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Université Aboubekr Belkaid, Faculté Des Sciences,
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Abstract. We present a stock-effort dynamical model of a fishery subdivided

into fishing zones. The stock corresponds to a fish population moving between
these zones, on which they are harvested by fishing fleets. We consider a linear

chain of identical fishing zones. Fish movements between the zones, as well as

vessels displacements, are assumed to take place at a faster time scale than the
variation of the stock and the change of the fleet size. The vessels movements

between the fishing areas are assumed to be stock dependent, i.e. the larger
the stock density is in a zone the more vessels tends to remain in it. We take

advantage of these two time scales to derive a reduced model governing the

dynamics of the total harvested stock and the total fishing effort. Under some
assumption, we obtain either a stable equilibrium or a stable limit cycle which

involves large cyclic variations of the total fish stock and fishing effort. We

show that there exists an optimal number of fishing zones that maximizes the
total catch at equilibrium. We discuss the results in relation to fish aggregating

devices (FADs) fisheries.

1. Introduction. This manuscript deals with pelagic multi-site fisheries such as
fisheries on fish aggregating devices (FADs) or on artificial habitats (AHs) (Kaki-
moto, 2004, Lan et al., 2006, Nelson, 2003). In this manuscript, we consider a 1D
linear chain of FADs that would be located along the coast or along a reef around
an island. It is assumed that fishes of the open sea can visit a FAD where they
can stay for a short time (a few days) and then return to the open sea (Girard et
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al., 2004, Hilborn et al., 1989, Hilborn et al., 2006). We also take into account a
local (artisanal) fishery that exclusively exploits the FADs (Fonteneau et al., 2000,
Moreno et al., 2007, Pioch, 2008). Therefore, the fishing fleet is assumed to go from
FAD to FAD where it captures fishes. This manuscript looks for existence of an
optimal number of FADs of the multi-site fishery, i.e. a number of FADs that maxi-
mizes the total capture of the multi-site fishery. Indeed, if we consider a chain with
a few FADs, an increase of the number of FADs would increase the total capture.
Similarly, if there is a large number of FADs, the fishery would be over-exploited.
Therefore, it makes sense to look for an intermediate number of FADs that would
optimize the total capture. We already have shown that there exists such an opti-
mal number of FADs for a multi-site fishery (Auger et al., 2010). However, this was
shown in a simplified case where fishing boats move from a FAD to a neighboring
one at constant rates. However, it is obvious that fishing boats are more likely to
leave a FAD when fish density on this FAD is small and inversely. In other words,
the dispersal rates of the fishing fleet might be fish density dependent rather than
density independent as in Auger et al. (2010). The aim of this manuscript is to
look for existence of a number of FADs that maximizes the total capture in the
more realistic case of density dependent movement of fishing boats.

In this manuscript, we use two time scales, a fast one corresponding to fish
and boat dispersal from FAD to FAD and a slow one for fish growth, capture and
investment in the fishery. Taking advantage of these two time scales, we are able
to use aggregation methods that allow us to reduce the dimension of the complete
model and to derive a global model at the slow time scale governing the total fish
density and the total fishing fleet (Auger et al., 2008a, 2008b). Taking into account
density dependent dispersal can have very important consequences on the global
dynamics of the system. For example, we refer to some earlier works in which we
investigated the effects of prey density dependent dispersal of predators as well as
predator density dependent dispersal of prey in a system of patches (Mchich et al.,
2002, 2007, Dao Duc et al., 2008, El Abdllaoui et al., 2007). These works have
shown that density dependent dispersal can have important consequences on the
global dynamics of the predator-prey system.

Coming back to our fishery model, in the density independent case, we have
shown in Auger et al. (2010) that two cases could occur, either the fishing fleet
goes extinct, i.e. the fishing fleet goes extinct and the fish density tends to its
global carrying capacity, or existence of a gas Fishery Equilibrium (FE) allowing
the fishery to persist, i.e. the fish density as well as the fishing fleet asymptotically
tend to equilibrium values, see (Auger et al., 2010). We shall show in this manuscript
that assuming density dependent boat dispersal has important consequences on the
global dynamics of the fishery. In particular, a stable limit cycle can also occur.
However, we shall see that we can still prove the existence of an optimal number of
fishing sites that maximizes the total capture of the multi-site fishery.

