses in terms of ordinary differential equations, and introduce a
common basic model. In section 3, we mathematically analyze our basic model. In
section 4, using published data, we demonstrate the typical dynamic behaviors of
our basic model by numerical simulation, and give a brief discussion and several
open problems of virotherapy dynamics.

2. Mathematical models. Within the framework of modeling interacting popu-
lations by systems of ordinary differential equations, Wodarz and Komarova [16]
proposed a general model (1) based on the law of mass action,

dx

dt
= xF (x, y)− βyG(x, y),

dy

dt
= βyG(x, y) − ay,

(1)

where x stands for the uninfected tumor cell population and y the infected tumor cell
population. The function F describes the growth properties of the uninfected tumor
cells, and the function G describes the rate at which tumor cells become infected
by the virus. These two functions could take several different forms, depending on
how much detail of the biology is incorporated into the model. The coefficient β

represents the infectivity of the virus. The infected tumor cells die with a rate ay.
This is a basic framework to describe the dynamics of virotherapy. From our study
[6, 8], the free virus population itself is very important for virotherapy dynamics.
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Actually, Wodarz [17] proposed a three population model (2),

dx

dt
= rx(1 − x+ y

C
)− dx− βxv,

dy

dt
= βxv − (d+ a)y,

dv

dt
= αy − γv.

(2)

Here, v stands for the free virus population. The tumor growth is modeled by
logistic growth, and C is maximal tumor size. The term αy models the release of
virions by infected tumor cells, and γv is the clearance rate of free virus particles by
various causes including non-specific binding and generation of defective interfering
particles. The death rate of tumor cells dx seems redundant, since it is included in
the logistic model. Dingli et al [5] proposed a similar model by replacing the first
equation in (2) by a generalized logistic model,

dx

dt
= rx(1 − (x+ y)ε

Cε
)− βxv,

dy

dt
= βxv − δy,

dv

dt
= αy − γv.

(3)

Here, ε is a constant. In order to consider the recombinant effect of measles virus,
Dingli et al [2] proposed the following model (4)

dx

dt
= rx(1 − (x+ y)ε

Cε
)− βxv − ρxy,

dy

dt
= βxv − δy,

dv

dt
= αy − γv − βxv,

(4)

where ρxy describes cell-cell fusion effect during the virotherapy. This model in-
cludes an important fact that tumor cells and free virus both decrease due to infec-
tion.

In our PDE model [6] and ODE model [13], we model virus replication ability by
its burst size. The burst size of a virus is the number of new viruses released from a
lysis of an infected cell. Different types of viruses have different burst sizes. Viruses
of the same type have almost the same burst size. The burst size is an important
parameter of virus replicability. Including the burst size b, we propose a common
basic model for virotherapy:























dx

dt
= λx(1 − x+ y

K
)− βxv

dy

dt
= βxv − δy

dv

dt
= bδy − βxv − γv

(5)

Since tumor cells infected by most types of viruses do not combine each other [4],
we do not include recombinant effect into this basic model. Logistic growth is a
common growth pattern. We therefore take it as uninfected tumor growth instead
of a generalized one.
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3. Analysis of the basic model. The main results can be summarized as follows.

Theorem 3.1. The system (5) has three equilibria, E0 = (0, 0, 0), E1 = (1, 0, 0),
and the positive equilibrium E∗. E0 is always unstable for all positive values of
b. E1 is globally asymptotically stable when 0 < b < bs1 , and it is unstable when
b ≥ bs1 . At b = bs1 , the positive equilibrium E∗ moves into the domain D, a type of
transcritical bifurcation occurs with E1 and E∗. As b increases, while bs1 < b < bs2
and b ∈ Ip, E∗ is locally asymptotically stable; when b > b0 and b ∈ In, E∗ is
unstable. Hopf bifurcations occur for some b ≥ bs2 , and these bifurcations give
rise to one or three families of periodic solutions. As b becomes large enough,
E∗ ≈ (O(1

b
), O(1

b
), r

a
).

We will use Lyapunov functions, center manifold theorem to study equilibria. To
study Hopf bifurcations, we will develop new properties of coefficient parameterized
polynomials and properties of Routh-Hurwitz determinants since the bifurcation
values are not algebraically expressible. Since the bust size is a measure of capability
of a virus, the main results have the following possible biological implications. When
viruses are not powerful, the burst size is less than bs1 , virotherapy fails. When
viruses are powerful but not very powerful, the burst size is in the range bs1 <

b < bs2 , virotherapy can be partially successful. When viruses are very powerful,
virotherapy successes in the sense of tumor load dropping to a undetectable level.

In the rest of this section, we shall present preliminary results, equilibrium anal-
ysis, and Hopf bifurcation analysis. We will also highlight biological implications of
mathematical statements when available.

3.1. Preliminary results. For simplicity, we non-dimensionalize the system (5)
by setting τ = δt, x = Kx̄, y = Kȳ, v = Kv̄, and rename parameters r = λ

δ
,

a = βK
δ

and c = γ
δ
. The system (5) becomes

dx̄

dτ
= rx̄(1− x̄− ȳ)− ax̄v̄

dȳ

dτ
= ax̄v̄ − ȳ

dv̄

dτ
= bȳ − ax̄v̄ − cv̄.

For convenience, dropping all bars over the variables and write τ as t, we have

dx

dt
= rx(1 − x− y)− axv

dy

dt
= axv − y

dv

dt
= by − axv − cv

(6)

It is assumed that all parameters are nonnegative.

Lemma 3.2. If x(0) ≥ 0, y(0) ≥ 0, and v(0) ≥ 0, then x(t) ≥ 0, y(t) ≥ 0, and
v(t) ≥ 0 for t ≥ 0. Furthermore, if 0 ≤ x(0) + y(0) ≤ 1, then 0 ≤ x(t) + y(t) ≤ 1
for t ≥ 0.

Proof. If the conclusion x(t) ≥ 0, y(t) ≥ 0, and v(t) ≥ 0 for t ≥ 0 is not true, there
must be a time t1, such that there is at least one component that will be zero first.
We check each possible case.
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If x(t1) = 0 first, then x′(t1) = 0. From the first equation of (6), by the unique-
ness of the solution we know x(t) = 0 for all t ≥ t1. Then the second equa-
tion of (6) becomes y′(t) = −y. Its solution is y(t) = y(t1)e

t1−t. So, y(t) ≥ 0
since y(t1) > 0. The third equation becomes v′(t) = by − cv. Its solution is

v(t) = v(t1)e
−c(t−t1) + be−c(t−t1)

∫ t

t1
ecτy(τ)dτ . Therefore, v(t) ≥ 0.

