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Abstract. Mathematical modeling approaches are used to study the epidemic

dynamics of seasonal influenza in Israel. The recent availability of highly re-
solved ten year timeseries of influenza cases provides an opportunity for mod-

eling and estimating important epidemiological parameters in the Israeli pop-
ulation. A simple but well known SIR discrete-time deterministic model was

fitted to consecutive epidemics allowing estimation of the initial number of

susceptibles in the population S0, as well as the reproductive number R0 each
year. The results were corroborated by implementing a stochastic model and

using a maximum likelihood approach. The paper discusses the difficulties in

estimating these important parameters especially when the reporting rate of
influenza cases might only be known with limited accuracy, as is generally the

case. In such situations invariant parameters such as the percentage of sus-

ceptibles infected, and the effective reproductive rate might be preferred, as
they do not depend on reporting rate. Results are given based on the Israeli

timeseries.

1. Introduction. Seasonal influenza recurs annually in most temperate climatic
zones of the world with large epidemics that occur in winter followed by fade-out
periods during the warmer months. In Tropical regions influenza is spread more
uniformly over the year. Influenza outbreaks have been documented in the scientific
literature in records that extend back to at least 1650, although reports of possible
influenza may be found in Greek writings from 412 BC [20]. These historical records
serve to attest to the tenacity and unusual persistence of this respiratory disease.
Being highly infective, influenza propagates rapidly through human populations
in the form of virus aerosol particles with large attack rates. Although mostly a
self-limiting disease, there are few other diseases that cause as much absenteeism
from work and schools, suffering, visits to outpatient clinics, and hospitalizations,
[18]. But influenza is also a source of considerable human mortality, reaching some
250,000 to 500,000 deaths per year globally, and clearly exacting a large overall
economic toll on society.

Of the three genera of influenza viruses (A, B and C), Influenzavirus A is the most
virulent and has the greatest potential to cause pandemics (see [3] for a review).
The virus has several subtypes which are identified by the copies of hemagglu-
tinin and neuraminidase glycoproteins found on the surface of the virus membrane.
Hemagglutinin acts to recognize target cells by binding to the cells receptors and
then allows entry to the target cell by fusion of the cells membrane with the viral
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membrane. Neuraminidase helps viruses to be released by the host cell [16]. There
are 16 known subtypes of Hemagglutinin and 9 known subtypes of Neuraminidase
and the strain of influenza is determined by their combinations (e.g., H1N1, H3N2).
Human-to human transmission is possible for H1, H2 and H3 subtypes, and it is
not yet clear if other subtypes have this ability as well [25].

The influenza virus is prone to unusually high mutation rates in the genes encod-
ing the hemagglutinin and neuraminidase surface antigens. These mutations can
make the virus unrecognizable by preexisting host antibodies, generated during an
earlier influenza infection, and allows the virus to continually evade the immune sys-
tem. This process of antigenic drift is driven further by the host’s immune system,
which directs positive selection on the influenza viruss main antigen hemagglutinin.
Thus the host’s immunity to a particular influenza strain gradually erodes or wanes
as antigenic drift proceeds through rapid evolution. In effect, antigenic drift creates
an important source of new susceptibles in the human population to fuel the next
epidemic outbreak.

There is still much controversy in identifying the seasonal drivers that gener-
ate annual influenza oscillations [8]. Certainly antigenic drift plays an important
role. Various other explanations are usually related to characteristics particular to
the winter months: more indoor crowding [17], increased virus survival [14], and
decreased immunity of the host, perhaps mediated by a decrease in Vitamin D syn-
thesis from lack of sunlight [2]. As in many other infectious diseases the contact
structure of the population, and its changing properties over a year, also have enor-
mous influence in driving seasonal epidemics. In a seminal modeling study, Fine and
Clarkson [7] demonstrated conclusively how the opening and closing of the school
year, as well as holiday periods, manifested strongly in population contact rates re-
constructed from long-term measles incidence records. Figure 1 shows that despite
the different year to year dynamics exhibited in the measles timeseries, the annual
periodic pattern of the contact rate hardly changes, and closely reflects the school
year and holiday periods. Despite its simplicity, their modeling approach proves an
interesting means for understanding infectious disease dynamics when surveillance
timeseries are available. The model itself has a long history and is a simple variant
of the Hamer-Soper model (see [23], [10]).