The manuscript is organized as follows. In the next section, we present a model
that takes into account spatial effects by distinguishing L fishing areas connected by
fast fish-density dependent movements of fishing vessels. To perform the analysis
of this model, we build a reduced model, called aggregated model, which describes
the dynamics of the total fish stock and the total fishing effort on the chain of sites.
Studying this aggregated model, we show the existence of an optimal number of
sites that maximizes the total fish catch at equilibrium.
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2. The complete model. Let ns(t) be the fish density of the free stock (unat-
tached to FADs) at time t. Let ni(t) be the fish density and Ei(t) the fishing effort
on FAD i at time t, i ∈ [1, L]. Let ki be the fish carrying capacity for FAD i and ks
of the free stock. We assume that the coastal area has a global fish carrying capacity

K = ks +
∑L

i=1 ki, which is constant. We assume that fish movements and boat
displacements occur at a fast time scale τ , whereas fish growth and the dynamics
of the fishery occur at a slow time scale t = ετ , ε << 1 being a small dimension-
less parameter. Boats are supposed to move only to the left and right neighboring
patches. The following system describes the time evolution of the fishery:

dns
dτ

=
L∑

i=1

msini −
L∑

i=1

misns + εrsns

(
1− ns

ks

)
dni
dτ

= misns −msini + ε
(
r1ni

(
1− ni

ki

)
− qniEi

)
dEi

dτ
= βi,i−1(ni−1)Ei−1 + βi,i+1(ni+1)Ei+1 − (βi−1,i(ni)

+βi+1,i(ni))Ei+ε(− c+ pqni)Ei

(1)

where i ∈ [1, L], we assume that the fish migration rate mij depend on the carrying
capacity. If the carrying capacity of a patch i is high, fish are more likely to
stay on this patch. If the carrying capacity is small, fish are rapidly leaving the
patch. According to these assumptions, we choose mij = m0

kj
. We assume that

the movement rates for the fishing vessels, β(ni) depend on the fish stock in the
particular patch:

β(ni) =
1

βni + β0

(2)

When ni increases, then β(ni) decreases. We can explain these rates of migration
by the fact that the aim of the fleets owners is to increase their revenues. So,
the fishing vessels try to operate in the most abundant patch. Consequently, the
tendency of each fleet to leave a patch must increase when the stock is locally small.
We also assume that boats leaving a patch distributes in equal proportion to go in
the right and left directions, when the stock is very small, then the rate of migration
should be the same in both directions. The fish population is assumed to follow a
logistic growth with an intrinsic growth rate r1 on FAD i , i ∈ [1, L], and rs on free
zone. Like we said before we assume that the overall carrying capacity is a constant
K and that: 

ks = αK
L∑

i=1

ki = (1− α)K.
(3)

Where 0 < α < 1 is the proportion of the total carrying capacity that is unat-
tached to the FADs.

3. The aggregated model. From the complete (1), we apply aggregation meth-
ods (Auger et al.,1998) to obtain a reduced system: a two dimensional system of
ordinary differential equations governing the total fish stock and the total fishing
effort at the slow time scale. The sufficient conditions for a system to be perfectly
as well as approximately aggregated have been investigated in the frame of general
population models by Iwasa et al. (1987), Iwasa et al. (1989) and Levin and Pacala.
(1997). Some aggregation methods permit to reduce a system with a large number
of variables involving different time scales into an aggregated system with a few
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Figure 1. Schematic representation of the multi-site fishery
model. Fishes move between every site and the free stock, while
boats move between sites.