If y(t1) = 0 first, then y′(t1) = ax(t1)v(t1) ≥ 0. So, y(t) ≥ 0 when t ≥ t1 since
x(t) > 0 and v(t) > 0 as assumed.

If v(t1) = 0 first, then v′(t1) = by(t1) ≥ 0. So, after t1, v(t) ≥ 0 since x(t) > 0
and y(t) > 0 as assumed.

If two components are zero simultaneously at t1, it is easy to check that the third
component will be nonnegative when t > t1.

If the three components are zero simultaneously at t1, then from the uniqueness
of the solution, x(t) = 0, y(t) = 0, and v(t) = 0 for t ≥ 0.

Therefore, x(t) ≥ 0, y(t) ≥ 0, and v(t) ≥ 0 for t ≥ 0.
Since the initial value of each component is nonnegative, the solution is non-

negative. So, x′(t) = rx(1 − x − y) − axv ≤ rx(1 − x). With x(0) ≤ 1, by the
comparison theorem, we have x(t) ≤ 1. Notice, x′(t) + y′(t) = rx(1 − x− y)− y ≤
rx[1 − (x + y)] ≤ r(1 − (x + y)). Since 0 ≤ x(0) + y(0) ≤ 1, by the comparison
theorem, we have 0 ≤ x(t) + y(t) ≤ 1 for t ≥ 0.

Lemma 3.3. If x(0) ≥ 0, y(0) ≥ 0, v(0) ≥ 0, and 0 ≤ x(0) + y(0) ≤ 1, then
limt→+∞sup v(t) ≤ b

c
.

Proof. Under the given conditions, the solution components x(t) and y(t) are both
nonnegative and smaller than 1. v′(t) = by − axv − cv ≤ by − cv ≤ b − cv, by
the comparison theorem, v(t) ≤ b

c
+ v(0)e−ct. So, sup v(t) ≤ b

c
+ v(0)e−ct, and

limt→+∞sup v(t) ≤ b
c
.

Define the domain D = {(x, y, v) : x ≥ 0, y ≥ 0, v ≥ 0, 0 ≤ x + y ≤ 1}. From
Lemma 3.2 and Lemma 3.3, D is a positive invariant domain for the system (6). It
is also a biological meaningful range for variables. We then refer the whole domain
D as a “global”domain.

3.2. Equilibrium analysis. The system (6) always has two equilibrium solutions
in the positive invariant domainD, E0 = (0, 0, 0) andE1 = (1, 0, 0). When b > 1+ c

a
,

it has three equilibria, E0, E1, and a unique positive equilibrium solution E∗

E∗ = (
c

a(b− 1)
,

rc(ab − a− c)

a(b− 1)(ab− a+ rc)
,
r(ab − a− c)

a(ab − a+ rc)
).

The variational matrix of the system (6) is given by




r − 2rx− ry − av −rx −ax

av −1 ax

−av b −ax− c



 .

At the equilibrium point E0, the variational matrix is





r 0 0
0 −1 0
0 b −c



. The

eigenvalues are r, -1, and -c. Since r is positive, E0 is unstable. For the linearization
of the system (6) at E0, the stable invariant subspace is the y-v plane, and the
unstable invariant subspace is the x axis. It happens that for the system (6),
the local stable invariant manifold is in the y-v plane, and the unstable invariant
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manifold is in the x axis. A possible interpretation is that without viruses and
infected tumor cells the tumor will grow from an initial small value around E0. If
all tumor cells are infected, then the tumor will shrink until it disappears into E0.

At the equilibrium point E1, the variational matrix is





−r −r a

0 −1 a

0 b −(a+ c)



.

The eigenvalues are λ1 = −r and λ2,3 = 1
2 (−(1 + a+ c)±

√

(1 − a− c)2 + 4ab).

Lemma 3.4. E1 is locally asymptotically stable when b < 1 + c
a
; E1 is unstable

when b > 1 + c
a
.

Proof. At the equilibrium E1, the eigenvalue λ1 = −r and λ2 = 1
2 (−(1 + a+ c) −

√

(1− a− c)2 + 4ab) are both negative for all non-negative parameter values. The

eigenvalue λ3 = 1
2 (−(1+a+c)+

√

(1 − a− c)2 + 4ab) can be negative, positive and

zero. Suppose
√

(1− a− c)2 + 4ab < (1+a+c), then λ3 is negative. Since (1+a+c)
is positive, we have (1 − a − c)2 + 4ab < (1 + a + c)2. It implies that ab < a + c.
Then, we have b < 1+ c

a
. Hence, when b < 1+ c

a
, all three eigenvalues are negative.

This implies E1 is locally asymptotically stable. Similarly, when b > 1+ c
a
, we have

√

(1− a− c)2 + 4ab > (1 + a+ c). So, λ3 is positive. Then, E1 is unstable.

Actually, we can prove that the equilibrium solution E1 is globally asymptot-
ically stable when b < 1 + c

a
. Here by the word “globally”, we mean the whole

positive invariant domain D. We will construct two Lyapunov functions according
to different ranges of the parameter b. For convenience, we make a translation of
variables, x = 1− x, y = y, and v = v. After dropping the bars over variables, the
system becomes

dx

dt
= −rx + ry + av + rx2 − rxy − axv

dy

dt
= −y + av − axv

dv

dt
= by − (a+ c)v + axv

(7)

while the domain D is translated to D1 = {(x, y, v) : 0 ≤ x ≤ 1, y ≥ 0, v ≥ 0, 0 ≤
x− y ≤ 1}.

Theorem 3.5. When b < 1 + c
a
, E1 is globally asymptotically stable.

Proof. For any initial condition (x0, y0, v0) in the DomainD1, we know from Lemma
3.2 and Lemma 3.3, the solution satisfies 0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ 1 and v(t) ≥ 0.
We will construct two Lyapunov functions according to the values of the parameter
b to prove y(t) and v(t) approach 0, and then prove x(t) also approaches 0.

