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Abstract. This paper extends the work of Salceanu and Smith [12, 13] where

Lyapunov exponents were used to obtain conditions for uniform persistence in
a class of dissipative discrete-time dynamical systems on the positive orthant

of Rm, generated by maps. Here a unified approach is taken, for both discrete

and continuous time, and the dissipativity assumption is relaxed. Sufficient
conditions are given for compact subsets of an invariant part of the boundary

of Rm
+ to be robust uniform weak repellers. These conditions require Lyapunov

exponents be positive on such sets. It is shown how this leads to robust uniform
persistence. The results apply to the investigation of robust uniform persistence

of the disease in host populations, as shown in an application.

1. Introduction. Even though the concept of persistence is more general (see, for
example [5, 18, 21], to mention just a few sources), roughly speaking it means that
the solutions of a certain deterministic difference or differential system of equations
stay some positive distance away from a subset of the boundary of the positive cone
Rm+ , the natural state space for these models (here boundary refers to points in Rm+
that are not situated in (Rm+ )0, the interior of Rm+ ). Usually this subset is closed,
invariant (i.e., solutions that start in there stay in there for all times) and, in order
to generate persistence, also a repeller for the complementary dynamics (i.e., for
the dynamics in (Rm+ )0). Among the mathematical tools that have been used in
persistence theory we mention average Lyapunov functions (Garay and Hofbauer
[4]), normal or external Lyapunov exponents (Ashwin, Buescu and Stewart [2];
Garay and Hofbauer [4]; Schreiber [14]), invariant probability measures (Hirsch,
Smith and Zhao [6]; Garay and Hofbauer [4]; Schreiber [14]), or chain recurrence,
used in combination with Morse decompositions or acyclicity theory (Hirsch, Smith
and Zhao [6]; Smith and Zhao [19]; Thieme [20]). Hofbauer and Schreiber [7]
use both Lyapunov exponents and invariant probability measures to obtain robust
persistence results for interacting structured populations modeled by differential
equations. Most of this theory requires a fair amount of knowledge about the
dynamics on the boundary and in order to apply it, one needs to characterize the
attracting sets for the boundary dynamics as uniform weak repellers (see [12, 13, 20])
for the complementary dynamics.

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Robust uniform persistence, Lyapunov exponents, dynamical systems,

disease persistence.

807

http://dx.doi.org/10.3934/mbe.2011.8.807


808 PAUL L. SALCEANU

As mathematical models used to help answer biological questions may be sensitive
to changes in parameter values (such as birth and death rates, disease transmission
rates etc.) an important question is whether or not the conclusions inferred from the
model still remain valid after small changes in parameter values have been made. We
are particularly interested in the form of persistence that is uniform with respect to
small changes in parameters, that is, robust uniform persistence. Our main goal is to
provide sufficient conditions for compact sets on the boundary to be robust uniform
weak repellers (see (18) below) and we do this by using Lyapunov exponents. By

choosing an appropriate positively invariant subset Z of the positive cone Rp+q+ =
{(x, y) | x ∈ Rp+, y ∈ Rq+} as our state space, we consider a class of dynamical
systems generated by autonomous difference or differential equations (of the form
(4) and (5)) for which the boundary subset X = {z = (x, y) ∈ Z | y = 0} and Z \X
are positively invariant. This setup is motivated by certain biological applications
where the vector y represents the disease, or infection, in a given population, in
which case it is customary to assume X to be (positively) invariant. Thus the main
application of our results would be to mathematical models of biological populations
in which one wants to know under what circumstances the disease can persist in
the host population. A common assumption in the literature is that the system is
dissipative (i.e., there is a compact set that attracts all trajectories). We relax this
assumption and replace it by the existence of a closed set B that “absorbs” every
trajectory of all (small) perturbations of the system, and {z = (x, y) ∈ B | |y| ≤ δ}
is bounded, for some δ > 0. We show that if M = B ∩ X is compact, positively
invariant and all Lyapunov exponents λ(z, η), corresponding to positive unit vectors
η, are positive for all z in the union of the omega limit sets of points of M , then M is
a robust uniform weak repeller, which we use then as our “key ingredient” to obtain
robust uniform persistence. Besides not requiring the systems to be dissipative,
we mention another important advantage of our approach, namely that it avoids
dealing explicitly with the acyclic covering of M , or with M being isolated, when
regarded as a subset of the boundary, both of these being common assumptions in
the literature (see, for example, Theorem 1.3.2 in [21]).

We apply these results to a model of Jones et al. [8] for horizontally and vertically
transmitted parasites (HTP and VTP, respectively) in a host population. In [8] the
authors are primarily interested in VTP persistence in the host population, due
to its interaction with HTP (i.e., VTP provides the host with a certain level of
protection against HTP). However, this persistence is limited to the existence of a
locally stable interior equilibrium. We show that the VTP can robustly persist in
the host population in the more general sense described above and also obtain other
various forms of persistence in the model.

The paper is organized as follows: in Section 2 we present our framework, to-
gether with notation and some basic results. Section 3 contains our main results
regarding robust uniform persistence for the type of models described in Section 2.
In Section 4 we introduce the Lyapunov exponents and use them to formulate
equivalent conditions for uniform persistence. We also determine when Lyapunov
exponents λ(z, η) are independent of η and, in the particular case when boundary
attractors consist of union of periodic orbits, show how Lyapunov exponents are
related to spectral radii. In Section 5 we give a summary of our results. Section 6
contains an application where we give sufficient conditions for a vertically trans-
mitted parasite to persist in a host population. Some of the results in the present
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paper have been obtained by employing ideas from the author’s PhD dissertation
[11].

2. Preliminaries. Let F : Rp ×Rq → Rp ×Rq be a continuous map and consider
the following discrete and continuous equations:

zn+1 = F (zn), z0 ∈ Rp+ × Rq+, (1)

and

z′(t) = F (z(t)), z(0) ∈ Rp+ × Rq+, t ∈ R+. (2)

When referring to (2), we are tacitly assuming existence and uniqueness of solutions
for all t.

We consider particular forms of such systems, namely when the set

X = {z = (x, y) ∈ Rp+ × Rq+ | y = 0} (3)

is positively invariant (solutions that start in X at t = 0 remain in X for all t > 0).
In doing so, we are primarily motivated by (but not limited to) biological models
where the “subvector” y represents the disease (in which case it is customary that
X is considered to be positively invariant). Thus, let f : Rp+ × Rq+ → Rp and
g : Rp+ × Rq+ → Rq such that F (z) = (f(z), g(z)), ∀ z ∈ Rp+ × Rq+. We further
assume that (1) and (2) can be written as{

xn+1 = f(zn)
yn+1 = A(zn)yn

(4)

and, respectively, as {
x′ = f(z)
y′ = A(z)y

(5)

where the matrix function A(z) is continuous.

Note that we do not assume either F (0) = 0 or that {z ∈ Rp+q+ | x = 0} is
positively invariant, although both often hold in applications.