global variables. The method is based on perturbation technics and on the applica-
tion of an adequate version of the Center Manifold Theorem. For instance, we can
find several statements of the center manifold theorem in various contexts (ordinary
differential equations, partial differential equations, delay differential equations, dif-
ference equations). Carr (1981), Hirsch (1970), and Sakamoto (1990) give a detailed
description of the theorem with many applications. The center manifold theorem
states some conditions under which there exists a regular manifold containing the
non trivial part of the dynamics. This kind of manifolds is associated to non hy-
perbolic singularities and is local ones. In 1971, Fenichel (Fenichel, 1971) stated a
theorem which provides conditions under which an invariant manifold persists to
small enough perturbations, in the case of vector fields, the center Manifold Theo-
rem given by Fenichel allows us to approximate by a Taylor expansion with respect
to the small parameter ε the restriction of the complete model to this invariant
manifold. The first order expansion gives the aggregated model. If this model is
structurally stable, then the complete model is topologically equivalent to the re-
duced model and we can have a good idea of the behavior of the complete model by
using the aggregated model. Our reduction method is based on this approach, see
Poggiale (1994), Auger and Roussarie (1994), Auger and Poggiale (1996), Michalski
et al. (1997). The aggregation of the complete model consists in supposing that
the fast dynamics has attained a stable equilibrium and in substituting this fast
equilibrium into the equations of the complete model. The first step to achieve
aggregation is to neglect the small terms of the order of ε in Eq.(1) and to look for
the existence of stable equilibria for its fast part.

3.1. Fast equilibria. The fast model is obtained by neglecting the slow dynamics,
leading to equations (4):

msini −misns = 0
β21(n1)E1 − β12(n2)E2 = 0
βL−1,L(nL)EL − βL,L−1(nL−1)EL−1 = 0

(4)
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and for i = 2, · · · , L− 1

βi,i−1(ni−1)Ei−1 + βi,i+1(ni+1)Ei+1 − (βi−1,i(ni) + βi+1,i(ni))Ei = 0. (5)

The fast model is conservative. At the fast time, the total fish density n(t) =

ns+
∑L

i=1 ni remains constant and the total fishing effort E(t) =
∑L

i=1Ei(t) remains
constant.

A simple calculation leads to the following result: n∗s = v∗sn
n∗i = v∗i n
E∗i = µ∗i (n)E

(6)

where for i = 1, · · · , L 
v∗s =

ks
K

v∗i =
ki
K

µ∗i (n) =
βv∗i n+ β0

β(1− α)n+ Lβ0

(7)

The constants v∗i represent the fast equilibrium proportions of the stock on each
patch i, i = 1, · · · , L, whereas µ∗i (n) admit the same interpretation for the fishing
effort. As we see there is a fast equilibrium for each pair of values of the global
variables n and E.

Coming back to the complete model (1), we substitute the fast equilibria and
add the fish stock and the fishing effort equations. The state variables are replaced
in terms of the fast equilibria as follows:{

n∗i = v∗i n
E∗i = µ∗i (n)E (8)

After some algebra, one obtains the following system of two equations governing
the total fish stock and fishing effort variables at the slow time scales, that we call
the aggregated model: 

dn

dt
= rn(1− n

K
)− q(n)nE

dE

dt
= (−c+ pq(n)n)E

(9)

where 
r = αrs + (1− α) r1

q(n) = q
L∑

i=1

v∗i µ
∗
i (n) = q

τ1n+ (1− α)β0

β(1− α)n+ Lβ0

(10)

and τ1 = β
∑L

i=1 v
∗2
i

The dynamics of equation (9) is a good approximation of the real dynamics of the
global variables in the complete equation (1) if equation (9) is structurally stable,
which is the case, and ε is small enough, which is assumed.

3.2. Asymptotic behavior. The Ė = 0 nullclines are two straight lines: E = 0
and n = n∗. where n∗ is given by

n∗ =
(−pq(1− α)β0 + cβ(1− α)) +

√
∆∗

2pqτ1
> 0 (11)
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where:

∆∗ = (pq(1− α)β0 − cβ(1− α))
2

+ 4Lcβ0pqτ1 > 0.