When 0 ≤ b ≤ 1, we define a Lyapunov function V1(x, y, v) = y+ v. It is obvious

that V1(x, y, v) > 0, and the orbital derivative V̇1(x, y, v) = y′+v′ = (b−1)y−cv < 0.
When 1 ≤ b < 1 + c

a
, we define a Lyapunov function V2(x, y, v) by

V2(x, y, v) =
1

2
ab(a+ c)y2 + a2byv +

1

2
a2v2.
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It is easy to see V2(x, y, v) > 0. The derivative along a solution is given by

V̇2(x, y, v) = ab(a+ c)yy′ + a2by′v + a2byv′ + a2vv

=ab(a+ c)y(−y + av − axv) + a2b(−y + av − axv)v + a2by(by − (a+ c)v

+ axv) + a2v(by − (a+ c)v + axv)

=− ab(a+ c)y2 + a2b(a+ c)yv − a2b(a+ c)xyv − a2byv + a3bv2

− a3bxv2 + a2b2y2 − a2b(a+ c)yv + a3bxyv + a2byv − a2(a+ c)v2 + a3xv2

=ab(ab− a− c)y2 − a2bcxyv + a2(ab− a− c)v2 + a3(1− b)xv2.

Since 1 ≤ b < 1 + c
a
, that is, ab − a − c < 0 and 1 − b < 0, hence, V̇2(x, y, v) < 0.

Therefore, combining these two Lyapunov functions, we have y(t) → 0 and v(t) → 0
as t → +∞ when b < 1 + c

a
.

Considering the component x(t), we see that

dx

dt
= −rx+ ry + av + rx2 − rxy − axv

= −rx(1 − x) + (1 − x)ry + (1 − x)av

= (1− x)(ry + av − rx)

≤ ry + av − rx.

So,

0 ≤ x(t) ≤ ke−rt + e−rt

∫ t

0

(ry(s) + av(s))ersds,

where k is the initial value for x(t). The limit ke−rt → 0 as t → +∞, while the
limit

limt→+∞e−rt

∫ t

0

(ry(s) + av(s))ersds = limt→+∞

∫ t

0 (ry(s) + av(s))ersds

ert

= limt→+∞
(ry(t) + av(t))ert

ert
=

1

r
limt→+∞(ry(t) + av(t))

= 0.

Thus, x(t) → 0 as t → +∞.
Such, (x(t), y(t), v(t)) approaches the origin wherever the initial value is in D1.

Therefore, the original system (6) has a global attractor E1.

Theorem 3.5 has an important biological implication. When the burst size of
the oncolytic virus is smaller than 1 + c

a
, the virotherapy always fails. This failure

is determined by the replication ability of the oncolytic virus, and it does matter
what the initial tumor size, the initial infected portion of the tumor, and the initial
amount of injected virus are as long as they are in the domain D. The burst size
does not depends on initial conditions. The number 1 + c

a
is a threshold value for

the burst size. We denote it by bs1 as the first threshold. Namely, bs1 = 1 + c
a
.

Consider the critical case b = bs1 . It implies ab = a + c. In this case, the
linearized system at E1 has two negative eigenvalues and one zero eigenvalue. In
order to determine the stability of the equilibrium solution E1, we will use the center
manifold theorem to reduce the system (7) into a center manifold, and study the
reduced system. We state the result first.



848 JIANJUN PAUL TIAN

Theorem 3.6. E1 is unstable when b = bs1 = 1 + c
a
.

Proof. To reduce the system (7) to a center manifold, we first standardize the
system, separate it into two parts, the part with zero eigenvalue and the part with
negative eigenvalues. The system (7) does not have complex eigenvalues in this
case. We start with the matrix corresponding to the linear part of the system (7),

which is L =





−r r a

0 −1 a

0 b −ab



 . It has eigenvalues, −r, −(1 + ab) and 0.

The eigenvalue −r has an associated eigenvector V1 = (1, 0, 0)T , −(1 + ab) has
an associated eigenvector V2 = (ab − r, 1 + ab − r,−b(1 + ab − r))T , 0 has an
associated eigenvector V3 = (ar + a, ar, r)T . We set a transformation matrix to be
T = (V1, V2, V3). Denote X = (x, y, v)T . Then the system (7) can be written as
dX
dt

= LX + F , where F = (rx2 − rxy − axv,−axv, axv)T . Set X = TY , then

dY

dt
= T−1LTY + T−1F,

where T−1LT =





−r 0 0
0 −(1 + ab) 0
0 0 0



, and x = y1 + (ab − r)y2 + (ar + a)y3,

y = (1+ab−r)y2+ary3, and v = −b(1+ab−r)y2+ry3. Denote T−1F = (f1, f2, f3)
T ,

then we have

f1 =
−1

(1 + ab− r)r
(y1 + (ab− r)y2 + (ar + a)y3)((r

3 − r2 − abr2)y1

+ (a3b3 − a2b − a3b2 − abr + 2abr2 + a2b2 + r2 − r3 − 2a2b2r

+ a2br)y2 + (ar3 + ar2 − a2br − a2br2)y3)

=A11y
2
1 +A12y1y2 +A13y1y3 +A22y

2
2 +A23y2y3 +A33y

2
3 ,

f2 =
a(1 + a)

1 + 2ab− r + a2b2 − abr
(y1 + (ab− r)y2 + (ar + a)y3)((b + ab2 − br)y2 − ry3)

=B12y1y2 +B13y1y3 +B22y
2
2 +B23y2y3 +B33y

2
3 ,

f3 =
a(b− 1)

(1 + ab)r
(y1 + (ab− r)y2 + (ar + a)y3)((b + ab2 − br)y2 − ry3)

=C12y1y2 + C13y1y3 + C22y
2
2 + C23y2y3 + C33y

2
3 ,

where Aij , Bij and Cij are coefficients that can be easily determined.
Then the transformed system can be written as

dZ

dt
= BZ +

(

f1
f2

)

,

dy3

dt
= Ay3 + f3,

(8)

where B =

(

−r 0
0 −(1 + ab)

)

, A = (0), and Z = (y1, y2).

It is easy to check that A has zero eigenvalue, B has negative eigenvalues, f1,
f2 and f3 are C2 differentiable functions, fk(0, 0, 0) = 0 and Dfk(0, 0, 0) = 0,
k = 1, 2, 3, where Df is the first derivative of the function f . Then from the Center

Manifold Theorem [3], there is a center manifold given by Z = h(y3) =

(

y1
y2

)

=
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(

h1(y3)
h2(y3)

)

, and it satisfies

Bh(y3) +

(

f1(h(y3), y3)
f2(h(y3), y3)

)

= Dh(y3)(Ay3 + f3(h(y3), y3)).