Let T denote either the set of nonnegative integers Z+, or the set of nonnegative
real numbers R+. Let φ(t, z), t ∈ T, z ∈ Rp+q+ , φ(0, z) = z, be the solution generated
by (4) (for t ∈ Z+) or by (5) (for t ∈ R+). φ, which is usually referred to as the
(solution) semiflow, generates a dynamical system. Hereafter, when we consider
t ∈ Z+, we refer to (4), while when we consider t ∈ R+ we refer to (5). Writing
t ∈ T means that we consider both discrete and continuous cases. We denote by
φ(2)(t, z) the vector consisting of the last q components of φ(t, z) (i.e., φ(2)(t, z) is
the projection of φ(t, z) onto Rq). We work with the vector norm |x| =

∑m
i=1 |x(i)|,

where x = (x(1), ..., x(m)), and with the matrix norm ||A|| = ||A||1 = maxj |A(j)|,
where A(j) is the jth column of A. S denotes the closure of set S. A neighborhood
of S ⊆ Rp+q+ is an open set in Rp+q+ that contains S. We define the distance between
two points in the usual way: d(x, y) = |x − y|, while the distance between a point
x and a set S 6= ∅ is d(x, S) = infy∈S d(x, y). We call a matrix A non-negative
(strictly positive), and write, A ≥ 0 (A � 0) if each entry of A is a non-negative
(positive) number. We call A positive, and write A > 0, if A ≥ 0, but A is not the
zero matrix. Assume analogous definitions (and notation) for vectors.

Definition 2.1. The system (or semiflow, or dynamical system generated by) (1)
or (2) is called uniformly (strongly) persistent if

∃ ε > 0, lim inf
t→∞

|φ(t, z)(2)| > ε, ∀ z = (x, y) ∈ Rp+q+ , |y| > 0. (6)
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Usually one omits the word “strongly” and just says “uniformly persistent”.

Lemma 2.2. The following hold:

a) If Rp+q+ is positively invariant for (4), then A(z) ≥ 0, ∀ z ∈ X.

b) Rp+q+ is positively invariant for (5) ⇔ Fi(z) ≥ 0, whenever z ∈ Rp+q+ satisfies

z(i) = 0 ⇒ A(z) is quasipositive on X, i.e., aij(z) ≥ 0, ∀ z ∈ X, ∀ i 6= j.

Proof. a) Using the positive invariance of X, we have:

g(x, y) = g(x, y)− g(x, 0) =

∫ 1

0

d

ds
g(x, sy) ds =

∫ 1

0

∂g

∂y
(x, sy)y ds

= (

∫ 1

0

∂g

∂y
(x, sy) ds)y.

Hence A(z) =
∫ 1

0
∂g
∂y (x, sy) ds. Thus A(x, 0) = ∂g

∂y (x, 0). On the other hand,

∂gi
∂y(j)

(x, 0) = lim
h→0+

gi(x
(1), ..., x(p), 0, ..., y(j) = h, ..., 0)− gi(x, 0)

h

= lim
h→0+

gi(x
(1), ..., x(p), 0, ..., y(j) = h, ..., 0)

h
≥ 0.

(7)

b) For the equivalence relation, see [17, Proposition B.7.] and the comments
which follow it.

Now we show the last implication. Let z = (x, 0) ∈ X and i, j ∈ {1, ..., q}, i 6= j.

Then the hypothesis Fi(z) ≥ 0, whenever z ∈ Rp+q+ satisfies z(i) = 0, implies that

gi(x
(1), ..., x(p), 0, ..., y(j) = h, ..., 0) ≥ 0, for all h ≥ 0. Hence, aij(z) ≥ 0 (see proof

of part a)).

Hereafter we assume that Rp+q+ is positively invariant for both (4) and (5). Let I
denote the identity matrix. Let P (n, z) and P (t, z) denote the fundamental matrices
of solutions, respectively for

un+1 = A(φ(n, z))un (8)

and

v′(t) = A(φ(t, z))v(t). (9)

In other words, P (t, z), t ∈ T has the form:

P (n, z) =

{
A(φ(n− 1, z))A(φ(n− 2, z))...A(z), if n ≥ 1
I, if n = 0

(10)

for discrete time and

P (t, z) = I +

∫ t

0

A(φ(s, z))P (s, z)ds (11)

for continuous time.

Remark 1. P (t, z) ≥ 0,∀ z ∈ X, ∀ t ∈ T.

Proof. The discrete case follows directly from Lemma 2.2 and the fact that X
is positively invariant. For the continuous case, we have that aij(z) ≥ 0, ∀ z ∈
X, ∀ i 6= j (see again Lemma 2.2). Then, from [16, Remark 1.3, p. 34], we have
that any solution v(t) to (9) with v(0) ≥ 0 satisfies v(t) ≥ 0, ∀ t ≥ 0. Hence
P (t, z) ≥ 0,∀ z ∈ X, ∀ t ≥ 0.
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Notice that P (t, z) is continuous in z for t ∈ Z+, and P (t, z) is continuous in
(t, z) for t ∈ R+. We can say that P (t, z) represents the matrix cocycle (see [1, p. 5
or p. 63]) generated by (8) or by (9). A key property possessed by P is:

P (t2, φ(t1, z))P (t1, z) = P (t1 + t2, z), ∀ z ∈ Rp+q, ∀ t1, t2 ∈ T. (12)

In order to avoid “problematic” dynamics, we restrict our state space to a subset
Z of the positive cone Rp+q+ , having the following property:

(H1) Both Z and Z \X are non-empty and positively invariant.

We assume that hereafter (H1) holds true.

3. Robust uniform persistence. Throughout this section we assume that F
as in (1) or (2) depends continuously on a parameter ξ ∈ Rl, for some l ∈ Z+.
Then φ(t, z, ξ), P (t, z, ξ) denote the semiflow, respectively the fundamental solution
matrix for (8) or (9), corresponding to ξ. To simplify notation, whenever we consider
a fixed parameter ξ0, we often write φ(t, z), P (t, z) etc., in short, for φ(t, z, ξ0),
P (t, z, ξ0). If ξ0 is a parameter and (6) holds with φ(t, z) replaced by φ(t, z, ξ),
for all ξ ∈ ∆, where ∆ is some neighborhood of ξ0, then we say that the system
(or semiflow, or dynamical system generated by) (1) or (2) is robust uniformly
persistent.

Before we present our main persistence result we need the following lemma,
which gives a characterization of compact subsets of X as having certain repelling
properties, in the robust sense. Denote the set of unit vectors in Rq+ by U .

Lemma 3.1. Let K ⊂ X be compact and ξ0 ∈ Rl a fixed parameter. Assume that

∀ (z, η) ∈ K × U, ∃ τ = τ(z, η) ∈ T \ {0} such that |P (τ, z, ξ0)η| > 1. (13)

Then there exist bounded neighborhoods V and ∆ of K and ξ0 respectively, and
c > 1, τmin, τmax > 0 such that for all z ∈ V and ξ ∈ ∆ having the property that
φ(t, z, ξ) ∈ V, ∀ t ∈ [0, t0], for some t0 > 0, there exist numbers 0 = ν0, ν1, ... , νn,
for some n ∈ Z+, satisfying:

(i) τmin ≤ νi − νi−1 ≤ τmax, ∀ i ∈ {1, ..., n},
(ii) νn−1 ≤ t0 < νn and

(iii) |P (νi, z, ξ)η| ≥ ci, ∀η ∈ U, i ∈ {1, ..., n}, if z ∈ K, or |P (νi, z, ξ)y| ≥ ci|y|, ∀i ∈
{1, ..., n}, if z = (x, y) ∈ V \X.