The ṅ = 0 nullclines are n = 0 and r
(
1− n

K

)
− q(n)E = 0. The latter could be

explicitly expressed as:

E =
r

q

(
1− n

K

) (β(1− α)n+ Lβ0)

τ1n+ (1− α)β0

(12)

The system (9) has 3 equilibrium (0, 0), (K, 0) and (n∗, r
q(n∗) (1 −

n∗

K )), This last

equilibrium belongs to the positive quadrant provided that n∗ < K.
When Lτ1 < β(1− α)2, the nontrivial ṅ = 0 nullcline Eq. (12) has a maximum

value in the positive quadrant, E, and we denote n the corresponding fish stock
value. In the Appendix, the stability properties of these equilibrium points are
shown. The origin (0, 0) is always a saddle point. According to parameters values,
we obtain the next five cases:

- If Lτ1 > β(1 − α)2 and n∗ > K then (n∗, E∗) does not belong to the positive
quadrant and (K, 0) is a stable node.

- If Lτ1 > β(1− α)2and n∗ < K then (n∗, E∗) belong to the positive quadrant
and is globally asymptotically stable while (K, 0) is a saddle.

- If Lτ1 < β(1 − α)2 and n∗ > K then (n∗, E∗) does not belong to the positive
quadrant and (K, 0) is a stable node.

- If Lτ1 < β(1 − α)2 and n < n∗ < K then (n∗, E∗) belong to the positive
quadrant and is globally asymptotically stable while (K, 0) is a saddle.

- If Lτ1 < β(1 − α)2 and n∗ < n < K then (n∗, E∗) belong to the positive
quadrant and is unstable. (K, 0) is a saddle, In this case, there exists a limit cycle.
see Fig. 7.

The catch per unit of time at equilibrium reads:

Y ∗ = q(n∗)n∗E∗ = rn∗
(

1− n∗

K

)
(13)

It can be shown that Y ∗ has a maximum equal to rK
4 for n∗ = K

2 and for the
following number of sites Lopt such that:

Lopt =
pq (1− α)K

2c
+

β

2β0

pq
2c

Lopt∑
i=1

k2i − (1− α)K

 (14)

The first term of the previous expression is similar to the optimal number of
FADs that was obtained by Auger et al. (2010) in which we assumed that boats
move from a FAD to the neighboring one at a constant rate, i.e. with a density
independent dispersal of fishing boats. We can rewrite this expression as follows :

LDD
opt = LDI

opt + F (15)

where LDD
opt is the optimal number of FADs found in the density dependent migration

case and LDI
opt in the density independent case. Therefore, the following extra terms:

F =
β

2β0

pq
2c

Lopt∑
i=1

k2i − (1− α)K

 (16)

quantify the effect of the density dependent dispersal of the fishing fleet.
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LDD
opt < LDI

opt if and only if

LDD
opt∑
i=1

k2i <
2c

pq

LDD
opt∑
i=1

ki

Therefore, if the previous relation holds, the number of optimal FADs in the
density dependent case is less than in the density independent case and inversely.
This occurs when the cost of the fishery is large enough or when the price of the
unit of biomass is small enough.

case 1: If all sites are identical i.e. we have:

ki =
(1− α)K

L

we obtain

LDD
opt = LDI

opt =
pq (1− α)K

2c
. (17)
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Figure 2. Case of identical patches: catch as a function of the
number of sites showing a maximum for a value given by expression
(17). K = 100, rs = 0.55, r1 = 0.7, q = 1, c = 3, p = 1, α = 0.4, β =
0.4.β0 = 0.4.

Figure 2 shows that the total capture shows a maximum for a numerical value
Lopt which corresponds to the expression (17).