It is known that h(0) = 0 and h′(0) = 0. So, we assume that h1(u) = e2u
2 +

e3u
3 + · · · and h2(u) = m2u

2 + m3u
3 + · · ·, we use variable u instead of y3 for

simplicity. Then the equation for the center manifold is

(

−r 0
0 −(1 + ab)

)(

e2u
2 + e3u

3 + · · ·
m2u

2 +m3u
3 + · · ·

)

+

(

f1(h(u), u)
f2(h(u), u)

)

=

(

2e2u+ 3e3u
2 + 4e4u

3 + · · ·
2m2u+ 3m3u

2 + 4m4u
3 + · · ·

)

f3(h(u), u).

(9)

For simplicity, we only consider the order up to 5, and we will know it is enough
late. Then,

f1(h(u), u) =A11(e
2
2u

4 + 2e2e3u
5) +A12(e2m2u

4 + e2m3u
5)

+A13(e2u
3 + e3u

4 + e4u
5) +A22(m

2
2u

4 + 2m2m3u
5)

+A23(m2u
3 +m3u

4 +m4u
5) +A33u

2 + · · ·

Similarly, we have expressions for f2(h(u), u) and f3(h(u), u). We substitute fk into
the equation 9, and compare the coefficients on the both sides of the equation. We
get

− re2 +A33 = 0,

− re3 +A13e2 +A23m2 = 2e2C33,

− (1 + ab)m2 +B33 = 0,

− (1 + ab)m3 +B13e2 +B23m2 = 2m2C33, etc.

Solving these equations for coefficients of h(u), we obtain e2 = A33

r
, m2 = B33

1+ab
,

e3 = 1
r
(A13A33

r
+ A23B33

1+ab
− 2A33C33

r
), and m3 = 1

1+ab
(A33B13

r
+ B23B33

1+ab
− 2B33C33

1+ab
).

Now we reduce the system (7) to its center manifold, which is a single equation

dy3

dt
= f3(h(y3), y3),

and is

dy3

dt
= C33y

2
3 + (

A33C13

r
+

B33C23

1 + ab
)y33 + · · ·, (10)

where C33 = −a2(a+1)(b−1)
1+ab

< 0 since b = 1 + c
a
> 1. It is easy to see that y3 = 0 is

a node regardless of the sign of A33C13

r
+ B33C23

1+ab
. Therefore, for the system (7), the

origin is unstable.

When b > bs1 = 1 + c
a
, there is a third equilibrium solution E∗ = (x, y, v) while

E1 is unstable, where x = c
a(b−1) , y = rc(ab−a−c)

a(b−1)(ab−a+rc) , and v = r(ab−a−c)
a(ab−a+rc) . It is the

unique positive equilibrium solution. The variational matrix at this point is given



850 JIANJUN PAUL TIAN

by





−rx −rx −ax

av −1 ax

−av b −ax− c



 =













− rc

a(b− 1)
− rc

a(b− 1)
− c

b− 1
r(ab − a− c)

ab− a+ rc
−1

c

b− 1

−r(ab − a− c)

ab− a+ rc
b − bc

b− 1













.

The characteristic polynomial is given by

p(λ) = λ3 + a1λ
2 + a2λ+ a3, (11)

where a1 = rc+ab−a+abc
a(b−1) , a2 = rc(bc+b−1)

a(b−1)2 + rc(ab−a−c)(r−a)
a(b−1)(ab−a+rc) , and a3 = rc(ab−a−c)

a(b−1) .

By the Routh-Hurwitz Criterion [7], all roots of the polynomial (11) have negative
real parts if and only if

H1 = a1 > 0, H2 =

∣

∣

∣

∣

a1 a3
1 a2

∣

∣

∣

∣

> 0, H3 =

∣

∣

∣

∣

∣

∣

a1 a3 0
1 a2 0
0 a1 a3

∣

∣

∣

∣

∣

∣

> 0.

When b > bs1 , we have ab − a − c > 0. So, H1 = a1 > 0, and a3 > 0. Since
H3 = H2a3, we only need to consider H2.

H2 = a1a2 − a3

=
rc(ab − a+ rc+ abc)

(a(b − 1))2
(
bc+ b− 1

b− 1
+

(ab − a− c)(r − a)

ab− a+ rc
)− rc(ab − a− c)

a(b− 1)
.

If H2 > 0, then

(ab− a+ rc + abc)

(a(b− 1))
(
bc+ b− 1

b− 1
+

(ab− a− c)(r − a)

ab− a+ rc
) > ab− a− c,

bc+ b− 1

b− 1
+

(ab− a− c)(r − a)

ab− a+ rc
>

a(b− 1)(ab− a− c)

ab− a+ rc+ abc
,

bc+ b− 1

(b− 1)(ab− a− c)
+

r − a

ab− a+ rc
>

a(b− 1)

ab− a+ rc+ abc
,

a(b− 1)

ab− a+ rc+ abc
− bc+ b− 1

(b − 1)(ab− a− c)
<

r − a

ab− a+ rc
,

a(b− 1)(ab− a+ rc)

ab− a+ rc+ abc
− (bc+ b− 1)(ab− a+ rc)

(b − 1)(ab− a− c)
< r − a.

Define a function ϕ(b) = a(b−1)(ab−a+rc)
ab−a+rc+abc

− (bc+b−1)(ab−a+rc)
(b−1)(ab−a−c) . Since b > 1 + c

a
,

we can conclude from the derivation above that H2 > 0 if and only if ϕ(b) < r− a,
H2 < 0 if and only if ϕ(b) > r − a, and H2 = 0 if and only if ϕ(b) = r − a. We will
also consider H2 as a function of the parameter burst size b, and denote H(b) = H2.
We thus get the following theorem.

Theorem 3.7. When ϕ(b) < r − a, the equilibrium solution E∗ is locally asymp-
totically stable.

We will refine this theorem in the next subsection, and explain its biological
implication.
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3.3. Bifurcation analysis. Two types of bifurcations occur in the system (6) as
the parameter b varies. A transcritical bifurcation at b = bs1 introduces the equi-
librium point E∗ into the positive invariant domain D. The Hopf bifurcation at
some value b > bs1 gives rise to the periodic solutions. In order to analyze these
bifurcations, we study the function H(b).

