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Abstract. We consider an SEIR epidemic model with vertical transmission

introduced by Li, Smith and Wang, [23], and apply optimal control theory to

assess the effects of vaccination strategies on the model dynamics. The strategy
is chosen to minimize the total number of infectious individuals and the cost

associated with vaccination. We derive the optimality system and solve it
numerically. The theoretical findings are then used to simulate a vaccination

campaign for rubella in China.

1. Introduction. Among the very huge literature on epidemic models (see e.g. [1,
6, 9, 18]) an important role is played by studies concerning with infectious diseases
that transmit through both horizontal and vertical modes, [8]. Roughly speaking,
for humans and animal diseases, the horizontal transmission occurs through contacts
with infectious hosts, which may be a direct physical contact or an indirect one,
through e.g. biting insects. Vertical transmission, instead, occurs when the disease
is transferred from parent to offspring. For example, an infectious mother may
transmit the disease to her fetus by means of bodily fluid or breast milk. Examples
of diseases that can be vertically transmitted include hepatitis B, herpes simplex,
syphilis, rubella (german measles), Chagas disease (american trypanosomiasis) and
HIV-AIDS.

Epidemic models including vertical transmission may be found in several papers,
as e.g., [13, 26]. Here, we consider the following model introduced by Li, Smith and
Wang, [23]: 

Ṡ = b− kIS − pbE − qbI − bS
Ė = kIS + pbE + qbI − (ε+ b)E

İ = εE − (σ + b)I

Ṙ = σI − bR.

(1)

In (1) the upper dot denotes the time derivative, the state variables are the fractions
in which the host population is divided: the susceptibles (S), the exposed, i.e.
infected but not yet infectious (E), the infectious (I), and the recovered (or immune)
(R). The parameters (all positive constants) have the following meaning: b is the
natural birth rate, which is assumed to be identical to the death rate, k is the
contact rate, p is the fraction of the offspring from the exposed class that are born
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into the exposed class E, q is the fraction of the offspring from the infectious class
that are born into the exposed class E, ε is the rate at which the exposed individuals
become infectious, σ is the rate at which the infectious individuals recover.

The parameters p and q (0 ≤ p ≤ 1, 0 ≤ q ≤ 1) represent the vertical transmis-
sion. The incidence term is assumed to be of bilinear mass-action form.

In [23] some qualitative properties of model (1) were found, including the sta-
bility properties of the equilibria. The model was extended in [25] to include also
vaccination, which is represented by a linear transfer from susceptibles to removed
compartments, with a constant vaccination rate.

In 2003, model (1) has been revisited by d’Onofrio, [12], who considered a period-
ically varying contact rate. He found a condition ensuring that the vaccine-induced
disease-free solution is globally asymptotically stable.

In this paper, we use an optimal control approach to evaluate the effects of
vaccination strategies on a community affected by a disease whose dynamics may
be described by model (1).

As underlined in [15], optimal control theory, when applied to disease models,
provides a powerful tool to get great insights into the best pathway to reduce dis-
ease burden. In particular, one can find the optimal response for a vaccination
schedule that will minimize the disease burden while being mindful of the costs of
the strategy.

Analytical and numerical results concerning with optimal control problems in
mathematical epidemiology can be found in several papers, starting from the sev-
enties. For example, applications of optimal control theory to simple SIR epidemic
models can be found in [3, 29, 31, 34]. The great variety of epidemic models and
problems that can be treated with optimal control theory (and the related lit-
erature) is described, briefly but effectively, in [2]. Recently, stimulated by new
analytical and numerical findings, researchers found new impulses and interest to
study the applications of optimal control theory to biology and epidemiology. A big
contribution is given by Lenhart and her coworkers, [2, 21, 22]. Examples of recent
applications of optimal control theory to epidemics can be found also in [4, 17, 20].

Here, we choose the optimal strategy to minimize the total number of infectious
individuals and the cost associated with vaccination. We derive the optimality
system and solve it numerically. As stressed in [23], rubella is among the disease for
which (1) is a good approximation. For this reason, inspired by paper [16], we will
test our theoretical findings by simulating rubella vaccination strategies in China.

The paper is organized as follows: in Section 2 we recall the results obtained
in [23] concerning with the qualitative properties of the solutions of model (1). In
Section 3 the optimal control problem is introduced and the optimality conditions
are derived. In Section 4 a simulation of rubella vaccination strategies in China is
provided. Concluding remarks in Section 5, close the paper.

