
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.659
AND ENGINEERING
Volume 8, Number 3, July 2011 pp. 659–676

A NOTE ON THE REPLICATOR EQUATION WITH EXPLICIT

SPACE AND GLOBAL REGULATION

Alexander S. Bratus

Applied Mathematics–1, Moscow State University of Railway Engineering
Obraztsova 9, Moscow, 127994, Russia

Vladimir P. Posvyanskii

Applied Mathematics–1, Moscow State University of Railway Engineering
Obraztsova 9, Moscow, 127994, Russia

Artem S. Novozhilov

Applied Mathematics–1, Moscow State University of Railway Engineering

Obraztsova 9, Moscow, 127994, Russia

(Communicated by Stephen Gourley)

Abstract. A replicator equation with explicit space and global regulation is
considered. This model provides a natural framework to follow frequencies of

species that are distributed in the space. For this model, analogues to classical

notions of the Nash equilibrium and evolutionary stable state are provided. A
sufficient condition for a uniform stationary state to be a spatially distributed

evolutionary stable state is presented and illustrated with examples.

1. Preliminaries and notation. The general replicator equation comprises well-
established biomathematical models that arise in quite distinct evolutionary con-
texts (see, e.g., [17, 18, 25]). In particular, this equation appears in the areas of the-
oretical population genetics (e.g., [17, 26]), prebiotic molecular evolution [5, 6, 12],
and evolutionary game theory [18, 22, 27].

Arguably, one of the simplest replicator equations takes the form

v̇i = vi
[
(Av)i − f loc(t)

]
, i = 1, . . . , n. (1)

Here v = v(t) = (v1(t), . . . , vn(t)) ∈ Rn is a vector-function of n variables, A
is a constant n × n matrix with elements aij ∈ R, (Av)i is the i-th element of
the vector Av, (Av)i =

∑n
i=1 aijvj(t), f

loc(t) is a function, which is determined
later, and dot, as usual, is used to denote differentiation with respect to the time
variable t. It is customarily supposed that vi(t) describes a relative abundance of
the i-th species such that the total concentration

∑n
i=1 vi(t) is kept constant and

often equal, without loss of generality, to 1. Therefore, the state space of (1) is the
simplex Sn = {v :

∑n
i=1 vi(t) = 1, vi(t) ≥ 0, i = 1, . . . , n}, which is invariant under

(1) if we set f loc(t) = 〈Av, v〉 =
∑n
i=1(Av)ivi, so that 〈· , ·〉 denotes the usual
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scalar product in Rn. Since (Av)i gives the net rate of growth of the i-th species
in our system, the quantity (Av)i is termed as the Malthusian fitness, and hence
f loc(t) represents the average fitness of the population at time t.

System (1) is a very well studied object, see, e.g., [8, 17, 18]. Very briefly, the
rest points of (1) are given by the solutions to the following system

(Av)1 = (Av)2 = . . . = (Av)n = 〈Av, v〉 = β, v ∈ Sn. (2)

In general, (2) can have no solutions in intSn = {v :
∑n
i=1 vi = 1, vi > 0, i =

1, . . . , n}, a unique solution, or infinitely many solutions. The necessary condition
to have a solution to (2) is the linear dependence of the rows of A, which we denote
Ai, and the vector 1n = (1, 1, . . . , 1):

µ01n +

n∑
i=1

µiAi = 0, µ0 6= 0,

n∑
i=1

µi 6= 0.

A natural way to derive the replicator equation (1) from the first principles is to
start with a selection system of the form

ẏi = Fi(v)yi, i = 1, . . . , n, (3)

where y = (y1(t), . . . , yn(t)) ∈ Rn+ is a vector of absolute sizes, and Fi(v) denotes
the Malthusian fitness (the per capita birth rate) of species yi, which can depend
on the structure of the total population at the time t. Assuming that y does not
tend to zero, the change of the variables vi = yi/(

∑n
i=1 yi) leads to the replicator

equation (1), if Fi(v) = (Av)i. Therefore, it is equivalent to study the selection
system (3) or the replicator equation (1) (see [20, 21] for more details).

As it was mentioned, the replicator equation (1) naturally arises in the evolu-
tionary game theory (for the origin, see [22, 23]). There exists a parallel between
the concepts of the game theory with a payoff matrix A and the behavior of the
solutions to the replicator equation (1) [17]. In particular, one of the central notions
of the game theory, the Nash equilibrium v̂, is defined as such v̂ ∈ Sn for which

〈v, Av̂〉 ≤ 〈v̂, Av̂〉 (4)

for any v ∈ Sn; and an evolutionary stable state (ESS) v̂ ∈ Sn is defined as

〈v̂, Av〉 > 〈v, Av〉 (5)

for any v 6= v̂ in a neighborhood of v̂ ∈ Sn.
It can be shown (see [17] for the details and proofs) that if v̂ is a Nash equilibrium

of the game with payoff matrix A, then v̂ is a rest point of (1). Moreover, if v̂ is a
rest point of (1) and Lyapunov stable, then it is a Nash equilibrium; and if v̂ is an
ESS, then it is an asymptotically stable rest point of (1).