Case 2 : Different types of sites
We still consider a multisite fishery with L patches. Those L patches are assumed

to be categorized into N groups. each group i is divided into Ni identical patches.∑N
i=1Ki = (1− α)K, ki = Ki

Ni
, and

∑N
i=1Ni = L, where Ki is the carrying capacity

of the group i ,
Lopt is given by expression (14). However, in general, it is not possible to calculate

Lopt from expression (14) because Lopt also appears in the sum of the right hand
side of equation (14). Therefore, we are now proposing a procedure that allows
to calculate Lopt. For this, we assume that the multi-site fishery is composed of
different groups of sites, such that a group has Ni sites and each site of each group
i = (1, N) has the same and given carrying capacity ki. The procedure consists in
fixing the number of sites in N − 1 groups and then after some calculation we can
get the following expression which allows us to calculate explicitly the value of Lopt
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(14).

Lopt =
pq (1− α)K

2c
+

β

2β0

(
pq

2c

N∑
i=1

Ni

(
Ki

Ni

)2

− (1− α)K

)

=
pq (1− α)K

2c
+

β

2β0

(
pq

2c

N∑
i=1

K2
i

Ni
− (1− α)K

)
(18)

=
pq (1− α)K

2c
+

β

2β0

(
pq

2c

(
N−1∑
i=1

K2
i

Ni
+

K2
N

Lopt −
∑N−1

i=1 Ni

)
− (1− α)K

)
then

Lopt =
(a+ c) +

√
(a− c)2 + 4b

2
(19)

where

a =
pq (1− α)K

2c
+

β

2β0

(
pq

2c

N−1∑
i=1

K2
i

Ni
− (1− α)K

)
b =

βpq

4β0c
K2

N

c =
N−1∑
i=1

Ni

Figures 3 shows an example where we consider two groups of patches. The
carrying capacity of the first group is fixed K1 = 30 with N1 = 4.
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Figure 3. Vessels movements among L patches categorized into 2
groups. Catch as a function of the number of sites showing a max-
imum for a value given by expression:(19) , rs = 0.55, r1 = 0.7, α =
0.3,K = 100, q = 1, c = 3.89, p = 1, β = 0.4, β0 = 0.2,K1 =
30,K2 = 40, N1 = 4.

Figure 3 shows that the total capture shows a maximum for a numerical value
Lopt = 9.

Figures 4 and 5 show the same as figure 3 but in the case of three and four groups
respectively.

Figure 4 shows that the total capture shows a maximum for a numerical value
Lopt = 12.

Figure 5 shows that the total capture shows a maximum for a numerical value
Lopt = 15. It can be checked that the numerical values of Lopt corresponding to
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Figure 4. Vessels movements among L patches categorized into 3
groups. Catch as a function of the number of sites showing a max-
imum for a value given by expression (19) . rs = 0.55,r1 = 0.7,α =
0.3,K = 100, q = 1, c = 2.706, p = 1,β = 0.4,β0 = 0.2.K1 =
20,K2 = 22,K3 = 28, N1 = 4, N2 = 3.
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Figure 5. Vessels movements among L patches categorized into 4
groups. Catch as function as the number of patches.

the maximum observed respectively for the three previous curves, figures 3, 4 and
5 correspond to the values given by expression (19).

4. Discussion. Following Auger et al. (2010), we have developed our model as a
synthetic representation of fisheries that use artificial structures (e.g., fish aggregat-
ing devices -FADs-, Dempster and Taquet., 2004) to attract fish (like some natural
structures do, e.g., logs, seamounts). A number of authors reported that fish abun-
dance around FADs depend on different factors including FAD type (Rountree et
al., 1989, D’Anna et al., 1999) and FAD size (Rountree, 1989, Nelson, 2003). We
used this information in our model to group the different fishing sites (i.e., FADs),
assuming that FADs in each group were homogeneous (same type and size, and
therefore same carrying capacity ki) but that FADs between groups were differ-
ent. This allowed us proving the existence of an optimal number of FADs that
maximizes catch in the context of fish-density dependent movement of boats, and
complementing the result established by Auger et al. (2010) in the simpler case of
constant movement rates.