We define a function Φ(x) by

Φ(x) =− a(ax− c)(ax + rc)x2 + ((a+ ac)x+ rc+ ac)[((c+ 1)x+ c)(ax+ rc)

+ x(ax − c)(r − a)]

=− a3x4 + a2(3c+ c2 + r − a− ac+ 1)x3 + ac(3rc+ 3a+ rc2 + 3ac+ r

+ r2 − a2)x2 + c2(3ar + 2acr + r2c+ 2a2)x+ rc3(r + a).

It is easy to see that

H(b) =
rcΦ(b − 1)

a2(b − 1)3(ab− a+ rc)
. (12)

When b 6= 1 and b 6= 1 − rc
a
, H(b) and Φ(b − 1) have the same zeroes. We always

assume all other parameters, a, c, and r are positive.

Lemma 3.8. The equation H(b) = 0 has at least two real roots, one is less than
bs1 = 1+ c

a
, and the another one is greater than bs1 . Furthermore, among all roots

that are greater than bs1 , there exists a root denoted by b0 and a small neighborhood
of b0, (b0 − δ1, b0 + δ1), where δ1 < b0 − bs1 , such that H ′(b0) 6= 0 and H(b) is
monotonic in this interval.

Proof. Consider the function Φ(x). It is easy to compute that Φ( c
a
) = c3(1 + r +

c + a)(1 + c + a)1+r
a

> 0. Since Φ(x) approaches −∞ as x approaches +∞, from
the intermediate value theorem of continuous functions, there exists at least one
element x2 > c

a
such that Φ(x2) = 0. Similarly, since Φ(x) approaches −∞ as x

approaches −∞, there exists at least one element x1 < c
a
such that Φ(x1) = 0.

From the relation between functions H(x) and Φ(x), H(b) = 0 has at least two
roots, 1 + x2 > 1 + c

a
and 1 + x1 < 1 + c

a
.

For the function Φ(x), there are three different cases: Φ(x) has four distinct real
roots, or three distinct real roots (one repeated), or two real roots and two conjugate
complex roots. We will check each case.

If Φ(x) has four distinct real roots, then there will be three roots or one root
that are greater than c

a
. Figure 1 shows the case where three roots are greater

than c
a
. We take the greatest root to be x0, then x0 > c

a
and Φ′(x0) < 0 since the

polynomial Φ(x) is decreasing around x0. Actually Φ(x) is decreasing to −∞ as x
goes to +∞ from any point that is slightly bigger than x0.

Figure 1. Φ(x) has four roots

If Φ(x) has three distinct real roots, then there is one repeated root. Figure 2
shows cases that Φ(x) has three or two roots. We can not choose this repeated root
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since the graph of Φ(x) is tangent to the x−axis at the point of the repeated root.
Hence Φ(x) does not change sign around the point of the repeated root, and is not
monotonic around this point. If the repeated root is in the between of these roots,
x1 and x2, we choose the greater one as x0. If the repeated root is the smallest one,
we choose the greatest root to be x0. If the repeated root is the greatest root, we
choose the middle one to be x0. We claim that the middle root is bigger than c

a
.

If it is smaller than c
a
, then c

a
must be in the between of the middle root and the

repeated root. Since Φ( c
a
) > 0, the graph of Φ(x) can not be tangent to x−axis

at the next zero which is the point of the repeated root. This is a contradiction.
Moreover, Φ(x) is decreasing around the point of the middle root in this case.

Figure 2. Φ(x) has three or two roots

If Φ(x) has only two distinct real roots, we take the greater one to be x0. It is
also true that Φ′(x0) < 0.

As we choose x0 for all cases, x0 > c
a
, Φ(x0) = 0 and Φ′(x0) < 0. Since

H ′(x) =
rc

a2
(x− 1)(ax− a+ rc)Φ′(x− 1)− (4ax− 4a+ 3rc)Φ(x− 1)

(x− 1)4(ax− a+ rc)2
,

we then have

H ′(x0 + 1) =
rc

a2
Φ′(x0)

x3
0(ax0 + rc)

< 0.

We rename the variable x as b, and set b0 = 1 + x0. Then, H ′(b0) < 0. Since
H ′(b) is continuous, so there exists a positive number δ1 that can be made smaller
than b0 − bs1 , such that H ′(b) < 0 in the interval (b0 − δ1, b0 + δ1). Therefore, H(b)
is monotonic in this interval.

Define Ip = {b > bs1 | H(b) > 0}, In = {b > bs1 | H(b) < 0}, I0 = {b >

bs1 | H(b) = 0}. From the proof of Lemma 3.8, Ip is not empty, and it is a finite
open interval or a union of two finite open intervals. In is also not empty, and is
an infinite open interval or a union of a finite open interval and an infinite open
interval. I0 is a closed set. I0 at least has one point, and at most has 3 points. We
denote the smallest number in I0 by bs2 . For the case of Figure 1, bs2 = 1 + x2,
b0 = 1+ x0 and bs2 < b0; for all cases of Figure 2, bs2 = b0 = 1+ x0. It is also easy
to see that H(b) > 0 when bs1 < b < bs2 . bs2 is the second threshold value for the
burst size. We now can refine Theorem 3.7 as the following theorem 3.9.
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Theorem 3.9. When bs1 < b < bs2 , the equilibrium solution E∗ is locally asymptot-

ically stable. At this equilibrium point, the tumor load T (E∗) = x+y = c(1+r)
ab−a+rc

< 1.

Proof. From the proof of Theorem 3.8, H(bs1) > 0. Since H(b) is a continuous
function, H(b) is positive until it become zero. So, H(b) > 0 for bs1 < b < bs2 .
Then, all roots of the characteristic polynomial (11) have negative real parts by the
Routh-Hurwitz Criterion.

The verification of the second part is straightforward. T (E∗) = x+ y = c
a(b−1) +

rc(ab−a−c)
a(b−1)(ab−a+rc) =

c(1+r)
ab−a+rc

. With the condition b > 1 + c
a
, we have c < ab− a, and

then c+ rc < ab− a+ rc. Hence, c(1+r)
ab−a+rc

< 1.

Since the tumor load at the equilibrium point E∗ is less than 1, this equilibrium
point represents a partial success of virotherapy at a modest value of the burst
size. Although we are not able to prove it is globally asymptotically stable (this
is one open problem), it is locally asymptotically stable. This also implies that a
permanent reduction of tumor load can be reached.