We remark that model (1) is a system of ordinary differential equations (ODE),
i.e., it is a mean-field model. A significant attention was drawn to the replicator
equation in the case when heterogeneous spatial structure can be included into the
model formulation [11]. One of the suggested solution was spatially explicit models
(see [1, 2, 10] for the models of molecular evolution). In general, there are several
different approaches to include spatial structure into the replicator equation. The
solution to the problem when all the diffusion rates are equal is straightforward:
in this case, following the ecological approach, we can just add the Laplace op-
erator to the right hand sides of (1) (this was used, e.g., in [14, 16]). However,
the assumption of the equal diffusion rates would be too stringent in the general
situation. To overcome this problem, Vickers et al. [8, 19, 28] introduced a special
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form of the population regulation to allow for different diffusion rates. In these
works a nonlinear term is used that provides a local regulation of the populations
under question to keep the total population size constant, although no particular
biological mechanism is known that lets individuals adapt their per capita birth and
death rates to local circumstances [13]. A more straightforward approach, in our
view, would be to start with a spatially explicit selection system of the form

∂yi
∂t

= Fi(v)yi + di∆yi, i = 1, . . . , n

and apply transformation vi = yi/(
∑n
i=1

∫
Ω
yi dx). Here yi = yi(x, t), x ∈ Ω ⊂ Rm,

and di > 0, i = 1, . . . , n, are diffusion coefficients. This approach is similar to the
lines how the replicator equation (1) can be obtained from (3). In this way, assuming
impenetrable boundary of the area Ω, we automatically obtain the condition of the
global population regulation

n∑
i=1

∫
Ω

vi(x, t) dx = 1,

which was considered in some earlier works on the mathematical models of the
prebiotic molecular evolution [3, 4, 5, 6, 29]. Here we extend this approach to the
general replicator equation.

The rest of the paper is organized as follows. In Section 2 the model formulation
is presented, together with some additional definitions and notation. Section 3 is
devoted to stability analysis of spatially homogeneous equilibria of the distributed
replicator equation. In Section 4 we formulate possible extensions of the notions
of the Nash equilibrium and ESS for our spatially explicit model and present some
consequences of the new definitions. In Section 5 we derive sufficient conditions for
a distributed ESS along with some illustrative examples.

2. Replicator equation with explicit space. Let Ω be a bounded domain, Ω ∈
Rm, m = 1, 2, or 3, with a piecewise-smooth boundary Γ. In the following we
assume, without loss of generality, that the volume of Ω is equal to 1, i.e.,

∫
Ω
dx=1.

A spatially explicit analogue to (1) is given by the following reaction-diffusion system

∂tui = ui [(Au)i − fsp(t)] + di∆ui, i = 1, . . . , n, t > 0. (6)

Here ui = ui(x, t), x ∈ Ω, ∂t = ∂
∂t , ∆ is the Laplace operator, in Cartesian coor-

dinates ∆ =
∑m
k=1

∂2

∂x2
k
, A is a given constant matrix, and di > 0, i = 1, . . . , n are

the diffusion coefficients. The initial conditions are ui(x, 0) = ϕi(x), i = 1, . . . , n,
and the form of fsp(t) will be determined later.

It is natural to assume that we consider closed systems (see also [29]), i.e., we
have the boundary conditions

∂nui|x∈Γ =
∂ui(x, t)

∂n

∣∣∣∣
x∈Γ

= 0, t > 0, i = 1, . . . , n, (7)

where n is the normal vector to the boundary Γ.
As it was discussed in Section 1, the global regulation of the total species con-

centrations occurs in the system, such that

n∑
i=1

∫
Ω

ui(x, t) dx = 1 (8)
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for any time moment t. This condition is analogous to the condition for the constant
concentration in the finite-dimensional case [17]. From the boundary condition (7)
and the integral invariant (8) the expression for the function fsp(t) follows:

fsp(t) =

n∑
i=1

∫
Ω

ui(Au)i dx =

∫
Ω

〈Au, u〉 dx. (9)

Suppose that for any fixed x ∈ Ω each function ui(x, t) is differentiable with
respect to variable t, and belongs to the Sobolev space W 1

2 (Ω) if m = 1 or W 2
2 (Ω) if

m = 2, 3 as the function of x for any fixed t > 0. Here W k
2 , k = 1, 2 is the space of

functions, which have square integrable derivatives with respect to x ∈ Ω up to the
order k. Note, that from the embedding theorem (e.g., [7, 24]) we have that any
function from the space W k

2 (Ω) is continuous, except possibly on the set of measure
zero, and this continuity is used in some proofs below.

Denote Ωt = Ω× [0,∞) and consider the space of functions B(Ωt) with the norm

‖y‖B = max
t≥0

{
‖y(x, t)‖Wk

2
+ ‖∂y

∂t
(x, t)‖Wk

2

}
.