In particular, all trajectories corresponding to solutions φ(t, z, ξ), with z ∈ V \X
and ξ ∈ ∆, leave V .

Proof. Let W = K × U × {ξ0} and ŵ = (ẑ, η̂, ξ0) ∈ W . From (13) we have that
there exists τ̂ = τ̂(ẑ, η̂) ∈ T \ {0} such that |P (τ̂ , ẑ, ξ0)η̂| > 1. The function
(z, η, ξ0) 7→ |P (τ̂ , z, ξ0)η| being continuous, there exist δŵ > 0, cŵ > 1 such that

|P (τ̂ , z, ξ)η| > cŵ, ∀ w = (z, η, ξ) ∈ Bδŵ(ŵ), (14)

where Bδŵ(ŵ) := {w ∈ Z × U × Rl | |w − ŵ| < δŵ} (i.e., Bδŵ(ŵ) is the ball
in W centered at ŵ and having radius δŵ). Since W is compact and contained
in ∪w∈WBδw(w), there exists a finite set {w1, ..., wk} ⊆ W such that W ⊂ C :=
∪ki=1Bδwi (w

i), where for every i = 1, ..., k, δwi is the quantity corresponding to wi,

coming from (14) (i.e., for every i = 1, ..., k, (14) is satisfied with ŵ replaced by wi).
To simplify notation, let τi := τ(wi), δi := δwi , i = 1, ..., k. Also, let c := min

i
cwi

(hence c > 1), τmin = min
i
τi and τmax = max

i
τi. Thus, from (14) we have that

|P (τi, z, ξ)η| > c, ∀ w = (z, η, ξ) ∈ Bδi(wi), ∀ i = 1, ..., k. (15)
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There exist V ⊂ Z and ∆ ⊂ Rl bounded neighborhoods of K and ξ0 respectively,
such that V × U ×∆ ⊆ C.

Now let z ∈ V , ξ ∈ ∆ and assume that φ(t, z, ξ) ∈ V, ∀ t ∈ [0, t0], for some t0 > 0.
First suppose z ∈ K. Let η ∈ U . There exists i ∈ {1, ..., k} such that (z, η, ξ) ∈
Bδi(w

i). Then, from (15) we have |P (ν1, z, ξ)η| > c, where ν1 = τi. If ν1 > t0 we
stop here, since (i)−(iii) hold with n = 1. Otherwise, assuming that we have already
obtained ν0, ..., νr (νr ≤ t0), satisfying (i) and (iii) (with n replaced by r), we define
νr+1 in a similar manner as ν1. Thus, define αr = P (νr, z, ξ)η/|P (νr, z, ξ)η|. Note
that αr is well defined. Also, P (νr, z, ξ)η ≥ 0 (see Remark 1), hence αr ∈ U . There
exists j ∈ {1, ..., k} such that (φ(νr, z, ξ), αr, ξ) ∈ Bδj (wj). Then again, from (15),
we have

|P (τj , φ(νj , z, ξ), ξ)αr| > c. (16)

Define νr+1 = τj + νr. Then (16) implies, using (12), that

|P (νr+1, z, ξ)η| > cr+1. (17)

Now take n− 1 = max{i | νi ≤ t0}.
For the case when z = (x, y) ∈ V \ K the proof is completely similar, with η

replaced by y/|y|. The reason αr’s are well defined and belong to U is now that
Z \X is positively invariant and P (t, z, ξ)y = φ(2)(t, z, ξ).

The fact that any solution φ(t, z, ξ) with z ∈ V \X and ξ ∈ ∆ eventually leaves
V follows directly from (iii).

The main feature of Lemma 3.1 is that it tells us (through condition (13)) when
K is a robust uniform weak repeller (see also [12, 13, 20]), which means that, for
some fixed ε > 0, there is a neighborhood ∆ of ξ0, such that

lim sup
t→∞

d(φ(t, z, ξ),K) > ε, ∀ z ∈ Z \X, ξ ∈ ∆. (18)

Boundary attractors (that is, attractors for the dynamics on the boundary)
that are (robust) uniform weak repellers for the complementary dynamics play
an important role in persistence theory, and can be used in combination with
other powerful and well established results, such as “acyclicity” type theorems
(see, for example [19, Theorem 3], or [19, Theorem 5]) to obtain (robust) per-
sistence. However, this requires that WS(K), the stable manifold of K (i.e.,
{z | d(φ(t, z),K) → 0, as t → ∞}), be contained in X, and also that K be invari-

ant and isolated in Rp+q+ . As K may happen to be a “complicated” set, checking
such requirements in applications can be quite a task. However, once we know
that K is an invariant uniform weak repeller, not necessarily robust (that is, if (18)
holds with ξ = ξ0), it easily follows that WS(K) ⊆ X and that K is isolated in

Rp+q+ \ X, which facilitates the use of “acyclicity” theorems. Later we will give
a different result (Theorem 3.2) that has the advantage of not being “concerned”
either with the acyclic covering or with the asymptotical stability of K in X (the

latter implying that K is isolated in Rp+q+ , once we know it is invariant and isolated

in Rp+q+ \ X). In Section 4 we will give equivalent formulations of (13) in terms
of Lyapunov exponents. Another “default” assumption in “acyclicity” theorems is
that the semiflow is point dissipative, i.e., there exists a fixed “box” that absorbs all
initial conditions. This prevents the use of these results to, for example, systems of
difference or differential equations that model the dynamics of a certain biological
population (consisting of a single or multiple species) and where a certain subpop-
ulation grows unbounded. Intuitively, this should not rule out the possibility that
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the subpopulation that grows unbounded can persist uniformly, idea that is also
exploited in [20]. Next, we will address this matter.

Assume that, for every fixed parameter ξ0 ∈ Rl, there exists a closed set B ⊆ Z
that “absorbs” every solution (i.e., ∀z ∈ Z, ∃t(z) ∈ T such that φ(t, z, ξ0) ∈ B, ∀t ≥
t(z)) and M = B ∩X is compact. For persistence of the discrete semiflow, we need
the following assumption:

(H2) For every δ > 0, there exists V0 a neighborhood of B and ∆ a neighborhood
of ξ0 such that

inf
z∈V δ0 ,ξ∈∆

d(F (z, ξ), X) > 0, (19)

where V δ0 = {z = (x, y) ∈ V0 | |y| ≥ δ}.
In addition, in both discrete and continuous time, we assume the following.

(H3) There exists a ρ > 0 such that the set {z ∈ B | |y| ≤ ρ} is bounded (hence
compact).

Since we are not assuming dissipativity, the two assumptions above give us some
“control” over what happens outside the repelling neighborhood V of M , given by
Lemma 3.1. Thus, as will be seen in the proof of Theorem 3.2 below, (H2) prevents
points from outside V (but close to B) to be mapped inside V , arbitrarily close to
the extinction set, in one iteration of the map F . Assumption (H3) does not allow
orbits to get too far from M , while still being close to X.

As we are mainly interested in persistence (hence, in particular, in the asymptotic
behavior of solutions), without loss of generality we can assume that B is positively
invariant (hence M is also positively invariant). We give now the main result of
this section, which says when (4) and (5) are robustly uniformly persistent.