2. Dynamical behavior. In this section we summarize some of the results ob-
tained in [23], concerning with the dynamical behavior of (1). First of all, by using
the relation R = 1−S−E−I, system (1) may be reduced to the following equivalent
system: 

Ṡ = b− kIS − pbE − qbI − bS
Ė = kIS + pbE + qbI − (ε+ b)E

İ = εE − (σ + b)I,

(2)
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which can be studied in the closed, positively invariant set:

Γ =
{

(S,E, I) ∈ R3
+ : S + E + I ≤ 1

}
.

Introduce now the so called basic reproductive number :

R0 =
k ε

(b+ ε)(b+ σ)− bp(b+ σ)− bqε
. (3)

System (2) admits the disease-free equilibrium P0 ≡ (1, 0, 0) on the boundary of Γ,
and an endemic equilibrium P ≡ (S,E, I) in the interior of Γ, where:

S =
1

R0
; I =

ε b (R0 − 1)

(b+ ε)(b+ σ)R0
; E =

b(R0 − 1)

(b+ ε)R0
. (4)

The following theorem may be established (see [23]):

Theorem 2.1. If R0 ≤ 1, then P0 is the only equilibrium and it is globally stable
in Γ. If R0 > 1, then P0 is unstable and there exists a unique endemic equilibrium
P , and it is globally stable in the interior of Γ.

Theorem 2.1 states that R0 = 1 is a threshold for the system dynamics. If
R0 ≤ 1, then the disease will be eradicated, whereas if R0 > 1, then the disease will
persist at the endemic equilibrium, for all initial state in the interior of the set Γ.
The global stability result for the endemic equilibrium, contained in Theorem 2.1,
has been obtained by using the so called geometric approach to stability due to Li
and Muldowney (see e.g. [24]). Using such an approach, the same result has been
proven for a more general system in [7], and derived for model (2) as a particular
case.

3. Optimal control problem and its analysis. In this Section, we will introduce
the intervention strategy by means of vaccination. Recent examples of optimal
vaccination policy for struggling infectious diseases like influenza and west nile virus
may be found in [4, 5]. Here we consider a vaccination campaign over a fixed time
period, [0, tf ]. The vaccine drives the susceptibles individuals to the recovered class.
So, we introduce the control function u(t) and consider the modified system:

Ṡ = b− kIS − pbE − qbI − bS − u(t)S

Ė = kIS + pbE + qbI − (ε+ b)E

İ = εE − (σ + b)I

Ṙ = σI − bR+ u(t)S.

(5)

where u(t) is a Lebesgue measurable function such that: 0 ≤ u(t) ≤ umax, for
t ∈ [0, tf ]. The goal here is to minimize the total number of infectious individuals
and the cost associated with vaccination during the vaccination campaign. Hence,
the optimal control problem is to minimize the objective functional:

J(u) =

∫ tf

0

[
AI(t) + u2(t)

]
dt, (6)

subject to (5) and non negative initial data S(0) = S0; E(0) = E0, I(0) = I0,
R(0) = ρ0.

In (6) the parameter A is a weight parameter describing the comparative impor-
tance of the two terms in the functional. For example, an high value of A means that
it is more important to reduce the disease burden than to reduce the vaccination
costs.



680 BRUNO BUONOMO

The description of the intervention costs in the objective functional is a quite
debated question in the literature. The dependence on the control may be linear or
nonlinear. A pure linear cost in both the differential equations and the objective
functional may drive to discontinuous optimal profiles, involving singular and bang-
bang controls (i.e. the optimal control may only switch between the bounds of the
control set), see e.g. [3, 29, 31]. It has been argued that finding the times at which
the switching occurs is quite difficult, [19]. Furthermore, nonlinear description is
preferable when a sudden change in epidemics control is not advisable, [33]. As a
matter of fact, when the nonlinear description is adopted, it may be not completely
clear which nonlinear form must be appropriately chosen (a typical example of simi-
lar dilemma is the transmission function in epidemic models). In this case, choosing
the simplest form compatible with the mathematical requirements (existence, well-
posedness of maximization problems, etc.) is a possible guideline. In this sense
we consider a quadratic cost on the control, which is the simplest and widest used
nonlinear representation of vaccination cost (see e.g. [2, 20, 21]). However it has
been argued that other nonlinear functions might provide a better description of
the actual vaccination cost, because of the increase of vaccination cost when most
of the population is already removed (vaccinated or immune), [15].

The limitation on u reflects the idea that there are practical limitations on the
maximum rate at which individuals who may be vaccinated in a given time period,
[15] and we will assume umax = 0.9.