Hereinafter we denote Sn(Ωt) the set of non-negative vector-functions u(x, t),
ui(x, t) ∈ B(Ωt), i = 1, . . . , n, which satisfy (8), and we use the notation intSn(Ωt)
for the set of functions u(x, t) ∈ Sn(Ωt) for which ui(x, t) > 0, i = 1, . . . , n.

We consider weak solutions to (6), i.e., the solutions should satisfy the integral
identity∫ ∞

0

∫
Ω

∂ui
∂t

η dxdt =

∫ ∞
0

∫
Ω

ui [(Au)i − fsp(t)] η dxdt− di
∫ ∞

0

∫
Ω

〈∇ui,∇η〉 dxdt

for any function η = η(x, t) on compact support, which is differentiable on [0,∞)
with respect to t and belongs to the Sobolev space W 1

2 (Ω) for any fixed t > 0.
Remark that generally system (6) is not a “system of differential equations”

because its right-hand side contains functional (9).
The steady state solutions to (6) can be found as the solutions to the following

elliptic problem

di∆wi + wi [(Aw)i − fsp] = 0, i = 1, . . . , n (10)

with the boundary conditions ∂nwi(x) = 0 on Γ. Here wi(x) ∈W k
2 (Ω).

The integral invariant (8) now reads

n∑
i=1

∫
Ω

wi(x)dx = 1. (11)

The set of all non-negative vector-functions w(x) = (wi(x), . . . , wn(x)), wi(x) ∈
W k

2 (Ω), i = 1, . . . , n, that satisfy (11) is denoted Sn(Ω). Using (11) and (10) we
obtain that

fsp =

∫
Ω

〈Aw, w〉 dx, (12)

i.e., fsp is a constant. The rest points of (1) are spatially homogeneous solutions
to (10); the converse also holds: any spatially homogeneous solution to (10) is
a rest point of (1). In [5, 6] we proved that for sufficiently small values of the
diffusion coefficients di there exist non-homogeneous solutions to (10) in the case
(Au)i = kiui and (Au)i = kiui−1 for arbitrary positive constants ki (these are
autocatalytic and hypercyclic systems, respectively, for more details see [5, 6]).
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Here we undertake a task to investigate the stability of spatially homogeneous
solutions to (6), which can differ from the stability of the rest points of the local
system (1) due to the explicit space in the model. We also consider the conditions
necessary for spatially non-homogeneous solutions to appear. And yet another pur-
pose is to transfer the definitions of the Nash equilibria and ESS for the distributed
system (6)-(8) and apply these concepts to study the asymptotic behavior of (6).

3. Stability of spatially homogeneous equilibria. We start with the standard
definition that is used extensively throughout the text.

Definition 3.1. A stationary solution ŵ(x) ∈ Sn(Ω) to (10) is Lyapunov stable if
for any ε > 0 there exists a neighborhood

Uδ =
{
w(x) ∈ Sn(Ω):

n∑
i=1

‖ŵi(x)− wi(x)‖2Wk
2 (Ω) < δ2

}
of ŵ(x) that for any initial data of (6) from Uδ it follows that

n∑
i=1

‖ui(x, t)− ŵi(x)‖2B(Ωt)
≤ ε2 (13)

for any t ≥ 0.
If in (13) the left hand side tends to zero, then ŵ(x) is asymptotically stable.

In Definition 3.1 ui(x, t), i = 1, . . . , n, are the corresponding solutions to (6) with
the initial data wi(x) ∈ U δ, i = 1, . . . , n.

Consider the following eigenvalue problem

∆ψ(x) + λψ(x) = 0, x ∈ Ω, ∂nψ|x∈Γ = 0. (14)

The eigenfunction system of (14) is given by ψ0(x) = 1, {ψi(x)}∞i=1 and forms a
complete system in the Sobolev space W 2

2 (Ω) (e.g., [24]), additionally

〈ψi(x), ψj(x)〉 =

∫
Ω

ψi(x)ψj(x) dx = δij , (15)

where δij is the Kronecker symbol. The corresponding eigenvalues satisfy the con-
dition

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . , lim
i→∞

λi = +∞.

The following theorem gives a necessary condition for a spatially homogeneous
solution to (6) be asymptotically stable, if the corresponding rest point of (1) is
asymptotically stable.

Theorem 3.2. Let v̂ ∈ intSn be an asymptotically stable rest point of (1). Then
for this point to be an asymptotically stable homogeneous stationary solution to (6)
it is necessary that

n∑
i=1

di >
β

λ1
, β = 〈Av̂, v̂〉, (16)

where λ1 is the first non-zero eigenvalue of (14).

Proof. Remark that if v̂ is Lyapunov stable then v̂ is a Nash equilibrium of the
game with the payoff matrix A. Consider the solutions to (6)–(8) assuming that
the Cauchy data are perturbed:

ui(x, 0) = ϕi(x) = v̂i + w0
i (x), i = 1, . . . , n,
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where w0
i (x) ∈W k

2 (Ω) such that
∑n
i=1 ‖w0

i (x)‖2
Wk

2 (Ω)
≤ δ2, δ > 0.