This work also shows that under some conditions on parameters, a stable limit
cycle can occur. This result is similar to the one that was obtained in the case of
a system of two patches with fish density dependent movement of boats, Mchich et
al. (2002). In the present work, we could thus generalize this previous result to a



778 ALI MOUSSAOUI, PIERRE AUGER AND CHRISTOPHE LETT

system of N(N > 2) patches. the existence of a limit cycle has direct important
consequences for the viability of the fishery. Indeed, for some time periods both
the fish density and the fishing effort can be very close to zero (Figs 7 and 8). This
could drive the fish population to extinction as well as provoke drastic decreases in
the fishery activity. Therefore, such as in Mchich et al. (2002), one might try to
control the system to avoid the occurrence of such a limit cycle in order to maintain
the system at some desirable stable equilibrium.

We saw that, under some conditions on the model parameters (16), the optimal
number of fishing sites in the present model was lower than in the model proposed
by Auger et al. (2010). This situation is favored when the fishery operates under
difficult conditions, i.e., high cost per unit of fishing effort c, low price per unit of fish
p, or low fish catchability q. In these conditions, a shift in the fishery strategy, from
boats moving constantly from site to site as in Auger et al. (2010), to a movement
of boats that depends on fish density like here, would lead to the same catch per
unit of time but on a reduced number of fishing sites, hence to larger benefits.

Of course, the use of aggregation methods allowed us to simplify the mathe-
matical analysis of the complete model, a set of 2L + 1 equations, into a simple
two dimensional aggregated model. This simplification was possible because we as-
sumed that there were two time scales, a fast one for movements of fish and boats
between patches, and a slow one corresponding to the fish population growth and
to the fishery dynamics.

In practice, it has been shown on numerical examples that as soon as ε = 10−1 or
10−2 the approximation made for ”aggregating” the complete model into a reduced
one is relevant, and the trajectories obtained with the aggregated model remain close
to those obtained with the complete model (Poggiale and Auger, 2004). Therefore, if
we think about a fish stock that grows annually and about boats and fish that change
patches every week or so, then the method could be applied and the aggregated
model used to make predictions about the complete system, as we did here. One
could also consider the complete model without different time scales, i.e., ε = 1, and
in this case perform a numerical analysis. One could fix any parameter except the
number of patches L and look for the existence and the stability of a unique positive
equilibrium of the model. For each number of patches L, one could then calculate
the total catch at equilibrium and look if there exists also an optimal number of
patches.

A new case is interesting and new with respect to our previous study Auger et
al., (2010) in which no limit cycle occurred. In the present model, the limit cycle
is the result of the stock dependence of the vessels migration rates. It is assumed
that vessels leave rapidly the fishing zone with decreasing fish stock density because
the catch income becomes too low. As a consequence, although the fish stock
decreases a lot, it cannot go to extinction because, since the fishing fleets also
decrease drastically, the fish stock can recover. Then, the fishery revenue increases
and new vessels participate to the fishery, so starting a new cycle. Belvèze (1984)
has reported that the total sardine catch in the southern Moroccan sea has shown
important fluctuations during the period of 1940 /1983. Mchich et al., (2002) have
suggested that these fluctuations need not necessarily lead to extinction but could
stabilize in a periodic variation merging periods of low and high fishery activity.
This cyclic process of overexploiting periods followed by periods of recovering of
the fishery activity should be a direct consequence of the efficiency of the fishery
vessels. The model also suggests that the total process would be a long term process.
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The reason is that two types of processes are involved in the dynamics, fast ones
associated with decisions of vessels to rapidly increase their captures and slow ones
related to the demography of the fish population and the variations of the investment
in the fleets.

Appendix. Stability analysis
The Jacobian matrix J(n,E) reads:

J(n,E) =

[
r − 2rn

K − q(n)E − q′(n)nE −q(n)n
pE(q′(n)n+ q(n)) −c+ pq(n)n

]
(a) At the point (0, 0), the Jacobian matrix:

J(0, 0) =

[
r 0
0 −c

]
has two real eigenvalues with opposite signs and thus (0, 0) is a saddle point.