Our problem may be addressed by using the Pontryagin’s maximum principle,
[30]. It is a constrained control problem, so we must minimize pointwise the Hamil-
tonian, [22]:

H(S,E, I,R, u, λ1, λ2, λ3, λ4, t) = AI(t) + u2(t) +

4∑
i=1

λi fi, (7)

where fi represents the right-hand size of the differential equation of the i-th variable
and λi are the adjoint variables.
The adjoint equations are given by:

λ̇1 = −∂H
∂S

= λ1 (kI + b+ u)− λ2kI − λ4u

λ̇2 = −∂H
∂E

= λ1pb− λ2 (pb− ε− b)− λ3ε

λ̇3 = −∂H
∂I

= −A+ λ1 (kS + qb)− λ2 (qb+ kS) + λ3 (σ + b)− λ4σ

λ̇4 = −∂H
∂R

= bλ4.

(8)

The state variables are not assigned at the final time tf so that we have the transver-
sality equations:

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0. (9)

In order to illustrate the characterization of the optimal control u∗, we consider the
optimality condition:

∂H

∂u
= 0,

at u = u∗, on the set {t ∈ [0, tf ] : 0 ≤ u ≤ 0.9}. That is:

u∗(t) = S∗(λ1 − λ4)/2,
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Symbol Description Value
b Natural birth rate 0.012 year−1

ε Progression rate from E to I 36.500 year−1

σ Progression rate from I to R 30.414 year−1

p Fraction of the offsprings from E born into E 0.65
q Fraction of the offsprings from I born into E 0.65
k Contact rate 527.59 ind−1 year−1

Table 1. Description of the epidemiological parameters used in the
simulations. See the text for details on the estimation.

and, taking into account the bounds on u∗, the characterization is:

u∗ =

 0 if S∗(λ1 − λ4) < 0
S∗(λ1 − λ4)/2 if 0 ≤ S∗(λ1 − λ4) ≤ 1.8
0.9 if S∗(λ1 − λ4) > 1.8.

which, in short form, may be written:

u∗(t) = min (max (0, S∗(λ1 − λ4)/2) , 0.9) .

The existence and the uniqueness of the optimal control, for small tf , is standard and
follows from the boundedness of the state and adjoint variables, the lipschitzianity
of the right sides of the ODEs (see, e.g., [21]). The convexity of the objective
functional in u ensures that it is a minimizing problem.

We may summarize our result in the following:

Theorem 3.1. There exists an optimal control u∗(t) and the corresponding so-
lution, S∗(t), E∗(t), I∗(t), R∗(t), and H∗, that minimizes (6) subject to (5),
0 ≤ u ≤ 0.9 and the initial conditions. Furthermore, there exist adjoint functions
λi(t), i = 1, 2, 3, 4, that are solutions of (8) with transversality conditions (9).

4. A simulation of rubella vaccination strategies.

4.1. Estimation of epidemiological parameters. In a recent paper, [16], Gao
and Hethcote considered an age structured model to evaluate the dynamics of
rubella over time in China, under various scenarios of vaccination or non-vaccination.
We will estimate our epidemiological parameters by using data from their paper (un-
less otherwise stated). In this way we test our theoretical findings on the same case
study in China.
• Natural birth rate, b: the crude birth rate for China in 2007 was 12.10 per 1,000
people per year, [10]. The crude death rate was 6.93 per 1,000 people per year,
resulting in a natural growth rate of 5.17 per 1,000 people per year. However,
here we assume that both birth and death rate have the same value, altough this
hypothesis is not strictly necessary for our analysis. We do that for two main
reasons: first, this is a specific assumption on which the original model is based,
[23]. Then, we will consider a quite short vaccination campaign (3 years) so that
the total population may be considered to be approximately constant. We take
b = 0.012 per year.
• Rate at which the exposed individuals become infectious, ε: the mean residence
time for the exposed (latent) class, i.e. the time from exposure to infectiousness, is
1/ε=10 days. So we take ε = 365/10 = 36.5 per year.
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Figure 1. Without vaccination, solutions of model (5) converge to the
endemic state (10), in agreement with Theorem 2.1. Here the conver-
gence is depicted in the S − I plane. The equilibrium is a stable focus.
The simulation is performed with parameter values given in Table 1 and
initial data S0 = 5 · 10−2, E0 = 3 · 10−4, I0 = 3 · 10−4, ρ0 = 0.9494.