Let us look for a solution to (6)–(8) in the form

ui(x, t) = v̂i + wi(x, t), wi(x, t) = ci0(t) +

∞∑
k=1

cik(t)ψk(x), i = 1, . . . , n, (17)

which is always possible since the eigenfunctions ψi(x) of (14) form a complete
system in W k

2 (Ω). cik(t), k = 1, 2, 3, . . . , i = 1, . . . , n are smooth functions of t.
Note that w0

i (x) = wi(x, 0), i = 1, . . . , n. The spatially homogeneous equilibrium v̂
is stable if cik(t)→ 0, t→∞ for all i and k.

Due to the fact that
n∑
i=1

∫
Ω

ui(x, t) dx =

n∑
i=1

v̂i = 1,

we have from (14) that
n∑
i=1

ci0(t) = 0. (18)

Substituting (17) into (6) and retaining in the usual way only linear terms with
respect to wi we obtain the following equations:

dci0(t)

dt
= v̂i [(Ac0)i − 〈Aτ v̂, c0〉]− v̂i〈Av̂, c0〉+ ci0(t) [(Av̂)i − 〈Av̂, v̂〉] , (19)

for i = 1, . . . , n. Here c0 = (c10(t), . . . , cn0 (t)), and τ denotes transposition. From (2)
it follows that the last term in (19) is zero. From (4) and (18) we also have that

〈Av̂, c0〉 =

n∑
i=1

ci0(t)(Av̂)i = β

n∑
i=1

ci0(t) = 0.

Therefore, we obtain that

dci0(t)

dt
= v̂i [(Ac0)i − 〈Aτ v̂, c0〉] , i = 1, . . . , n. (20)

System (20) is linear, with the matrix Q = ‖qij‖i,j=1,...,n with the elements

qij = aij v̂i − (Aτ v̂)iv̂i, i, j = 1, . . . , n, (21)

which coincides with the Jacobi matrix of (1) at the rest point v̂. Due to the
assumptions the rest point of (1) is asymptotically stable, therefore the trivial
stationary point of (20) is also asymptotically stable.

Multiplying equations (6) consequently by ψk(x), k = 1, 2, . . . and retaining only
linear terms, after substituting (17) into (6), we obtain

dcik(t)

dt
= v̂i(Ack)i − λkdicik(t), k = 1, 2, . . . , i = 1, . . . , n, (22)

where ck = (c1k(t), . . . , cnk (t)), λk are the eigenvalues of (14). Linear system (22)
has the matrix Rk with the elements

rkij = aij v̂i − λkdiδij ,

where δij is the Kronecker symbol. From (21) and the last expressions we have that

rkij = qij + (Aτ v̂)iv̂i − λkdiδij .
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System (20) is stable, hence tr Q =
∑n
i=1 qii < 0. On the other hand

tr Rk = tr Q + 〈Av̂, v̂〉 − λk
n∑
i=1

di < β − λ1

n∑
i=1

di,

therefore tr Rk is negative if (16) holds, which completes the proof.

Remark 1. Theorem 3.2 gives only a necessary condition for the homogeneous
rest point to be asymptotically stable. It is possible to specify the necessary and
sufficient conditions for a particular case n = 2. In this case we have

A =

(
a11 a12

a21 a22

)
.

System (1) has an asymptotically stable equilibrium v̂ = (v̂1, v̂2) ∈ intS2 if and
only if

a11 < a21, a22 < a12.

Denoting c1 = a11 − a21 < 0, c2 = a22 − a12 < 0, ∆ = a11a22 − a12a21, we have

v̂1 =
c2

c1 + c2
, v̂2 =

c1
c1 + c2

.

System (22) has the matrix

Rk =

(
a11v̂1 − λkd1 a12v̂1

a21v̂2 a22v̂2 − λkd2

)
.

For the equilibria to be stable we need first that tr Rk < 0, which is equivalent to

2∑
i=1

di >
1

λ1

(
β − c1c2

c1 + c2

)
. (23)

Condition (23) is a generalization of (16) since c1c2/(c1 + c2) < 0.
The second condition is det Rk > 0, or

d1d2λ
2
k − λk(d1a22v̂2 + d2a11v̂1) + ∆v̂1v̂2 > 0. (24)

If (d1a22v̂2 + d2a11v̂1)2 > 4d1d2∆v̂1v̂2 then (24) is satisfied. The last inequality is
equivalent to

∆ > 0, a12a21 ≤ 0. (25)

In the case ∆ < 0 the condition for the replicator equation (6) to have asymp-
totically stable equilibrium is that the largest root of the quadratic equation

d1d2λ
2 − λ(d1a22v̂2 + d2a11v̂1) + ∆v̂1v̂2 = 0

should satisfy the condition

λ∗ < λ1. (26)

Therefore the necessary and sufficient conditions for the homogeneous rest point
û ∈ intS2(Ω) be asymptotically stable are the conditions (23) and (25) or the
conditions (23) and (26).

Consider for example the simplest hypercycle equation with

A =

(
0 a12

a21 0

)
.