Lemma 3.10. A cubic polynomial λ3 + a1λ
2 + a2λ + a3 = 0 with real coefficients

has a pair of pure imaginary roots if and only if a2 > 0 and a3 = a1a2. When it has
pure imaginary roots, the pure imaginary roots are given by ±i

√
a2, the real root is

given by −a1, and a1a3 > 0.

Proof. Suppose the cubic polynomial has a pair of complex roots λ = u ± vi and
one real root λ = λ0. Then,

(λ− (u+ vi))(λ − (u− vi))(λ − λ0) = λ3 + a1λ
2 + a2λ+ a3.

We compute,

(λ− (u+ vi))(λ− (u− vi))(λ − λ0)

= ((λ− u)2 + v2)(λ − λ0)

= (λ2 − 2uλ+ u2 + v2)(λ− λ0)

= λ3 − (λ0 + 2u)λ2 + (u2 + v2 + 2uλ0)λ− (u2 + v2)λ0.

We compare coefficients, and have

a1 = −(λ0 + 2u), a2 = u2 + v2 + 2uλ0, a3 = −(u2 + v2)λ0.

Then, λ0 = −(a1 + 2u), u2 + v2 = a3

a1+2u , and
a3

a1+2u − 2u(a1 + 2u) = a2. This last
equation gives

2(a2 + (a1 + 2u)2)u = a3 − a1a2. (13)

It is easy to conclude that u = 0 if and only if a2 > 0 and a3 − a1a2 = 0.
If u = 0, we see that v2 = a2 and λ0 = −a1. Since (u2 + v2)(a1 + 2u) = a3

becomes v2a1 = a3, a1 and a3 have the same sign.

Lemma 3.11. Consider a coefficient parameterized polynomial λ3 + a1(τ)λ
2 +

a2(τ)λ + a3(τ) = 0, where coefficients ak(τ), k = 1, 2, 3, are all continuously dif-
ferentiable real-valued functions. Denote its roots by λ(τ) = α(τ) + iβ(τ), where
α(τ) is the real part and β(τ) is the imaginary part. Suppose there is a value
τ0, such that α(τ0) = 0 and β(τ0) 6= 0, i.e. λ(τ0) = iβ(τ0). If dα

dτ
|τ0 = 0, then

a′2a3|τ=τ0 = a2(a
′
3−a2a

′
1)|τ=τ0 , that is, a

′
2(τ0)a3(τ0) = a2(τ0)(a

′
3(τ0)−a2(τ0)a

′
1(τ0)).
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Proof. For the complex roots of a cubical polynomial, there are formulae to compute

them. For example, λ = −a1

3 + 1±i
√
3

6
3

√

1
2 (m+

√
n) + 1∓i

√
3

6
3

√

1
2 (m−√

n), and

λ = −a
3 − 1

3
3

√

1
2 (m+

√
n) − 1

3
3

√

1
2 (m−√

n), where m = 2a31 − 9a1a2 + 27a3 and

n = m2 − 4(a21 − 3a2)
3. It is easy to see that λ(τ) is a differentiable function of the

parameter τ , and λ′(τ) = α′(τ) + iβ′(τ).
Differentiating the given polynomial with respect to the parameter τ , we have

that 3λ2λ′ + a′1λ
2 + 2a1λλ

′ + a′2λ + a2λ
′ + a′3 = 0. Evaluate the left-hand side

of this expression at τ = τ0 and notice that α(τ0) = 0. If α′(τ0) = 0, we have
−3iβ2(τ0)β

′(τ0)−a′1(τ0)β
2(τ0)−2a1(τ0)β(τ0)β

′(τ0)+ ia′2(τ0)β(τ0)+ ia2(τ0)β
′(τ0)+

a′3(τ0) = 0. Separate the real part and the imaginary part, we have

−3β2(τ0)β
′(τ0) + a′2(τ0)β(τ0) + a2(τ0)β

′(τ0) = 0,

−a′1(τ0)β
2(τ0)− 2a1(τ0)β(τ0)β

′(τ0) + a′3(τ0) = 0.

Solve these two equations for β′(τ0), we get β′(τ0) =
a′

2
(τ0)β(τ0)

3β2(τ0)−a2(τ0)
and β′(τ0) =

a′

3
(τ0)−β2(τ0)a

′

1
(τ0)

2a1(τ0)β(τ0)
respectively. Therefore,

a′

2
(τ0)β(τ0)

3β2(τ0)−a2(τ0)
=

a′

3
(τ0)−β2(τ0)a

′

1
(τ0)

2a1(τ0)β(τ0)
. That

is,

2a1(τ0)a
′
2(τ0)β

2(τ0) = (3β2(τ0)− a2(τ0))(a
′
3(τ0)− β2(τ0)a

′
1(τ0)).

From Lemma 3.10, β2(τ0) = a2(τ0) =
a3(τ0)
a1(τ0)

, so we get a′2(τ0)a3(τ0) = a2(τ0)(a
′
3(τ0)−

a2(τ0)a
′
1(τ0)).

From the proofs of Lemma 3.8, Lemma 3.10 and Lemma 3.11 and Routh-Hurwitz
Criterion, we have the following corollary for the characteristic polynomial (11). We
consider each coefficient of p(λ) to be a function of the parameter b. Actually,

p(λ) = λ3 + a1(b)λ
2 + a2(b)λ + a3(b), (14)

where a1(b) = rc+ab−a+abc
a(b−1) , a2(b) = rc(bc+b−1)

a(b−1)2 + rc(ab−a−c)(r−a)
a(b−1)(ab−a+rc) , and a3(b) =

rc(ab−a−c)
a(b−1) . When b > 1 + c

a
, a1(b) > 0 and a3(b) > 0 for all positive values of

the parameters a, c and r. Denote the root of p(λ) by λ(b) = α(b) + iβ(b).

Corollary 1. There exists a neighborhood of b0, (b0−δ2, b0+δ2), where δ2 < b0−bs1 ,
such that a2(b) > 0 for each b ∈ (b0 − δ2, b0 + δ2), and the real part α(b) of the root
of the characteristic polynomial p(λ) changes sign when it passes through b0.