Theorem 3.2. Assume that (13) holds with K = M , (H3) holds, and that for every
V0 a neighborhood of B there exists ∆ a bounded neighborhood of ξ0 such that

∀z ∈ Z, ξ ∈ ∆, ∃ t(z, ξ) ∈ T such that φ(t, z, ξ) ∈ V0, ∀ t ≥ t(z, ξ). (20)

Then there exists ε > 0 such that

lim inf
t→∞

d(φ(t, z, ξ), X) > ε, ∀ z ∈ Z \X, ξ ∈ ∆, (21)

where φ is the continuous solution semiflow corresponding to (5). If, in addition, we
assume (H2) then (21) holds also for the discrete solution semiflow φ corresponding
to (4).

Proof. Since (13) holds, let V be a neighborhood of M , ∆̃ a neighborhood of ξ0,
c > 1 and τmax > 0 given by Lemma 3.1, with K = M . We claim first that there

exists Ṽ0 a neighborhood of B such that

δ := inf
z∈Ṽ0\V

|y| > 0. (22)

If (22) does not hold then we can find a sequence (zn)n ⊂ Z \ V (∗) satisfying
|yn| → 0 and d(zn, B) → 0. But then from (H3) we have that (zn)n is bounded,
thus it has a convergent subsequence znk → z. Hence z ∈ X. On the other hand,
there exists a sequence (bn)n ⊂ B such that d(zn, bn)→ 0. Then, since

d(z, bnk) ≤ d(z, znk) + d(znk , bnk),

we have that d(z, bnk) → 0. This implies that z ∈ B (because B is closed), hence
z ∈M . But, on the other hand, z 6∈ V (see (∗)), and so we have a contradiction to
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M = B ∩X. Thus the claim holds. Accordingly, fix such Ṽ0 (for which (22) holds).

Now, using (H2), we have that there exist V0 ⊆ Ṽ0 a neighborhood of B and ∆ ⊆ ∆̃
a bounded neighborhood of ξ0 for which both (19) and (20) hold.

Let ẑ ∈ Z \ X and ξ̂ ∈ ∆. From (20) and Lemma 3.1 we can assume that

ẑ ∈ V0 \ V . Then there exist t̃ ≥ 0 and ε̃ ∈ (0, δ), ε̃ independent of ẑ and ξ̂, such

that φ(t̃, ẑ, ξ̂) ∈ V and |φ(t, ẑ, ξ̂)(2)| ≥ ε̃ for all t ∈ [0, t̃]. This is obvious in the
continuous case, while in the discrete case it follows from (19). Thus, it suffices to
prove (21) only for z ∈ Vε̃ = {z = (x, y) ∈ V | |y| ≥ ε̃} and ξ ∈ ∆. So assume that
the ẑ that we fixed above is in Vε̃. Let k ∈ Z+ be such that

ck−1ε̃ > sup
z∈V
|y|. (23)

Let t0 = kτmax. Note that t0 is also independent of ẑ and ξ̂. We make another

claim, namely that there exists t ∈ (0, t0] such that φ(t, ẑ, ξ̂) 6∈ V . To show this,

we argue by contradiction: suppose φ(t, ẑ, ξ̂) ∈ V , for all t ∈ [0, t0] (∗∗). Then let
ν1, ν2, ..., νn be as in Lemma 3.1. Thus, we have

|φ(2)(νn−1, ẑ, ξ̂)| = |P (νn−1, ẑ, ξ̂)ŷ| ≥ cn−1|ŷ| ≥ cn−1ε̃.

From (i) and (ii) in Lemma 3.1 it follows that t0 < νn ≤ nτmax, which implies

n > k. Hence |φ(2)(νn−1, ẑ, ξ̂)| > ck−1ε̃. This inequality implies, according to (23),

that φ(νn−1, ẑ, ξ̂) 6∈ V . But νn−1 ≤ t0 (see (ii) in Lemma 3.1), hence we have a
contradiction to (∗∗). So the claim holds.

On the other hand, since Z \ X is positively invariant (see (H1)), there exists
ε > 0 such that d(φ(t, z, ξ), X) > ε, for all (t, z, ξ) in [0, t0] × Vε̃ × ∆ (which is a
compact set). This, together with our second claim, completes our proof.

Even though condition (20) does not necessarily mean that the system is dissipa-
tive (because B may not be bounded), dissipativity implies (20), as the next result
shows (an explanation of the technical terms used in the next proposition and its
proof can be found, for example, in [18], Chapter 2).

Proposition 3.3. Assume that B is compact. Then there exists a compact global
attractor of compact sets K corresponding to φ(t, z, ξ0), and (20) holds.

Proof. Let VB be a bounded neighborhood of B. Since B absorbs all solutions in
Z, we have that, for every z ∈ VB , there is a tz ∈ T such that φ(tz, z) ∈ VB . By
the continuity of φ(t, z) in z, there exists a δz > 0 such that φ(tz, z̃) ∈ VB for
all z̃ ∈ Bδz (z). We have that VB ⊆ ∪z∈VBBδz (z). Then, since VB is compact,

there exist {z1, ..., zk} ⊂ VB such that VB ⊆ ∪ki=1Bδzi (z
i). Now let z ∈ VB . Then

z must belong to some Bδzi (z
i) for some i ∈ {1, ..., k}. Hence φ(tzi , z) ∈ VB .

Let T = maxi tzi . Again by the continuity of φ, there exists p > 0 such that
|φ(t, z)| ≤ p, ∀ (t, z) ∈ [0, T ] × VB . This proves that φ is asymptotically compact
on VB . Then, from [18, Theorem 2.31], K := ω(VB) ⊆ B (where ω(VB) represents
the omega limit set of VB) is the compact attractor of compact sets for φ (the
semiflow corresponding to ξ0), and it contains all compact invariant sets in Z (see
[18, Theorem 2.19]).

Now, for any V0 a neighborhood of B, there exists δ0 > 0 such that the compact
attractor of compact sets Kξ corresponding to the semiflow φ(t, z, ξ), with |ξ−ξ0| <
δ0, is contained in V0 (see [3, A. Lemma, p.65], or [10, Proposition 1.5.]). Hence
(20) holds.
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Theorem 3.2 provides no guarantee that some of the y components of the trajec-
tories will not get arbitrarily close (or even equal to) zero. However, if it is possible
to use Theorem 3.2 via Proposition 3.3, then we get a compact set in Z \ X that
attracts all orbits starting in Z \X. Then, in the discrete case, we can improve the
persistence given by (21), where we recall that F = (f, g).

Proposition 3.4. Assume that B is compact and g(z, ξ0)� 0 for all z ∈ B. Then
there exists ∆ a neighborhood of ξ0 and ε > 0 such that

lim inf
n→∞

min
i
{yn(ξ)(i)} > ε, ∀ ξ ∈ ∆, z0(ξ) ∈ Z \X.