Here we have that condition (23) is always satisfied. The condition det Rk > 0 can
be written as

d1d2λ
2
k > a12a21v̂1v̂2.
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If this condition does not hold then, as was shown in [6] for the general n-dimensional
case, the inner rest point becomes unstable.

If Ω is one-dimensional, then for the cases (Au)i = kiui and (Au)i = kiui−1 there
exist non-uniform steady state solutions to (10)–(12) (see [4, 6]). More precisely, a
necessary condition for such a solution to exist is

d =

n∑
i=1

di
ki
<

1

π2
.

We note that π2 is the first non-zero eigenvalue of (14) when Ω = [0, 1]. Remark that
this condition is a particular case of the general condition (16), and we conjecture
that the same situation occurs in the general case.

The natural question is whether non-uniform stationary solutions appear in the
general case (6). Here we show that, at least for some matrices A, system (6)
possesses non-uniform steady state solutions.

We rewrite (10) in the form

dwi
dx

= pi,

di
dpi
dx

= −wi [(Aw)i − fsp] ,
(27)

for any i = 1, . . . , n. The initial data are

pi(0) = w′i(0) = 0. (28)

We assume that matrix A is such that Aw > 0 for any w > 0.
System (27) is conservative, its rest points (ŵ, p̂) can be found from

p̂i = 0, (Aŵ)i = β, β = 〈Aŵ, ŵ〉, i = 1, . . . , n,

therefore ŵ is a rest point of (1). Consider the Jacobi matrix of (27) evaluated at
the rest point (0, ŵ):

J =

(
0 I

−Jld 0

)
,

where 0 is the n× n zero matrix, I is the n-dimensional identity matrix, and Jld is
the Jacobi matrix of (1) at the rest point v̂ = ŵ when i-th row divided by di for
each row. The eigenvalues of J are the roots of the equation

λ2n + det Jld = 0, det Jld = (d1 · . . . · dn)−1 det Jl,

where det Jl is the determinant of the Jacobi matrix of (1) at v̂. if det Jl < 0 then

for any n ≥ 2 the last equation has pure imaginary roots. If det Jl > 0 then the
same is possible when n = 2k + 1, k = 1, 2, . . .

Let us introduce the following sets in the phase space:

Σ = {p ∈ Rn : pi = 0, i = 1, . . . , n},
U− = {w ∈ Sn : (Aw)i − fsp < 0, i = 1, . . . , n},
U+ = {w ∈ Sn : (Aw)i − fsp > 0, i = 1, . . . , n},

Π = {w ∈ Sn : wi = v̂i, i = 1, . . . , n}.
From (28) it follows that at the initial “time” the orbit of the system (27) belongs

to Σ. Suppose that w(0) ∈ U−. Then the second equation in (27) yields that
functions pi(x) increase as x increases, and therefore pi(x) > 0, x > 0, i = 1, . . . , n.
From the condition on A it follows that (Aw(0))i < (Aw(x))i, x > 0 and therefore
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Figure 1.

the values (Aw(x))i − fsp decrease as x increases, hence w(x) has to cross the
hyperplane Π where (Aw(x))i = fsp, i = 1, . . . , n. After that, the solution gets
into the set U+, which implies that pi(x), i = 1, . . . , n are decreasing and w(x) are
increasing. Therefore there exists such value x∗i such that pi(x

∗
i ) = w′i(x

∗
i ) = 0, i =

1, . . . , n (see Fig. 1).
The diffusion coefficients di characterize (n + i)−th component of the move-

ment speed along the phase trajectories. An increase (decrease) in values di corre-
sponds to the decrease (increase, respectively) in the movement speed of (n+ i)−th
component of the speed vector. Therefore, it is possible to find such values of
di, i = 1, . . . , n such that all x∗i = 1.

We remark that if we reduce values di twice this would mean that the phase
orbit again would reach Π (one cycle). Reducing di four times, we obtain the orbit
that makes two cycles in the state space, and so on. Therefore, from the discussion
above, it follows that system (10) can have non-uniform stationary solutions which
may possess an arbitrary number of oscillations (see a similar discussion in [6],
where some examples are given).

4. Dynamics of the distributed replicator equation.

Definition 4.1. We shall say that the vector function ŵ(x) ∈ Sn(Ω) is a distributed
Nash equilibrium if∫

Ω

〈u(x, t), Aŵ(x)〉 dx ≤
∫

Ω

〈ŵ(x), Aŵ(x)〉 dx (29)

for any vector-function u(x, t) ∈ Sn(Ωt), u(x, t) 6= ŵ(x).

Remark 2. Let ŵ ∈ Sn satisfy (29). Then ŵ is a Nash equilibrium in the game
with payoff A. Indeed,∫

Ω

〈u(x, t), Aŵ〉 dx = 〈ū(t), Aŵ〉, ūi(t) =

∫
Ω

ui(x, t) dx.