Proof. If b > 1 + c
a
, then, a1(b) > 0 and a3(b) > 0. From H(b0) = a1(b0)a2(b0) −

a3(b0) = 0, we have a2(b0) =
a3(b0)
a1(b0)

> 0. Since a2(b) is a continuous function of b,

there is a neighborhood of b0 such that a2(b) > 0 in this neighborhood. The radius
δ2 of the neighborhood can be taken small enough such that δ2 < b0 − (1 + c

a
) and

δ2 < δ1, where δ1 is given in Lemma 3.8.
Since H(b) is monotonic around b0, so for the b′s in one side of b0 in the interval

(b0 − δ2, b0 + δ2), H(b) = H2 > 0, and we know that H1 = a1(b) > 0 and H3 =
a3(b)H(b) > 0. From the Routh-Hurwitz Criterion, α(b) < 0. For the b′s on the
other side of b0 in the interval (b0 − δ2, b0 + δ2), H(b) = H2 < 0, while a1(b) > 0,
a2(b) > 0, and a3(b) > 0. From the equation (13), the real part α(b) must be
positive. We know from Lemma 3.10, α(b0) = 0. Therefore, the sign of α(b)
changes when it passes through b0.
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Theorem 3.12. There exists a neighborhood of b0, (b0 − δ0, b0 + δ0), such that for
each b in this interval the characteristic polynomial p(λ) = λ3 + a1(b)λ

2 + a2(b)λ+
a3(b) has a pair of complex conjugate eigenvalues λ(b) = α(b) ± iβ(b), where α(b)
changes sign when it passes through b0 and β(b) > 0. Furthermore, when b = b0,
p(λ) has a pair of purely imaginary roots and one negative real root, and α′(b0) 6= 0.

Proof. From Lemma 3.8, b0 > 1 + c
a
and H(b0) = a1(b0)a2(b0) − a3(b0) = 0. We

know for b > 1 + c
a
, a1(b) > 0 and a3(b) > 0, hence a2(b0) =

a3(b0)
a1(b0)

> 0. From the

Lemma 3.10, we know p(λ) has a pair of purely imaginary roots, λ(b0) = iβ(b0) =

i
√

a2(b0) = i
√

33(b0)
a1(b0)

= i

√

rc(ab0−a−c)
ab0−a+rc+ab0c

and the third root is −a1(b0) < 0. Since

β(b) is a continuous function, there is a neighborhood of b0, such that β(b) is
positive over this neighborhood. The radius δ0 of this neighborhood can be taken
small enough such that δ0 < δ1 in Lemma 3.8 and δ0 < δ2 in Corollary 1. Therefore,
in the interval (b0 − δ0, b0 + δ0), p(λ) has a pair of complex conjugate eigenvalues
with positive imaginary parts and real parts change sign when they pass through
b0.

If α′(b0) = 0, then from Lemma 3.11, we have a′2(b0)a3(b0) = a2(b0)(a
′
3(b0) −

a′1(b0)a2(b0)). This gives a
′
3(b0)− a′1(b0)a2(b0) =

a′

2
(b0)a3(b0)
a2(b0)

. We evaluate

H ′(b0) = a′1(b0)a2(b0) + a1(b0)a
′
2(b0)− a′3(b0)

= a1(b0)a
′
2(b0)−

a′2(b0)a3(b0)

a2(b0)

=
(a1(b0)a2(b0)− a3(b0))a

′
2(b0)

a2(b0)

=
H(b0)a

′
2(b0)

a2(b0)
= 0.

This is a contradiction, since H ′(b0) 6= 0 from Lemma 3.8. Hence, α′(b0) 6= 0.

Since the exact value of b0 is not algebraically expressible, the stability, ampli-
tudes, and periods of periodical solutions that occur around b0 and E∗ are difficult
to analyze. We will simulate the system in the next section to demonstrate some
typical dynamics. Here, we simply state a corollary about Hopf bifurcation [9].

Corollary 2. If the equilibrium solution E∗ is stable, but not asymptotically stable
at b = b0, then all solutions of the system (6) in a neighborhood of E∗ are periodical
(in a surface). If the equilibrium solution E∗ is asymptotically stable or unstable at
b = b0, then there is an asymptotically stable periodical solution in a neighborhood
of E∗ when b is close to b0.

It is clear that for all cases in Figure 2, we only can have one Hopf bifurcation at
b0 = 1+ x0. However, for the case in Figure 1, we can have three Hopf bifurcations
at b = 1 + x0, b = 1 + x2 and b = 1 + x3. There will be three families of periodic
solutions rising from these bifurcation. The similar bifurcation analysis can be done
for the parameter values b = 1 + x2 and b = 1 + x3. The only downside is that
we can not study their nature sine we don’t have explicit algebraic expressions for
these values.

From the proof of Theorem 3.12, when the burst size b is big enough, there is at
least one root of the characteristic polynomial (14) with positive real part. Actually,
there exists b = bg > b0 such that for every b > bg, the characteristic polynomial
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(14) has a root with positive real part. Therefore, E∗ is unstable for any large burst
size. However, the tumor load at this equilibrium T (E∗) = x + y can be made
as small as possible by increasing the burst size b. We state this in the following
theorem.

Theorem 3.13. At the equilibrium solution E∗, the tumor load T (E∗) is a decreas-
ing function of the burst size b, and

T (E∗)b→+∞ = 0.

Proof. From Theorem 3.9, we have T (E∗) = c(1+r)
ab−a+rc

. Because of the conditions

b > 1 + c
a
and c(1+r)

ab−a+rc
< 1, it is obvious that T (E∗) is a decreasing function of b,

and therefore, we have T (E∗)b→+∞ = 0.

We now study the relation between equilibria E1 and E∗. When b < bs1 , the
equilibrium E∗ is not in the positive invariant domain D. As b increases to bs1 =
1 + c

a
, the equilibrium E∗ moves into D, and it coalesces with the equilibrium

point E1. The stability of these equilibrium solutions exchange at bs1 . For the
characteristic polynomial (14), since H(bs1) > 0, so for b > bs1 and b < bs2 , H(b) =
H2 > 0. For these b, H1 > 0 and H3 = H2a3 > 0, hence, all real parts of roots
of (14) are negative. Hence, E∗ is locally asymptotically stable. When b < bs1
and b is in a neighborhood of 1 + c

a
, the coefficient a3 in (14) is negative. So,

the polynomial (14) has at least one root with positive real part. Therefore, E∗ is
unstable. Combining Theorem 3.4 and Theorem 3.6, there is a type of transcritical
bifurcation at b = bs1 = 1 + c

a
. We then obtain the main Theorem 3.1.