Proof. Write g = (g1, ..., gq). Each gi being continuous and B compact, it follows

that there exist neighborhoods Ṽ0 and ∆̃ of B and ξ0 respectively, and ε > 0, such

that gi(z, ξ) > 2ε, for all i = 1, ..., q, z ∈ Ṽ0 and ξ ∈ ∆̃. By Proposition 3.3, there

exist V0 ⊆ Ṽ0 a neighborhood of B and ∆ ⊆ ∆̃ a neighborhood of ξ0 for which (20)
holds. Now let z0(ξ) ∈ Z \X, where ξ ∈ ∆. Then there exists N ∈ Z+ such that
zn(ξ) ∈ V0, ∀n ≥ N . Thus yn+1(ξ)(i) = gi(zn(ξ), ξ) > 2ε, for all i = 1, ..., q, n ≥ N ,

hence lim inf
n→∞

min
i
yn(ξ)(i) > ε.

4. Lyapunov exponents. Following [1, 2, 9], for any z ∈ Rp+ × Rq+ and η ∈ Rq
we define the Lyapunov exponent λ(z, η) as

λ(z, η) = lim sup
t→∞

1

t
ln |P (t, z)η|, t ∈ T. (24)

We also define ln 0 := −∞. Note that λ(z, η) = λ(z, aη), ∀ a ∈ R \ {0}. Let Ω(S)
denote the union of the omega limit sets of points in S (i.e., Ω(S) = ∪z∈Sω(z)).
Also, since λ(z, η) is independent of the magnitude of η, we assume throughout this
section that η ∈ U (where recall that U denotes the set of unit vectors in Rq+).

The next result gives equivalent formulations of (13), in terms of Lyapunov ex-
ponents.

Proposition 4.1. Let K ⊂ X be compact and positively invariant. The following
assertions are equivalent:

a) ∀ (z, η) ∈ K × U, ∃ τ = τ(z, η) ∈ T \ {0} such that |P (τ, z)η| > 1;
b) λ(z, η) > 0, ∀ (z, η) ∈ K × U.
If, in addition,

∀ (z, η) ∈ K × U, ∀ t ∈ T, P (t, z)η 6= 0 (25)

then a) (hence b)) is equivalent to

c) λ(z, η) > 0, ∀ (z, η) ∈ Ω(K)× U.

Proof. First we prove that a) ⇔ b). By the definition of λ(z, η), it should be clear
that b)⇒ a). For the converse, let (z, η) ∈ K ×U . Then φ(t, z) ∈ K, ∀t ≥ 0. From
Lemma 3.1, there exists a sequence νn → ∞ as n → ∞ and c > 1, τmax > 0 such
that |P (νn, z)η| ≥ cn and νn ≤ nτmax, for all n ∈ Z+. Thus, we have

|P (νn, z)η|1/νn > cn/νn ≥ c1/τmax ⇒ 1

νn
ln |P (νn, z)η| >

1

τmax
ln c, ∀ n ≥ 1.

Hence

λ(z, η) = lim sup
t→∞

1

t
ln(|P (t, z)η|) ≥ 1

τmax
ln c > 0.

Now assume that (25) holds. Obviously b) ⇒ c). We show that c) ⇒ a). Let
(z, η) ∈ K × U . Using that ω(z) ⊂ X is compact and invariant and that b) ⇒ a),
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we can again apply Lemma 3.1, now with K = ω(z). So let Vz be a neighborhood
of ω(z) and c > 1 as in the above mentioned lemma. Since φ(t, z) → ω(z) as
t → ∞, there exists τ ∈ T such that φ(t, z) ∈ Vz, ∀ t ≥ τ . Let z̃ = φ(τ, z) and
η̃ = P (τ, z)η/|P (τ, z)η|. Note that η̃ is well defined (due to (25)), and that η̃ ∈ U .
Then φ(t, z̃) ∈ Vz, ∀ t ≥ 0 and so again, from Lemma 3.1, there exists νn →∞ such
that |P (νn, z̃)η̃| > cn, ∀ n ≥ 1. This implies, using (12), that

|P (νn + τ, z)η| > cn|P (τ, z)η|, ∀ n ≥ 1.

We can find an n large enough so that cn|P (τ, z)η| > 1. Thus a) holds and with
this our proof is complete.

Remark 2. Note that (25) is automatically satisfied in the continuous case. In the
discrete case, it is equivalent to

A(z)η 6= 0, ∀ z ∈M, ∀ η ∈ U. (26)

Hereafter we will just assume that (25) holds.

Lemma 4.2. Let ei be the vector in Rq having the ith component equal to one and
all the other components equal to zero. Then

min
i
λ(z, ei) ≤ λ(z, η) ≤ max

i
{λ(z, ei) | η(i) > 0}, ∀ z ∈M, η ∈ U. (27)

Proof.

λ(z, η) = λ(z,

q∑
i=1

η(i)ei) ≤ max
i
λ(z, η(i)ei) = max

i
{λ(z, ei) | η(i) > 0},

where we used the following two properties of Lyapunov exponents (see [1, p. 114]):

1) λ(z, η1 + η2) ≤ max{λ(z, η1), λ(z, η2)}, and
2) λ(z, aη) = λ(z, η), ∀ a ∈ R \ {0}.
On the other hand we have

λ(z, η) = lim sup
t→∞

1

t
ln |P (t, z)η| = lim sup

t→∞

1

t
ln |

q∑
i=1

η(i)P (t, z)ei|

≥ lim sup
t→∞

1

t

q∑
i=1

η(i) ln |P (t, z)ei| =
q∑
i=1

η(i)λ(z, ei) (28)

≥ min
i
λ(z, ei)

q∑
i=1

η(i) = min
i
λ(z, ei). (29)

As it will be seen below, when the matrix A(z) is of a special form, Lyapunov
exponents are independent of the unit vector η. Recall that the incidence matrix
of a matrix A = (aij)i,j is a matrix whose entry on the position (i, j), for all i and
j, equals one if aij 6= 0 and it equals zero if aij = 0. Also, a non-negative matrix is
called primitive if one of its powers has all entries positive.

Proposition 4.3. Let z ∈M . Assume that ∃ (tk)k∈Z+ ⊆ T satisfying:

i) ∃ 0 < a ≤ b such that a ≤ tk+1 − tk ≤ b, ∀ k ∈ Z+,
ii) P (t, ẑ) has the same primitive incidence matrix for all t ∈ [a, b] and

ẑ ∈ {φ(tk, z) | k ∈ Z+}.
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Then

λ(z, η) = lim sup
t→∞

1

t
ln ||P (t, z)||, ∀ η ∈ U. (30)

Proof. Let Bk := P (tk+1−tk, φ(tk, z)), ∀k ∈ Z+. Since z is fixed, let P (t) := P (t, z).
Note that i) implies tk → ∞. Thus, for all t ∈ T, there exists a k ∈ Z+, such that
t ∈ [tk, tk+1]. Let

P̃ (k) :=

{
P (tk) = Bk−1 · . . . ·B0, if k ≥ 1
I, if k = 0

(31)

Then P (t) = P (t − tk, φ(tk, z))P̃ (k). First, we want to apply [15, Theorem 3.4.]
for the sequence of matrices (Bk)k≥0. First notice that ii) implies that there exists

N ∈ Z+ such that P̃ (n)� 0, ∀ n ≥ N . Because each entry in P (t, ẑ) is continuous
in (t, ẑ), if T = R (respectively continuous in ẑ, if T = Z+), it follows from i) and
ii), that there are constants c, d > 0 such that

c ≤ ||P (t, z)|| ≤ d, ∀ t ∈ [0, b− a], z ∈M. (32)

Note that if (Bs)ij , the entry on the position (i, j) in matrix Bs, is positive for some
s, then lim infk→∞(Bk)ij > 0. Otherwise we could find sequences (tl)l ⊂ [a, b],
tl → p ∈ [a, b], and (zl)l ⊂ M , zl → a ∈ M such that (P (tl, zl))ij → 0 as l → ∞,
which implies (P (p, a))ij = 0. But (P (ts+1 − ts, φ(ts, z)))ij = (Bs)ij > 0, hence we
would have a contradiction to ii).