• Rate at which the infectious individuals recover, σ: the mean residence time in
the infectious class for rubella, i.e. the average infectious period, is 1/σ=12 days.
So we take σ = 365/12 = 30.417 per year.
• Fractions p and q of the offspring from the exposed and infectious class that
are born into the Exposed class E: the risk of congenital defects varies with the
gestational age at which maternal infection occurs. It has been reported to be
90% when maternal infection/exposure occurs before 11 weeks of gestation, 33%
at 11-12 weeks, 11% at 13-14 weeks, 24% at 15-16 weeks, and 0% after 16 weeks,
[14, 28]. According to this report, in [11] it is estimated the risk of congenital rubella
syndrome (CRS) after infection in the first sixteen weeks of pregnancy to be 65%,
and zero after infection later in pregnancy.

Here, the age is not taken into account. Furthermore, we do not distinguish
between CRS cases coming from exposed and infected mothers. Hence, we take
p = q = 0.65.
• Contact rate, k: In [16] several values for the rubella force of infection are reported
for different age groups. The average for people between 0 and 50 years is 0.196 per
year. In (5) the force of infection is modelled as a linear term kI, where k is the
contact rate. Hence, at the endemic state, taking into account of (4), it is:

k
ε b (R0 − 1)

(b+ ε)(b+ σ)R0
= 0.196,

i.e., in view of (3),

k = 0.196
(b+ ε)(b+ σ)

εb
+

[(b+ ε)(b+ σ)− bp(b+ σ)− bqε]
ε

.

The values above for b, ε, σ, p, q, drive to k = 527.59 per individual per year (and,
consequently, R0 = 17.34).
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Figure 2. The solid lines represent the dynamics of model (5) with
A = 100. The dashed lines correspond to the equilibrium solution in
absence of control, i. e. the endemic equilibrium of model (1). The
others parameter values are given in Table 1. The initial data are: S0 =
5.767 · 10−2, E0 = 3.1 · 10−4, I0 = 3.7 · 10−4, ρ0 = 0.94165.

The values above are summarized in Table 1. With this choice, according to The-
orem 2.1, in absence of vaccination the disease will reach the endemic equilibrium
P ≡ (S,E, I), where:

S ≈ 0.05767; E ≈ 3.08 · 10−4; I ≈ 3.70 · 10−4, (10)

and R = 1 − S − E − I ≈ 0.94165. This endemic equilibrium will be reached
whatever be the initial state of the system.

4.2. Numerical settings. The optimality system is numerically solved by using
the so called forward-backward sweep method, described in detail in [22]. The pro-
cess begin with an initial guess on the control variable. Then, the state equations
are solved simultaneously forward in time, and next the adjoint equations are si-
multaneously solved backward in time. The control is updated by inserting the new
values of states and adjoints into its characterization, and the process is repeated
until convergence occurs. As in [22], the solver used for the state and adjoint sys-
tems is a Runge-Kutta fourth order procedure. A MATLAB code, [27], has been
built to perform the simulations. The code is similar to the one used in [22] for a
generic SEIR epidemic model.

4.3. Discussion. Our first simulation is depicted in Figure 1. It is shown that,
according to Theorem 2.1, without vaccination, solutions of model (5) converge to
the endemic state (10). The convergence is depicted in the S − I plane and it can
be seen that the equilibrium is a stable focus. In other words, the state variables
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Figure 3. Infectious (on the left) and Vaccination rate (on the right)
versus time. The solid lines correspond to the case A = 100, the dotted
line to the case A = 30. The straight line in the left picture is the
equilibrium solution. The others parameter values are given in Table 1.
The initial data are: S0 = 5.767 · 10−2, E0 = 3.1 · 10−4, I0 = 3.7 · 10−4,
ρ0 = 0.94165.

approach the endemic state through dumped oscillations. The simulation is per-
formed with parameter values given in Table 1 and generic initial data (specified in
the caption of Figure 1).

According to World Health Organization data statistics, [35], the reported cases
of rubella in China are increasing in the last years. There were 24,015 reported cases
in 2004, that jumped to 74,746 in 2007 and 120,354 in 2008. According to (5), with
parameter values given in Table 1, the cases will increase until the endemic state
(10) will be reached, which corresponds to I∗ ≈ 3.70 · 10−4, that is to say, taking
into account of a total population of 1.3 · 109 individuals, that 481,000 infected
individuals are expected at the endemic state.