(b) At the point (K, 0) , the Jacobian matrix:

J(K, 0) =

[
−r −q(K)K
0 −c+ pq(K)K

]
has two real eigenvalues, one is negative λ1 = −r and λ2 = pq(K)K − c. Two cases
appear:

- if n∗ < K, then λ2 > 0 and (K, 0) is a saddle point.
- if n∗ > K, then λ2 < 0 and (K, 0) is a stable node.

(c) At the point
(
n∗, r

q(n∗)

(
1− n∗

K

))
, the Jacobian matrix J(n∗, E∗) becomes:

J(n∗, E∗) =

 −rn
∗

K
− q′∗)n∗E∗ −q(n∗)n∗

pE∗(q′∗)n∗ + q(n∗)) 0


where

det J(n∗, E∗) =
pq(n∗)n∗E∗

(β(1− α)n∗ + Lβ0)
2 ×

(
τ1β(1− α)(n∗)2 + 2Lτ1β0n

∗ + Lβ2
0

)
> 0.

On the other hand, we have:

trJ(n∗, E∗) =
−rn∗

K
−
qβ0

(
Lτ1 − β(1− α)2

)
n∗E∗

(β(1− α)n∗ + Lβ0)
2

It is straightforward to see that trJ(n∗, E∗) < 0 whenever Lτ1 > β(1 − α)2 .
what yields the asymptotic stability of (n∗, E∗).

When Lτ1 < β(1− α)2, two different cases happen:
- n∗ > n, then trJ(n∗, E∗) < 0, and thus (n∗, E∗) is asymptotically stable.
- n∗ < n, then trJ(n∗, E∗) > 0, and thus (n∗, E∗) is unstable. In this case, there

exists a limit cycle.
This can be proved by showing that the trace can be rewritten as

trJ(n∗, E∗)

=− rn∗
τ1β(1−α)(n∗)2 + 2β0β(1−α)2n∗+β0

(
Lβ0(1−α)+LKτ1−Kβ(1−α)2

)
K (β(1−α)n∗+Lβ0) (τ1n∗ + (1−α)β0)

and then that its sign changes when n∗ is smaller or larger than n.
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Fig. 6 shows a suitable poincaré- Bendixson box where Lopt = 3, see Arrowsmith
and Place (1992). A trajectory starting from an initial point A (witch should be
chosen with n > K and E > E) is turning around the unstable positive nontrivial
equilibrium (n∗, E∗) and enters into the box at a point B. Any trajectory reaching
the segment AB at a point M is entering into the box because the two components of
its velocity are oriented towards the interior of the box. Any trajectory that enters
the box cannot tend to the unique interior equilibrium (n∗, E∗) which is unstable.
Consequently, by use the Poincaré-Bendixson theorem, this proves the existence of
a limit cycle within the domain delimited by this box. In this case, the total fishing
effort as well as the total fish stock are, in the long term, varying periodically. Fig.
8 shows the time variations of the total fish stock and of the total fishing effort
with respect to time. This case is interesting and new with respect to our previous
study, ( Auger et al., 2010) in which no limit cycle occurred. In the present model,
the limit cycle is the result of the stock dependence of the vessels migrations rates.
It is assumed that vessels leave rapidly the fishing zone with decreasing fish stock
density because the catch income becomes too low; As a consequence, although
the fish stock decreases a lot, it cannot go to extinction because, since the fishing
fleets also decrease drastically, the fish stock can recover. Then, the fishery revenue
increases and new vessels participate to the fishery, so starting a new cycle.

Figure 6. Poincaré-Bendixson box. Any trajectory entering the
box is trapped in this box, in which the unique equilibrium is un-
stable.
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Figure 7. Phase portrait in the case of stable limit cycle. Param-
eters have been chosen as L = 3, r = 0.1,K = 100,α = 0.3, k1 =
22, k2 = 20, k3 = 28,β = 0.05, β0 = 0.4, p = 0.7, c = 0.008, q = 1.
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Figure 8. Time variations of the total fish stock and fishing fleet
in the case of the stable limit cycle (same parameters as in Fig. 7).
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