(8) implies that ū(t) ∈ Sn for any t. Therefore we have

〈ū, Aŵ〉 ≤ 〈Aŵ, ŵ〉,

which means that ŵ is a Nash equilibrium and therefore a rest point of (1).
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Theorem 4.2. If ŵ(x) ∈ intSn(Ω) is a Lyapunov stable stationary solution to (6)
then ŵ(x) is a distributed Nash equilibrium.

Proof. Due to the fact that ŵ(x) is Lyapunov stable, then, for any initial data
from a neighborhood Uδ of ŵ(x) in the space W k

2 (Ω), the corresponding solution
satisfies (13).

Suppose that ŵ(x) is not a distributed Nash equilibrium. Then, using continuity
of the scalar product, there exists an index i and constant ξ > 0 such that∫

Ω

(Au(x, t))i dx−
∫

Ω

〈Au(x, t), u(x, t)〉 dx > ξ (30)

for all u(x, t) ∈ intSn(Ωt) in a neighborhood of ŵ(x) ∈ intSn(Ω).
Let u(x, t) be a solution to (6). Then from (6) we obtain

d

dt
lnui(t) =

∫
Ω

[
(Au(x, t))i − 〈Au(x, t), u(x, t)〉

]
dx + di

∫
Ω

∆ui(x, t)

ui(x, t)
dx, (31)

where lnui(t) =
∫

Ω
lnui(x, t) dx. Using (7) we obtain∫

Ω

∆ui(x, t)

ui(x, t)
dx =

m∑
k=1

∫
Ω

1

u2
i (x, t)

(
∂ui(x, t)

∂xk

)2

dx ≥ 0. (32)

With the help of (30) and (32), it follows from (31) that

d

dt
(lnui(t)) > ξ > 0,

and hence
lnui(t) > ξt+ ki, i = 1, . . . , n.

As ui(x, t) > 0, and ln is a convex function, the integral Jensen’s inequality
implies that

lnui(t) ≤ ln ūi(t). (33)

Therefore,
ūi(t) > C0 exp{ξt}, t ≥ 0,

which is impossible because ŵ(x) is a Lyapunov stable solution to (6).

Definition 4.3. We shall say that ŵ(x) ∈ Sn(Ω) is a distributed evolutionary
stable state ( DESS) if∫

Ω

〈ŵ(x), Au(x, t)〉dx >
∫

Ω

〈u(x, t), Au(x, t)〉 dx (34)

for any u(x, t) ∈ Sn(Ωt) from a neighborhood of ŵ(x) ∈ Sn(Ω), u(x, t) 6= ŵ(x).

Let us introduce Definition 4.4.

Definition 4.4. Stationary solution ŵ(x) ∈ Sn(Ω) to (10) is stable in the sense of
the mean integral value if for any ε > 0 there exists δ > 0 such that for the initial
data ϕi(x) of system (6), which satisfy

|ϕ̄i − ˆ̄wi| < δ, i = 1, . . . , n,

where

ϕ̄i =

∫
Ω

ϕi(x) dx, ˆ̄wi =

∫
Ω

ŵi(x) dx,

it follows that
|ūi(t)− ˆ̄wi| < ε
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for any i = 1, . . . , n and t > 0.
Here ūi(t) =

∫
Ω
ui(x, t) dx and ui(x, t), i = 1, . . . , n are the solutions to (6),

u(x, t) ∈ Sn(Ωt).

From Definitions 3.1 and 4.4 it follows that stability in the mean integral sense
is weaker than Lyapunov stability. For instance, consider a simple example: let
g(x, t) ∈W 1

2 , x ∈ [0, 1] and can be represented as

g(x, t) = c0(t) +

∞∑
k=1

ck(t) cos kπx.

Let us suppose that c0(t) → 0 when t → ∞. Then ḡ(t) =
∫ 1

0
g(x, t) dx → 0 when

t → ∞, whereas ‖g(x, t)‖W 1
2

=
∑∞
k=1 c

2
k(t)(1 + k2π2) does not necessarily tend to

zero.

Theorem 4.5. Let ŵ ∈ intSn be a spatially homogeneous solution to (10) (i.e.,
ŵ ∈ intSn is a rest point of (1)). If ŵ is DESS then ŵ is an asymptotically stable
solution to (6) in the sense of the mean integral value.

Proof. Consider the set of function u(x, t) ∈ Sn(Ωt) belonging to a neighborhood
Uδ of ŵ in the space B(Ωt). Define the functional

V (u(t)) =

n∑
i=1

ŵi

∫
Ω

lnui(x, t) dx =

n∑
i=1

ŵilnui(t) .

We can always choose U δ such that ui(x, t) > 0 for all i because ŵi > 0. Using (32)
we obtain

d lnui
dt

≥
∫

Ω

(Au)i dx−
∫

Ω

〈Au, u〉 dx, u ∈ U δ,

where we suppress the dependence on t and x for simplicity. From (34) we have
that

dV

dt
= V̇ ≥

n∑
i=1

ŵi

∫
Ω

(Au)i dx−
∫

Ω

〈Au, u〉 dx =

=

∫
Ω

〈ŵ, Au〉 dx−
∫

Ω

〈Au, u〉 dx > 0, u ∈ U δ.