We test the optimal vaccination strategy at the endemic state in order to empha-
size the effects of optimal vaccination on system dynamics. Hence, in the second
simulation, model (5) is considered with a non negative vaccination term, which is
the control variable. The optimal control problem is to minimize the total number
of infectious individuals and the cost associated with vaccination.
The results for a three-years campaign are shown in Figure 2.

We first note that the vaccination rate is at the highest possible value in the
first stage of vaccination campaign. This result is in agreement with the remark
made in [15], where a similar optimal vaccination policy was observed for several
different epidemic model with SIR and SEIR structure. The authors found that
regardless of the disease structure, vaccinate at the highest possible rate as early as
possible is essential for controlling an epidemic. We also remark that the optimal
control profile depicted in Figure 2 is similar to that observed in [2] for an SIR
metapopulation model.

According to the optimal strategy, the infectious can be reduced up to 75%
around the second year of campaign (see the infectious graph in Figure 2). At the
end of campaign, infectious and exposed both show an increasing trend, due to the
immission of new susceptibles. However they are more or less the half of those
who were at the beginning. This result can be helpful to plan periodic vaccination
campaigns.
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We used relatively big value of the balancing factor A, to empasize how the
relative cost of vaccination plays a relevant role in the vaccination strategy. By
reducing the parameter A, we observe that the maximum vaccination rate shifts on
the right in the optimal control profile (Figure 3, right). Hence, if the vaccination
cost is relatively high, a gradual increase of the vaccination rate is suggested. Of
course, higher is the priority of cost reduction, lower is the efficacy of the campaign
on disease burden (Figure 3, left).

5. Conclusions. In this note, the SEIR epidemic model with vertical transmission
introduced by Li, Smith and Wang, [23], and analysed in [12, 23, 25], is applied to
epidemic spread of rubella in China. To our knowledge, this model has never been
tested before with real data. We perform the optimal control approach described
in [22] and test our theoretical findings to simulate simple scenarios for rubella
vaccination strategies.

Our application is somewhat inspired by the simulations of rubella vaccination
strategies by Gao and Hethcote, [16] and we use some of their epidemiological
parameter values. Our first result is that in absence of vaccination a strong increase
of total rubella cases in China, up to 225%, is predicted by model (5). On the other
hand, in [16] it has been observed that an unsufficient vaccination campaign may
drive the total CRS incidence in China to be more than twice the current level.
Furthermore, Gao and Hethcote find that routine vaccination coverage of over 80%
of 1-year old children may sensibly reduce the CRS cases and eliminate rubella in
fifty years. Moreover, a mass vaccinations combined with routine vaccinations may
help to accelerate the eradication of rubella. Taking into account of chinese total
population of 1.3·109 individuals, and that the percentage of 1-years old children
in 2000 was 0.01 (chinese age distribution in F! igure 2 in [16]), we can estimate
that at least 10.4·106 vaccinations are needed to obtain the eradication predicted in
[16]. Here, in the case A = 100, we get a maximum initial vaccination rate of 0.137
(approximately, see Figure 3) with a suceptibles endemic level of 0.05767, so that
at least 10.27·106 vaccinations are required at the beginning of the campaign, if it
starts when the infection is at its endemic state. This result is comparable with the
one obtained in [16]. However the comparison with the studies done in [16] cannot
go further. In fact, Gao and Hethcote have considered an age structured model and
the analysis is extended for a larger time span. Model (5) does not consider age
groups, however the optimal control approach can give a qualitative insight on short
term vaccination strategies. In particular, we have seen how optimal strategies may
be scheduled over a three years campaign, to reduce the disease burden when it is
at its endemic state.

There are several directions to improve our analysis. First of all, the model intro-
duced in [23], used here, does not take into account of population subcompartments,
which are of big importance for diseases like rubella (pregnant women, childrens,
etc.). This reduce the accuracy of our results but they are still readable, at least
qualitatively. Furthermore, in the optimal strategy may be also important to con-
sider treatment explicitly. Indeed, as shown in [15], treatment may be a valuable
resource in decreasing the infectious so that, in turn, it may have a great effect
on vaccination strategies. Even if this aspect is not relevant for rubella, because
there is no specific treatment and cure generally consists of rest and medication for
symptoms, a two-controls problem may be a further way to investigate model (1)
when it is applied to other vertically transmitted diseases. Finally, the inclusion of
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seasonality may be appropriate for this model. For example, several diseases are
driven by the seasonally changing contact rate between children which increases
sharply at the beginning of each school year, and strongly controls the ensuing
disease transmission, [32]. These aspects will be considered in forthcoming works.
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