4. Numerical simulation and discussion. We will present some numerical re-
sults on the dynamics of oncolytic virus by using published data, and some open
problems in this section.

4.1. Numerical simulation. In order to demonstrate the analytical results about
dynamics of virotherapy, we use some data from our previous research [6, 10] to
simulate our basic model. The tumor was considered as a solid sphere. When the
tumor radius is 2 mm in mice brain, it is considered to be visible and a surgery can
be performed. Once its radius reaches 6 mm, the mouse is regarded to be dead from
the tumor. Since our model is space-free, we convert tumor size to cell numbers
by using the constant of cell density 106 per cubical millimeter as all ODE models
do. After non-dimensionlization, the parameter values are r = 0.36, a = 0.11, and
c = 0.44. We compute bs1 = 5. Solving H(b) = 0, we have two conjugate complex
zeroes b = 0.6321 ± 0.4062i and two real zeroes b = −0.347 and b = 27.766. This
happens to be the most simple case, where I0 has only one element I0 = {27.766},
Ip = (5, 27.766), In = (27.766,+∞), and so bs2 = b0 = 27.766. There is one family
of periodic solutions when b is greater than bs0 . When b < 5, virotherapy always
fails. Figure 3 shows the dynamics of virotherapy when b = 4.

When 5 < b < 27.766, E∗ is locally asymptotically stable while E1 is unstable.
Somehow this partial success of virotherapy can be always achieved. Figure 4
shows the treatment will eventually reach the equilibrium point E∗ after a damped
oscillation when b = 27. For each value of the burst size b between 5 and 27, we
get the similar behavior of the dynamics of viral treatments. The difference is that
for different burst sizes the system reaches different equilibrium values. Since the
equilibrium tumor load is a decreasing function of the burst size b, the treatment
reaches a possible minimum of the equilibrium tumor load when b = 27.
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Figure 3. Dynamics of virotherapy when b = 4. Relative time
unit used after non-dimensionalization. Each variable is the ratio
between its population size and the maximum size of the tumor.
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Figure 4. Dynamics of virotherapy when b = 27. The initial
condition is x = 0.5, y = 0.5 and v = 1.5.

When b > 27.766, there exists a family of periodic solutions that arise from the
Hopf bifurcation at the bifurcation value b = 27.766. For b = 28, there is a periodic
solution. Figure 5 shows an eventually periodic solution when b = 28. Figure 5
also shows that the population of the tumor cells has a large amplitude and the
population of the infected tumor cells has a small amplitude. The population of
viruses also oscillates (not shown in this figure). This periodic solution is Lyapunov
stable. It represents a predator-prey dynamics among tumor cells and viruses. The
tumor cells and viruses coexist in a dynamical way. For even big burst size b, the
solution still shares a similar behavior.

If the burst size b is taken to be very large, say b = 2000, the solution will behave
differently. Figure 6 shows the profile of the uninfected tumor cells when b = 2000.
It is a pulsating oscillation. The minimum of the tumor cell population can reach
a very small value, say 10−7. That means there are about 100 tumor cells since
the maximum tumor size is 6mm [6]. If a tumor with 100 cells is considered as an
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Figure 5. Dynamics of virotherapy when b = 28. The initial
condition is x = 0.5, y = 0.5 and v = 1.5.

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Relative time

R
el

at
iv

e 
tu

m
or

 p
op

ul
at

io
n

Possible success of virotherapy

Figure 6. The tumor cell population when b = 2000. The initial
condition is x = 0.5, y = 0.5 and v = 1.5.

undetectable tumor, we then consider the tumor is eradicated. The minimum of
the pulsating oscillation solution is decreasing as the burst size b increases. We can
make it even smaller by increasing b.

4.2. Discussion. In this article we presented the analysis of a common basic model
for virotherapy. It highlights key values of the burst size of a virus in oncolytic virus
treatment. There are two threshold values for the burst size. When the burst size is
smaller than the first threshold value, virotherapy always fails. When the burst size
is in the between of the two threshold values, we have a partial success of virotherapy
represented by the stable positive equilibrium solution. Since the tumor load is a
decreasing function of the burst size, the minimum tumor load can be reached by
genetically increasing the burst size of the virus up to the second threshold value.
If the set in which the positive equilibrium solution is stable has more than one
open intervals, we can increase the burst size up to the supreme value of this set,
and still have stable partial therapeutic success with even lower tumor load. Once
the burst size is greater than the second threshold value, there are one or three
families of stable periodic solutions to the system of virotherapy dynamics. This
indicates that there is a predator-prey type interaction among three populations,
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an oscillation among uninfected tumor cells, infected tumor cells, and virus. As the
burst size continues to increase, the periodic solution becomes pulsating oscillation.
The minimum tumor load can be small enough such that it is beyond the detectable
level.

If we express the first threshold by original parameters, we have bs1 = γ
βK

. It is

clear that the first threshold value of the burst size is determined by a combination
of the infectivity of the virus, the clearance rate of the virus, and the maximum
tumor size. In other words, besides the selectivity of a virus, the burst size of an
oncolytic virus and the maximum tumor size will determine the outcome of the
virotherapy. This is biologically meaningful. The bigger the tumor is, the more
powerful viruses are required to fight it. To further understand the dynamics of
oncolytic viruses and improve the efficacy of virotherapy, a thorough understanding
of the basic process of viral treatments is needed. We propose some open questions
regarding the basic dynamics of virotherapy here.

4.3. Open problems. When b > bs1 , the equilibrium solution E1 is unstable. It
is important to know what the locally stable manifold and unstable manifold are.
One open problem is how to compute these manifolds.

When b > bs1 and close to bs1 , the equilibrium solution E∗ is locally asymptoti-
cally stable while E1 is unstable. If the initial value is in the unstable manifold of
E1, does the solution converge to E∗?

When bs1 < b < bs2 , or b ∈ Ip, is the positive equilibrium solution E∗ globally
stable? If this is indeed the case, the permanent partial reduction of tumor load
can be reached no matter what the initial conditions are.

What conditions can guarantee that the function H(b) has four, three, and two
distinct real zeros? Then we can specify when one or three families of periodic
solutions arise from Hopf bifurcations.

When b is very big, say b > bg, all three equilibrium solutions are unstable. Does
a pulsating periodic solution still arise from a Hopf bifurcation in this case?

It is interesting to study bifurcations with two parameters, the burst size and
the virus clearance, or the burst size and the maximum tumor size. This will have
important biological implications.
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