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Abstract. The global stability for a delayed HIV-1 infection model is inves-

tigated. It is shown that the global dynamics of the system can be completely
determined by the reproduction number, and the chronic infected equilibrium

of the system is globally asymptotically stable whenever it exists. This im-

proves the related results presented in [S. A. Gourley,Y. Kuang and J.D.Nagy,
Dynamics of a delay differential equation model of hepatitis B virus infection,

Journal of Biological Dynamics, 2(2008), 140-153].

1. Introduction. In this note, we consider a hepatitis B virus infection model with
time delay that was proposed and investigated in [1]. It is a refinement of earlier
basic virus model with the mass action action incidence [15]. Based on biology
grounds [13], the model in [1] makes use of the more realistic standard incidence
function and a time delay in virus production. Their model is as following:

ẋ(t) = λ− dx− βx(t)v(t)

x(t) + y(t) + e(t)
,

ė(t) = −de(t) +
βx(t)v(t)

x(t) + y(t) + e(t)
− βe−dτx(t− τ)v(t− τ)

x(t− τ) + y(t− τ) + e(t− τ)
,

ẏ(t) =
βe−dτx(t− τ)v(t− τ)

x(t− τ) + y(t− τ) + e(t− τ)
− ay(t),

v̇(t) = ky(t)− µv(t),

(1)
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where x(t) and y(t) represent the number of uninfected cells and infected cells,
respectively. e(t) represents the number of exposed cells, that is, the cells that
have acquired the virus but are not yet producing new virions. v(t) denotes the
number of free virions. τ is the time delay for virion production. Here, the positive
constant λ is the rate at which new uninfected live cells are generated. The positive
constant d is the per-capita death rate of uninfected live cells. Infected live cells
are killed by immune cells at rate ay and produce free virions at rate ky, where k
is what so-called ‘burst’ constant. Free virions are cleared by lymphatic and other
mechanisms at rate µv, where µ is a constant. β > 0 is a incidence rate coefficient
describing the infection process.

The initial conditions for system (1) are:

x(s) = x0(s), y(s) = y0(s), v(s) = v0(s), s ∈ [−τ, 0],

e0(0) = β

∫ 0

−τ

edsv0(s)x0(s)

x0(s) + y0(s) + e0(s)ds
,

(2)

where x0, y0, and v0 are nonnegative functions.
Based on some observations of virus particles v, the system (1) is simplified in

[1] as the following:

ẋ(t) = λ− dx− βkx(t)y(t)

µ(x(t) + y(t))
,

ė(t) = −de(t) +
βkx(t)y(t)

µ(x(t) + y(t))
− βke−dτx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))
,

ẏ(t) =
βke−dτx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))
− ay(t).

(3)

A direct computation shows that the basic infection reproduction number for system
(3) is

R0 =
βke−dτ

aµ
, (4)

which has two equilibria: the infection free equilibrium Ef = (x0, 0, 0), and the
infected equilibrium E∗ = (x∗, e∗, y∗), where

x0 =
λ

d
, y∗ = (R0 − 1)x∗, e∗ =

a(edτ − 1)

d
x∗, x∗ =

λ

d+ aedτ (R0 − 1)
. (5)

The following results Theorems 1.1-1.2 come from [1].

Theorem 1.1. If R0 < 1, the infection free equilibrium Ef of system (3) is globally
asymptotically stable.

Theorem 1.2. If R0 > 1, the chronic infected equilibrium E∗ of system (3) is
locally asymptotically stable.

The following result for global convergence of the infected equilibrium E∗ of
system (3) is a corollary of Theorem 4.3 in [1].

Theorem 1.3. Suppose that R0 > 1, and one of the following two conditions are
satisfied:

R0 ≥ 2 or d ≥ βk(R0 − 1)(2−R0)

µR2
0

.

Then the infected equilibrium E∗ of system (3) is globally asymptotically stable for
all non-negative initial data such that y0(s) 6= 0, s ∈ [−τ, 0].
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The object of this note is to generalize the Theorem 1.3, and show that the
infected equilibrium E∗ of system (3) is always globally asymptotically stable as long
as it exists, The approach here is to use a Lyapunov functional, which was adopted
widely in [2]–[12] to get the global dynamical properties of some epidemiological
models with or without delay.

2. Global asymptotic stability of system (3). In this section, we shall in-
vestigate the global asymptotic stability of of system (3) by Lyapunov functional
approach. It is seen that for the stability purpose, only the first and third equation
of system (3) need to be considered.

Theorem 2.1. The infected equilibrium E∗ of system (3) is globally asymptotically
stable for R0 > 1.

Proof. Consider the following Lyapunov functional

W (t) = x(t)− x∗ −
∫ x(t)

x∗

x∗(θ + y∗)

θ(x∗ + y∗)
dθ + edτ

[
y(t)− y∗ − y∗ ln

y(t)

y∗

]
+ aedτy∗

∫ t

t−τ
g

(
βkx(θ)y(θ)

aµedτy∗(x(θ) + y(θ))

)
dθ,

(6)

where g(x) = x− 1− lnx, x ∈ R+. Obviously, g : R+ → R+ attains its strict global
minimum at x = 1 and g(1) = 0. Since

x(t)−x∗−
∫ x(t)

x∗

x∗(θ + y∗)

θ(x∗ + y∗)
dθ =

x∗y∗

x∗ + y∗

(
x(t)

x∗
−1−ln

x(t)

x∗

)
=

x∗y∗

x∗ + y∗
g

(
x(t)

x∗

)
,

and g(x) ≥ 0 for x ≥ 0, W (t) ≥ 0 with equality holding if and only if x(t)x∗ = y(t)
y∗ = 1

for all t ≥ 0.
Finding the time derivation of W (t) along the positive solution of system (3)

gives

Ẇ (t)|(3) = ẋ

(
1− x∗(x+ y∗)

x(x∗ + y∗)