The functional V is bounded. Indeed, applying Jensen’s inequality for sums

n∑
i=1

pi ln qi ≤ ln

(
n∑
i=1

piqi

)
,

n∑
i=1

pi = 1, qi > 0,

we obtain ∫
Ω

n∑
i=1

ŵi ln
ui
ŵi

dx ≤ ln

∫
Ω

n∑
i=1

ui dx = ln 1 = 0.

Hence,

V (u) =

n∑
i=1

∫
Ω

ŵi lnui(x, t) dx =

n∑
i=1

ŵilnui(t) ≤
n∑
i=1

ŵi ln ŵi.

Since V̇ (u) > 0 for all u ∈ U δ then V is a strict Laypunov functional for (6) and
therefore

lim
t→∞

lnui(t) = ln ŵi, i = 1, . . . , n.
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From the last inequality and using (33) we have

lim
t→∞

ūi(t) ≥ ŵi, i = 1, . . . , n. (35)

If (35) is strict at least for one i, then

n∑
i=1

lim
t→∞

ūi(t) >

n∑
i=1

ŵi = 1

which is impossible since
n∑
i=1

ūi(t) = 1

for any t ≥ 0. This proves the theorem.

Remark 3. Let the conditions of Theorem 4.5 be met, then

lim
t→∞

fsp(t) ≥ lim
t→∞

f loc(t) = 〈ŵ,Aŵ〉. (36)

Indeed, in this case

lim
t→∞

∫
Ω

〈ŵ,Au(x, t)〉dx = lim
t→∞
〈ŵ,Aū〉 = 〈ŵ,Aŵ〉.

Using (34) we obtain (36).

5. Sufficient conditions for DESS. Application of the results obtained so far
for particular distributed replicator systems reduces to the problem of checking
conditions for DESS for spatially homogeneous stationary solution ŵ ∈ intSn.

Let us introduce the following function

M(t) =

∫
Ω

〈u(x, t),Au(x, t)〉 dx−
∫

Ω

〈ŵ,Au(x, t)〉 dx. (37)

If the stationary point ŵ ∈ intSn meets the conditions for DESS then M(t) < 0
in a neighborhood of ŵ in the space W k

2 (Ω) for functions u(x, t) ∈ Sn(Ωt) from
neighborhood of ŵ(x) in the space Sn(Ωt), such that u(x, t) 6= ŵ(x), x ∈ Ω, t ≥ 0.

Let

ui(x, t) = ŵi + c0i (t) +

∞∑
s=1

csi (t)ψs(x), i = 1 . . . , n, (38)

where ψs(x), s = 1, 2, . . . are the eigenfunctions of problem (14). Due to (8)

n∑
i=1

c0i (t) = 0. (39)

Functions c0i (t) are not equal to zero for t > 0 simultaneously since ū(t) 6= ŵ.
Additionally, from

0 ≤
∫

Ω

ui(x, t) dx = ūi(t) = ŵi + c0i (t) ≤ 1,

it follows that

−ŵi ≤ c0i (t) ≤ 1− ŵi, i = 1, . . . , n,

i.e., these functions are bounded, which implies that there exists δ > 0 such that

|c0(t)|2 =

n∑
i=1

|c0i (t)|2 ≥ δ2 > 0. (40)
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Let us fix ε > 0 and consider an ε-neighborhood of point ŵ in W k
2 (Ω). From the

embedding theorems

‖u(x, t)− ŵ‖2L2(Ω) ≤ K‖u(x, t)− ŵ‖2Wk
2 (Ω) ≤ K1ε

2,

where K, K1 are positive constants. This means that

‖u(x, t)− ŵ‖2L2(Ω) = (c0i (t))
2 +

∞∑
s=1

(csi (t))
2 ≤ K1ε

2. (41)

Theorem 5.1. The stationary point ŵ ∈ intSn is a DESS if

〈Ac0(t), c0(t)〉 ≤ −γ2|c0(t)|2, γ > 0 (42)

for any c0(t) satisfying (39)

Proof. After inserting (38) into (37) we obtain

M(t) = 〈Ac0(t), c0(t)〉+

∞∑
s=1

〈Acs(t), cs(t)〉 − 〈c0,Aŵ〉.

Since ŵ ∈ Sn is a stationary state, then

(Aŵ)1 = . . . = (Aŵ)n = β,

therefore, using (39),

〈c0,Aŵ〉 =

n∑
i=1

(Aŵ)ic
0
i = β

n∑
i=1

c0i (t) = 0.

On the other hand,

|〈Acs(t), cs(t)〉| ≤ K2|cs(t)|2, K2 > 0,

and, using (42), we obtain

M(t) < −γ2|c0(t)|2 +K2

∞∑
s=1

|cs(t)|2.

Using (40) and (41) we arrive at the estimate

M(t) < (−γ2δ2 +K1K2ε
2).

If ε < γδ/
√
K1K2, then M(t) < 0.