Thus, the following hold:

a) min
i,j

+(Bk)ij ≥ δ > 0, ∀ k ≥ 0,

b) max
i,j

(Bk)ij ≤ γ <∞,

where min
i,j

+ above means the minimum over all positive entries. Thus, hypotheses

of [15, Theorem 3.4] hold and, according to [15, Exercise 3.6], we have that

P̃ (k)li

P̃ (k)lj
→ cij > 0 as k →∞, (33)

for some cij independent of l. Then (33) implies that

lim
k→∞

|P̃ (k)(i)|
|P̃ (k)(j)|

= cij , (34)

where recall that P̃ (k)(i) denotes the ith column of P̃ (k).

λ(z, η) = lim sup
t→∞

1

t
ln |P (t− tk, φ(tk, z))P̃ (k)η|

≤ lim sup
t→∞

1

t
(ln ||P (t− tk, φ(tk, z))||+ ln |P̃ (k)η|)

= lim sup
k→∞

1

tk
ln |P̃ (k)η|,

(35)

where we used that lim supt→∞
1
t ln ||P (t−tk, φ(tk, z))|| = 0. This follows from (32)

using that 0 ≤ t− tk ≤ b− a, ∀ k ≥ 0 and φ(t, z) ∈M, ∀ t ≥ 0.
On the other hand,

λ(z, η) ≥ lim sup
k→∞

1

tk
ln |P (tk)η| = lim sup

k→∞

1

tk
ln |P̃ (k)η|. (36)
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Thus, from (35) and (36) we have that

λ(z, η) = lim sup
k→∞

1

tk
ln |P̃ (k)η|, ∀ η ∈ U. (37)

Let ei ∈ U be the unit vector whose ith component equals one, and the other
components are zero. Then, using (34), we get, for any i, j ∈ {1, ..., q}, that

lim sup
k→∞

1

tk
ln |P̃ (k)(i)| = lim sup

k→∞

1

tk
ln

(
|P̃ (k)(i)|
|P̃ (k)(j)|

|P̃ (k)(j)|

)

= lim sup
k→∞

(
1

tk
ln
|P̃ (k)(i)|
|P̃ (k)(j)|

+
1

tk
ln |P̃ (k)(j)|

)
= lim sup

k→∞

1

tk
ln |P̃ (k)(j)|.

(38)

Thus, taking into account (37) and (38), we obtain

λ(z, ei) = lim sup
k→∞

1

tk
ln ||P̃ (k)||, ∀ i = 1, ..., q. (39)

Analogous to the way we derived (37), we can find that

lim sup
t→∞

1

t
ln ||P (t)|| = lim sup

k→∞

1

tk
ln ||P̃ (k)||. (40)

Now (30) is obtained from Lemma 4.2 and using (39) and (40).

Let O+(z) := {φ(t, z) | t ∈ T} (which is known as the positive orbit through z ).

Corollary 4.4. Let z ∈M . Equation (30) holds in any of the following cases:

a) t ∈ Z+ and A(ẑ) has the same primitive incidence matrix for all ẑ ∈ O+(z);

b) t ∈ R+ and A(ẑ) is irreducible for all ẑ ∈ O+(z).

Proof. a) The hypothesis implies that there exists s ≥ 1 such that A(z1) · . . . ·
A(zs)� 0, ∀z1, ..., zs ∈ O+(z). We can take the sequence (tk)k as in Proposition 4.3
to be the sequence 0, s, 2s, .... Then it is trivial to check that conditions i) and ii)
in the proposition are satisfied (where a = b = s), hence (30) holds.
b) The hypothesis implies that P (t, z) � 0, ∀ t > 0 [16, Theorem 1.1.]. We can

take, for example, (tk)k = Z+ and then again, conditions i) and ii) in Proposition 4.3
are satisfied (where a = b = 1), hence (30) holds.

Thus, if the hypotheses of Corollary 4.4 hold for all z ∈ M and if there exists
a constant matrix C, where C is non-negative in the discrete case, respectively
quasipositive in the continuous case, and such that A(z) ≥ C, ∀ z ∈ M , then we
have the following:

1) In the discrete case, P (n, z) ≥ Cn for all n and z, hence

λ(z, η) ≥ lim sup
n→∞

1

n
ln ||Cn|| = lim sup

n→∞
ln ||Cn|| 1n = ln r(C),

where we used that, for any matrix A, its spectral radius r(A) satisfies

r(A) = lim
n→∞

||An|| 1n . (41)
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2) In the continuous case, using [17, Theorem B.1.], we have that P (t, z) ≥ etC

for all t and z. Hence

λ(z, η) ≥ lim sup
n→∞

1

t
ln ||etC || = lim sup

t→∞

1

[t]
ln ||e[t]C || = ln[r(eC)] = s(C), (42)

where [·] denotes the least integer function, while s(C) is the spectral bound
of C (i.e., the largest of the real parts of eigenvalues of C).

Thus, if r(C) > 1 in the discrete case, respectively s(C) > 0 in the continuous
case, then λ(z, η) > 0 for all z ∈M , η ∈ U .

For the remainder of this section we address the special case when Ω(M) consists
of periodic orbits, in which case the Lyapunov exponents λ(z, η), whenever they are
independent of η (more exactly, when they are given by (30)) and z belongs to such
a periodic orbit of period T , can be expressed in terms of the spectral radius of
P (T, z).

Lemma 4.5. Let P ⊆M be a periodic orbit of (4) or (5) with period T > 0. Then
r(P (T, z)) has the same value for all z in P.

Proof. The discrete case follows immediately from r(AB) = r(BA) for any matrices
A and B. This is trivial if A = 0 or B = 0. Thus, assume that A 6= 0 and B 6= 0,
hence ||A||, ||B|| > 0. Using formula (41) we have that

r(AB) = lim
n→∞

||(AB)n|| 1n = lim
n→∞

||A(BA)n−1B|| 1n

≤ lim
n→∞

||A|| 1n {||(BA)n−1||
1

n−1 }
n−1
n ||B|| 1n = r(BA).

The opposite inequality follows by symmetry.
Now let’s consider the continuous case. Let z, z̃ ∈ P. There exists 0 ≤ t̃ ≤ T

such that z̃ = φ(t̃, z). Then

P (T, z̃) = P (T, φ(t̃, z)) = P (T + t̃, z)[P (t̃, z)]−1. (43)

Since P (t, z) is the fundamental matrix of solutions for (9), there exist a T -periodic
matrix B(t, z) (i.e., B(t, z) = B(t+T, z), ∀ t ≥ 0) and a matrix R = R(z) such that

P (t, z) = B(t, z)etR(z). (44)

Then, substituting in (43), we get:

P (T, z̃) = B(T + t̃, z)e(T+t̃)R(z)e−t̃R(z)[B(t̃, z)]−1 = B(t̃, z)eTR(z)[B(t̃, z)]−1.