)
+ edτ ẏ

(
1− y∗

y

)
+

βkxy

µ(x+ y)
− aedτy∗ ln

βkxy

µaedτy∗(x+ y)
− βkx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))

+ aedτy∗ ln
βkx(t− τ)y(t− τ)

aµedτy∗µ(x(t− τ) + y(t− τ))

=

(
λ− dx− βkxy

µ(x+ y)

)(
1− x∗(x+ y∗)

x(x∗ + y∗)

)
+ edτ

(
βke−dτx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))
− ay

)(
1− y∗

y

)
+

βkxy

µ(x+ y)
− aedτy∗ ln

βkxy

µaedτy∗(x+ y)
− βkx(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))

+ aedτy∗ ln
βkx(t− τ)y(t− τ)

aµedτy∗µ(x(t− τ) + y(t− τ))
.

(7)

Since (x∗, y∗) is a positive equilibrium of system (3), it follows that

λ = dx∗ +
βkx∗y∗

µ(x∗ + y∗)
,

βkx∗y∗

µ(x∗ + y∗)
= aedτy∗. (8)
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From (7) and (8), we have

Ẇ (t)|(3)

= d (x∗−x)

(
1− x

∗(x+y∗)

x(x∗+y∗)

)
+aedτy∗

(
1− x

∗(x+y∗)

x(x∗+y∗)
+
y(x+ y∗)

y∗(x+ y)
− y

y∗

)
− y∗

y

βk x(t− τ)y(t− τ)

µ(x(t− τ) + y(t− τ))
+ aedτy∗ − aedτy∗ ln

βkxy

µaedτy∗(x+ y)

+ aedτy∗ ln
βkx(t− τ)y(t− τ)

aµedτy∗µ(x(t− τ) + y(t− τ))

= d (x∗−x)

(
1− x

∗(x+y∗)

x(x∗+y∗)

)
+aedτy∗

{(
1− y(x+y∗)

y∗(x+y)

)(
x+y

x+y∗
−1

)
−
[
x+y

x+y∗
−1−ln

x+ y

x+ y∗

]
−
[
x∗(x+y∗)

x(x∗+y∗)
−1−ln

x∗(x+y∗)

x(x∗+y∗)

]
−ln

x+ y

x+y∗

− ln
x∗(x+ y∗)

x(x∗ + y∗)

}
− aedτy∗

[
(x∗+y∗)y(t−τ)x(t−τ)

x∗y(x(t−τ)+y(t−τ))
−1−ln

(x∗+y∗)y(t−τ)x(t−τ)

x∗y(x(t−τ)+y(t−τ))

]
− aedτy∗

[
ln

(x∗ + y∗)y(t− τ)x(t− τ)

x∗y(x(t− τ) + y(t− τ))
+ ln

βkxy

µaedτy∗(x+ y)

− ln
βkx(t− τ)y(t− τ)

aµedτy∗µ(x(t− τ) + y(t− τ))

]
= d (x∗ − x)

[
1− x∗(x+ y∗)

x(x∗ + y∗)

]
+ aedτy∗

(
1− y(x+ y∗)

y∗(x+ y)

)(
x+ y

x+ y∗
− 1

)
− aedτy∗g

(
x+ y

x+ y∗

)
− aedτy∗g

(
x∗(x+ y∗)

x(x∗ + y∗)

)
− aedτy∗ ln

x∗(x+ y)

x(x∗ + y∗)

− aedτy∗g
(

(x∗ + y∗)y(t− τ)x(t− τ)

x∗y(x(t− τ) + y(t− τ))

)
− aedτy∗ ln

x(x∗ + y∗)

x∗(x+ y)
.

(9)

Using the trivial inequalities following

1− x∗(x+ y∗)

x(x∗ + y∗)
≥ 0 for x ≥ x∗,

1− x∗(x+ y∗)

x(x∗ + y∗)
< 0 for x < x∗.

Thus, we have

d (x∗ − x)

(
1− x∗(x+ y∗)

x(x∗ + y∗

)
≤ 0 for x = x∗. (10)

Similarly, since

1− y(x+ y∗)

y∗(x+ y)
< 0,

x+ y

x+ y∗
− 1 > 0 for y > y∗,

1− y(x+ y∗)

y∗(x+ y)
> 0,

x+ y

x+ y∗
− 1 < 0 for y < y∗,

we have (
1− y(x+ y∗)

y∗(x+ y)

)(
x+ y

x+ y∗
− 1

)
≤ 0 for y = y∗. (11)
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By (9)-(11) and the fact g(x) ≥ 0 for x ≥ 0, we finally get

Ẇ |(3) = d (x∗−x)

(
1− x

∗(x+y∗)

x(x∗+y∗)

)
+aedτy∗

(
1− y(x+y∗)

y∗(x+y)

)(
x+y

x+y∗
−1

)
− aedτy∗g

(
x+ y

x+ y∗

)
− aedτy∗g

(
x∗(x+ y∗)

x(x∗ + y∗)

)
− aedτy∗g

(
(x∗ + y∗)y(t− τ)x(t− τ)

x∗y(x(t− τ) + y(t− τ))

)
≤ 0.

(12)

From (12), we have

Ẇ |(3) = 0

if and only if x = x∗, y = y∗. So, the largest compact invariant set in Γ =
{(x(t), e(t), y(t))|Ẇ (t) = 0} is just the singleton E∗. By Theorem 1.2 and the
LaSalle invariance principle, we conclude that the infected equilibrium E∗ of sys-
tem (3) is globally asymptotically stable.

The proof is completed.
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