Remark 4. In the case of replicator equations with symmetric A condition (42)
means that each orbit converges to the stationary point ŵ ∈ intSn [17].

Example 5.1. Consider system (6) with the matrix

A =

(
a b
c d

)
, a < c, d < b.

We have
〈Ac0(t), c0(t)〉 = −(c01)2(b− a+ c− d),

and hence condition (42) is satisfied if γ2 = b− a+ c− d > 0.
In Fig. 2 some numerical calculations are presented for the case when

A =

(
0.8 1.1
1.2 0.9

)
.

The diffusion coefficients are d1 = 0.03, d2 = 0.02. In this case (16) is not satisfied
and there are spatially heterogeneous stationary solutions to the system (6). The
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Figure 2. Solution to (6), see Example 5.1 and text for details.
(a), (b) Time dependent solutions; (c) Time evolution of fsp(t); (d)

ūi(t) =
∫ 1

0
ui(x, t) dx, i = 1, 2 are shown

dynamics of the solutions is shown in Fig. 2(a), (b). Spatially non-uniform solutions
are stable in this case.

In Fig. 3 all possible stable spatially non-uniform solutions are presented, each
of which has its own basin of attraction.

Example 5.2.

A =

 µ 1 −1
−1 µ 1
1 −1 µ

 .
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x
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Figure 3. Asymptotically stable stationary non-uniform solutions
to the problem as in Example 5.1. See text for details. The nu-
merical scheme is presented in [5]
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In this case,

〈Ac0(t), c0(t)〉 = µ

3∑
i=1

|c0i |2,

and (42) holds if µ < 0.

Example 5.3 (Hypercycle equation). Consider a hypercycle system with three
members and the matrix

A =

 0 0 1
1 0 0
0 1 0

 .

From (39) c01 = −(c02 + c33), therefore

〈Ac0(t), c0(t)〉 = −(c02 + c33)c03 − c02(c02 + c33) + c03c
0
2

= −[(c03)2 + c02c
0
2 + (c02)2] < −1

2
[(c03)2 + (c02)2],

which yields (42).

Example 5.4.

A =

 a b c
c a b
b c a

 .

Matrix A is circulant, and its eigenvalues are

λ1 = a+ b+ c, λ2,3 = (a− (b+ c)/2)± i
√

3(b+ c)/2.

Assume a < (b + c)/2, b > a > c > 0, bc > a2, then Reλ2,3 < 0. λ1 has the
eigenvector (1, 1, 1). This vector is orthogonal to any c0 that satisfies (39), hence
A is negatively determined on this set.

Example 5.5.

A =


0 a1 a2 a3

a3 0 a1 a2

a2 a3 0 a1

a1 a2 a3 0

 .

Let a1 + a3 > a2. The eigenvalues of A are given by

λ1 = a1 + a2 + a2,

λ2 = −a1 − a2 − a3,

λ3,4 = −a2 ± i(a1 + a3).

In the same vein as in Example 5.4, λ1 corresponds to the eigenvector u = (1, 1, 1, 1),
which is orthogonal to any c0 satisfying (39). The other eigenvalues have negative
real parts, therefore A is negatively determined.

Consider the following matrix

A =


0 0.5 1 0.8

0.8 0 0.5 1
1 0.8 0 0.5

0.5 1 0.8 0

 ,

and the diffusion coefficients d = (0.03, 0.02, 0.03, 0.02). Again we have spatially
non-uniform solutions which are stable in the mean integral sense (see Fig. 4). In



674 A. S. BRATUS, V. P. POSVYANSKII AND A. S. NOVOZHILOV

0 

0.4

0.8
0 

4

8

0

0.5

1

(a)
u1(x, t)

x t

0 

0.4

0.8
0 

4

8

0

1

2

x t

(b)
u2(x, t)

0 

0.4

0.8
0 

4

8

0

0.5

1

x t

(c)
u3(x, t)

0 

0.4

0.8
0 

4

8

0

1

2

x t

(d)
u4(x, t)

0 2 4 6 8 10

0.8

1

1.2

1.4

1.6

fsp(t)

(e)

t
0 2 4 6 8 10

0.1

0.2

0.3

0.4

(f)

t
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Figure 4. Solutions to (6), see Example 5.5 and text for details.
(a), (b), (c), (d) Time dependent solutions; (e) Time evolution of

fsp(t); (f) ūi(t) =
∫ 1

0
ui(x, t) dx, i = 1, . . . , 4 are shown
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x

(b)

Figure 5. Asymptotically stable stationary non-uniform solutions
to the problem of Example 5.5. See text for details. The solutions
are such that ŵ1(x) = ŵ3(x) (dashed curve), and ŵ2(x) = ŵ4(x)
(solid curve), fsp = 1.54

Fig. 5 possible asymptotically stable non-uniform solutions are shown. The details
of the numerical scheme are given in [5].

Here the conditions for the spatially homogeneous solutions to be DESS are
fulfilled, therefore, this solution is stable in the sense of the mean integral value,
which can be seen from the pictures.
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