On the other hand, from (44) we have that B(0, z) = I and because B(t, z) is T -
periodic, P (T, z) = B(T, z)eTR(z) = eTR(z). Hence P (T, z) and P (T, z̃) have the
same eigenvalues, hence r(P (T, z)) = r(P (T, z̃)).

Thus, for a periodic orbit P ⊆ M of period T , let r(P) := r(P (T, z)), ∀ z ∈ P.
Then, we have the following result.

Proposition 4.6. Let P ⊆ M be a periodic orbit of (4) or (5), of period T > 0.
Then

a) λ(z, η) ≤ ln r(P)

T
, ∀ (z, η) ∈ P × U .

b) If (30) holds then

λ(z, η) =
ln r(P)

T
, ∀ (z, η) ∈ P × U. (45)

Moreover, if for some z ∈ P, λ(z, η) = (ln r(P))/T, ∀ η ∈ U , then (45) holds.
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Proof. a) Let (z, η) ∈ P × U . Then

λ(z, η) ≤ lim sup
t→∞

1

t
ln ||P (t, z)|| = lim sup

t→∞
ln ||P (t, z)|| 1t . (46)

We have that ∀ t, ∃!mt ∈ Z+, jt ∈ [0, T ) such that t = mtT + jt. So,

||P (t, z)|| 1t = ||P (jt, z)(P (T, z))mt ||
1

mtT+jt

≤ ||P (jt, z)||
1
t ||(P (T, z))mt ||

1
mtT+jt .

(47)

Since mt →∞ as t→∞, we have that

||(P (T, z))mt ||
1

mtT+jt → [r(P (T, z))]
1
T as n→∞, (48)

where we used again (41). If r(P (T, z)) = r(P) = 0, then from (47) and (48) we

have that lim sup
t→∞

||P (T, z)|| 1t = 0. Then (46) implies λ(z, η) = −∞. So, with our

convention that ln 0 = −∞, we are done.
If r(P) > 0, notice that P (jt, z) 6= 0, ∀ t, hence there exist constants a, b > 0,

independent of t, such that a ≤ ||P (jt, z)|| ≤ b < ∞. So, ||P (jt, z)||
1
t → 1, as t →

∞. Now, from (46), (47) and (48) we obtain that

λ(z, η) ≤ lim sup
t→∞

ln ||P (t, z)|| 1t ≤ ln[r(P (T, z))]
1
T =

ln r(P)

T
.

b) Let (z, η) ∈ P × U and assume that (30) holds. Then

λ(z, η) ≥ lim sup
n→∞

1

nT
ln ||P (nT, z)|| = 1

T
lim sup
n→∞

ln ||(P (T, z))n|| 1n =
ln r(P)

T
.

By using part a) we are done.
Now suppose that λ(z, η) = (ln r(P))/T, ∀η ∈ U holds for some z ∈ P. Let z̃ ∈ P.

There exists t̃ ∈ T such that z = φ(t̃, z̃). Then, for any η ∈ U , let α := P (t̃, z̃)η > 0
and α̃ = α/|α| ∈ U . Since (25) holds (see Remark 2), α̃ is well defined. Using (12)
we have

λ(z̃, η) = lim sup
t→∞

1

t
ln |P (t, z̃)η| = lim sup

t→∞

1

t
ln |P (t− t̃, z)α|

= lim sup
t→∞

1

t
ln |P (t− t̃, z)α̃|

= lim sup
t→∞

1

t
ln |P (t, z)α̃| = λ(z, α̃) = (ln r(P))/T.

Corollary 4.7. Assume that Ω(M) is a union of periodic orbits and the following
hold:

1) ∀ P ⊆ Ω(M) a periodic orbit of period T , ∃ z ∈ P such that P (T, z) is primi-
tive;

2) r(P ) > 1, for each periodic orbit P ⊆ Ω(M).

Then λ(z, η) > 0, ∀ (z, η) ∈M × U .

Proof. We can apply Proposition 4.3 with (tk)k≥0 = (kT )k≥0 and a = b = T to
conclude that (30) holds. Now the rest follows immediately from Proposition 4.6,
part b).
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5. Summary of results. In this paper, using a dynamical systems approach, we
have addressed the question of robust uniform persistence in systems of difference
and differential equations on Rm+ that possess a positively invariant boundary hyper-
plane X and such that Rm+ \X is also positively invariant. The motivation has been
the investigation of disease (infection) persistence in host populations. Under the
hypotheses that there exists a closed set B, whose restriction to a neighborhood of
the extinction states X is compact, B has an absorbing neighborhood that absorbs
all trajectories corresponding to small perturbations around a fixed parameter ξ0,
and M = B ∩X is a robust uniform weak repeller, then robust uniform persistence
occurs in the sense that trajectories originating in Rm+ \X eventually stay ε distance
away from X (and ε is independent of ξ, for ξ close to ξ0). Theorem 3.2, which gives
this result, does not explicitly deal with the acyclic covering of M , nor it requires
M be isolated in X, thus it is different from other well established results in the
persistence theory, such as [19, Theorem 5] or [21, Theorem 1.3.2]. We have given
sufficient conditions for when M is a robust uniform weak repeller (Lemma 3.1), by
requiring all Lyapunov exponents λ(z, η) corresponding to z in Ω(M) (the union of
omega limit sets of points in M) be positive. We have further provided conditions
for Lyapunov exponents λ(z, η) to be independent of η, in which case they can be
expressed in terms of spectral radii, given that z belongs to a periodic orbit.

6. An application. Here we consider the model of Jones, White and Boots [8],
where a host population X is infected with two parasites: one that is horizontally
transmitted, denoted by Y and referred to, in short, as HTP, and the other, that is
vertically transmitted, denoted by V and referred to, in short, as VTP. HTP takes
also the form of a free-living stage (W ). The model in [8] is:

X ′ = (r − q(X + Y + V ))X + (1− p)(af − q(X + Y + V ))V − βXW
V ′ = p(af − q(X + Y + V ))V − (αV + b)V − δβVW
Y ′ = (X + δV )βW − (αY + b)Y
W ′ = λY − µW

(49)

Following [8], we give a brief description of parameters (all assumed to be nonneg-
ative). Thus, r = a − b > 0, where a and b are, respectively, the birth rate and
natural death rate of the host. The hosts infected with the vertically transmitted
parasite (VTP) have birth rate reduced by a factor of 1− f , while p ∈ [0, 1] is the
fraction of the offspring of these hosts born infected with VTP. Parameter δ ∈ [0, 1]
measures the level of protection of hosts with VTP from HTP: δ = 0 means to-
tal protection, while δ = 1 means no protection. αY and αV are the death rates
of the host due to infection with HTP and VTP, respectively. Also, µ and λ are
the death rate, respectively the birth rate, of the HTP. β and βδ are (per number
of contacts) infection rates with free-living HTP, of susceptible and VTP-infected
hosts, respectively. q is a certain crowding parameter.

The primary motivation of this model is, as explained in [8], to see that HTP can
“help” VTP persist in the host population, while, as previously reported, survival
just of VTP by itself would not be possible. The authors give conditions for both
parasitoid strains to coexist with the host, but the only form of coexistence that
they discuss is at the interior equilibrium point (i.e., they provide conditions for an
unique interior equilibrium (X∗, V ∗, Y ∗,W ∗) to exist and be locally asymptotically
stable). Numerical simulations to suggest host-HTP or host-HTP-VTP persistence
are also provided.
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However, the positive cone R4
+ is not positively invariant for (49), because a

solution with initial condition (X0, V0, Y0,W0) with X0 = 0, V0 > 0 and V0 + Y0 >
af/q becomes negative for positive time (because X ′(0) = (1 − p)(af − q(V0 +
Y0))V0 < 0). Thus, we restrict our state space to S := {(X,V, Y,W ) ∈ R4

+ |
X + V + Y ≤ af/q}. Also, in order to make S positively invariant, we further
assume that af > r. Thus, if X(t) + V (t) + Y (t) = af/q, then

(X + V + Y )′(t) = (r − af)X(t)− (αY + b)Y (t)− (αV + b)V (t) < 0. (50)

Hence t̃ 7→ (X(t̃) + V (t̃) + Y (t̃)) is decreasing in a neighborhood of t. Also, for any
(X0, V0, Y0,W0) ∈ S, a solution (X(t), V (t), Y (t),W (t)) starting at (X0, V0, Y0,W0)
(at t = 0) and having U0 = 0, satisfies U ′(0) ≥ 0, where U can be X,V, Y or W .
This shows that S is positively invariant. Now for any solution starting in S, we
have W ′ ≤ λaf/q − µW , which implies that lim supt→∞W (t) ≤ λaf/(qµ). Hence

lim sup
t→∞

|X(t) + V (t) + Y (t) +W (t)| ≤ af

q
(1 + λ/µ). (51)

Inequality (51) and Proposition 3.3 imply that (20) holds. By applying the results
in Section 3 we give various forms of persistence for model (49), in the general sense
given by Definition 2.1. The conditions that we require for this are, in fact, as in
Proposition 4.1 part c) (i.e., the Lyapunov exponents be positive on the boundary
attractors). Thus, all the persistence results that we obtain below can be regarded
as robust (according to Theorem 3.2), even though, for simplicity, we formulate
them for a fixed set of parameters.

We begin by considering the following inequalities:

paf

αV + b
> 1 (52)

λrβ

µq(αY + b)
> 1 (53)

Proposition 6.1. The following forms of persistence can occur in regard to (49):

a) If (52) holds then

∃ ε > 0, lim inf
t→∞

(X(t) + V (t)) > ε, whenever X(0) + V (0) > 0; (54)

b) If both (52) and (53) hold then

∃ ε > 0, lim inf
t→∞

(Y (t) +W (t)) > ε, whenever Y (0) +W (0) > 0 and

X(0) + V (0) > 0.
(55)

Proof. a) Let X1 = {(X,V, Y,W ) ∈ S | X = V = 0}. The role of the set B from
Section 3 will be played first by

B1 = {(X,V, Y,W ) ∈ S | X + V + Y ≤ af/q, W ≤ 2λaf/(qµ)} (56)

which, based on the arguments above, is positively invariant. Putting (49) in the
form (5), we have

A1(0, 0, Y,W ) =

(
r − qY − βW (1− p)(af − qY )

0 p(af − qY )− (αV + b)− δβW

)
(57)

It can be easily seen that Ω(X1) = {0}. Thus,

λ(0, η) = lim sup
t→∞

1

t
ln |etA1η|, (58)
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where

A1 := A1(0, 0, 0, 0) =

(
r (1− p)af
0 paf − (αV + b)

)
(59)

Hence

etA1 =

(
etr ∗
0 et(paf−(αV +b))

)
(60)

Now, using Lemma 4.2, we obtain that λ(0, η) ≥ min{r, paf − (αV + b)}, which is
greater than zero (see (52)). Then from Theorem 3.2 we obtain (54).
b) Let X2 = {(X,V, Y,W ) ∈ S | Y = W = 0}. Choose an ε1 that works for (54).

Without loss of generality assume that S2 := {(X,V, Y,W ) ∈ S | X + V ≥ ε1} is
positively invariant, and let B2 = S2 ∩ B1. Also let M2 = B2 ∩ X2. Using that
b = a− r and the other assumptions on the parameters, we have that

p(af − r)− (αV + b) < 0, (61)

from which it follows that the only equilibria in X2 are E0 := (0, 0, 0, 0) and
EX := (r/q, 0, 0, 0). For the dynamics restricted to the X-V subspace, the extinc-
tion equilibrium E0 is an unstable node, while EX is asymptotically stable (again,
by (61)). Hence, from the Poincaré-Bendixson theorem, we have that EX attracts
all solutions in X2 \ {E0}. So Ω(M2) = {EX}. We can write(

Y ′

W ′

)
=

(
−(αY + b) β(X + δV )

λ −µ

)(
Y
W

)
(62)

Denote the 2× 2 matrix above by A2(X,V, Y,W ) and let A2 := A2(EX). Then

A2 =

(
−(αY + b) βr/q

λ −µ

)
. (63)

Because (53) holds, we have det(A2) < 0, hence s(A2) > 0. Then (see comments
following Corollary 4.4), λ(EX , η) > 0, for all η in U . Thus, from Theorem 3.2, (55)
holds.

Biologically, condition (52) just says that, in what regards the VTP class, births
exceed losses due both to natural and VTP-caused deaths, in which case, Proposi-
tion 6.1 a) says that we have host-VTP persistence. Also, condition (52) says that
the HTP can invade the host-VTP population at the nontrivial HTP-free equilib-
rium.

Using the previous forms of persistence we now obtain persistence of the VTP.
Let XV = {(X,V, Y,W ) ∈ S | V = 0}. By combining the results in a) and b), there

exists an ε̃ > 0 such that the set B̃ := {(X,V, Y,W ) ∈ S | X +V ≥ ε̃ and Y +W ≥
ε̃} attracts all solutions starting with X(0) + V (0) > 0 and Y (0) + W (0) > 0.

Again, without loss of generality, we can assume B̃ to be positively invariant. Let
M = B̃ ∩XV .

Proposition 6.2. If, in addition to (52) and (53), there holds

lim sup
t→∞

1

t

∫ t

0

p(af − q(X(s) + Y (s)))− (αV + b)− δβW (s) ds > 0, (64)

for all solution of (49) that start in Ω(M), then

∃ ε > 0, lim inf
t→∞

V (t) > ε, whenever Y (0) +W (0) > 0 and V (0) > 0. (65)
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Proof. Equation (9) is one dimensional now, with v(t) being V (t) and A(φ(t, z))
being p(af − q(X(t) +V (t) +Y (t)))− (αV + b)− δβW (t). Thus, (64) just says that
λ(z, η) > 0 for all z in Ω(M) (note that U = {1} in this case). Hence (65) follows
from Theorem 3.2.

As mentioned in the beginning of this section, the main interest here has been
persistence of the VTP (result provided in Proposition 6.2). The reason we have
shown the other forms of persistence, as in Proposition 6.1, was because (64) cannot
hold at EX (see (61)).
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