We begin by taking advantage of Fine and Clarkson’s method for the purpose
of characterizing important epidemiological features of seasonal influenza in Israel,
and then we attempt to substantiate our results by using a more sophisticated
chain binomial epidemic model. In particular, given a population that experiences
recurrent annual flu, it seems to be of considerable interest to ask what percentage
of the population is susceptible to the disease at the start of the winter season.
This is a question that has rarely been addressed in the literature given that it
is difficult to measure in practice, although laboratory seroprevalence tests have
been attempted through surveillance. However, these tests are expensive and re-
quire large surveillance efforts often at the national scale to achieve reliable results.
On the other hand, timeseries models are capable of shedding some light on this
question. Moreover, it is a question of particular relevance when studying influenza
dynamics. Unlike childhood infectious diseases studied by Fine and Clarkson, where
the susceptibility of a population is closely related to the number of new births, for
influenza the situation is much more complicated due to the different virus strain
experienced each year and due to the process of antigenic drift described above.
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Figure 1. Analysis of measles patterns in England and Wales from
1950 to 1965. (A) Average number of infectives notified per week,
(B) Weekly transmission parameter N · βt. Shaded blocks indi-
cate school summer and Christmas periods. Figure from Fine and
Clarkson [7].

The procedures we use are also capable of providing estimates of the important epi-
demiological parameter, the reproductive number R0 which gives a measure of the
average number of secondary infections a typical infected individual will generate
in a fully susceptible population.

Our work is motivated by recent access to an unusually detailed ten-year dataset
(1998–2008) of influenza-like-illness (ILI) amongst the members of Maccabi Health-
care Services in Israel. Maccabi is the second-largest health maintenance organiza-
tion in Israel and gives healthcare services to around 23% of the population of Israel.
The number of members N varies between 1.4 to 1.8 million in the aforementioned
period. The surveillance is implemented by a network of over 3,000 doctors using
a computerized medical record system. The Maccabi dataset covers ten full flu
seasons, two of which were dominated by influenza B and the rest dominated by in-
fluenza A. The daily timeseries of infectives plotted in Figure 2. In all A-dominated
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seasons the dominant subtype was H3N2, except for the 2000–2001 season when
H1N1 was the dominant subtype. A weakness in our estimation schemes for both
S0 and R0 is that we are unable to obtain reliable information about the reporting
rate of the population. Thus while we know the number of individuals reporting ill
to the doctor on a daily basis, it is unclear what percentage of the population in
the end seeks medical support, and what percentage of those reported as ill really
have influenza. In such a situation, we are able to predict S0 and R0 only up to
the accuracy of the reporting rate. As such, it would seem to be of interest to also
investigate parameters that are independent of the reporting rate. Two such pa-
rameters are investigated here: the percentage of susceptibles that are infected over
the epidemic (Z), and the effective reproductive ratio Reff . The latter parameter
is often used when, as in many situations, the population of N individuals is not
fully susceptible (S0 < N). In this case the effective reproduction number Reff
is related to the basic reproduction number by Reff = R0 · S0/N . (For a more
comprehensive discussion about Reff , see [13]).

Because population susceptibility changes from year to year due to antigenic
drift, or through sudden punctuated evolutionary jumps [22] as has recently been
suggested, it becomes overly complicated to derive a single model that will simulate
all ten-years continuously. Instead we have found it more appropriate to model
the population over individual seasons. We find that despite the simplicity of this
“single season” approach, new and valuable information is obtained.

2. The Fine and Clarkson (FC) model. We make use of the standard SIR
modeling approach which divides the N members of a population into three classes:
susceptible (S), infective (I) and recovered (R). As we are modeling a single epidemic
it is supposed that on this time-frame the effects of antigenic drift are minimal and
there are no reinfections, so that after having the flu a person moves directly to the
recovered class and remains there. The model is formulated to estimate the number
of newly infected cases It and the number of susceptibles St in time step t. To
achieve this it is assumed that time steps are given in terms of influenza’s average
generation time, which is the average time in which an infected person remains
infectious. For influenza, this may be reasonably approximated to be three days [5].
Thus it was necessary to smooth and bin the daily data to track the number of new
infectives every three day period. This has the added advantage of smoothing the
data and reducing spurious irregularities and artifacts such as “weekend effects.”

Similar to Fine and Clarkson’s SIR model, we set the number of new infectives
generated in the next three-day time step to be:

It+1 = It · St · βt (1)

This relies on the assumption that the population is randomly mixing so that
the number of new infectives relates to the probability that an infective person
meets a susceptible and is thus proportional to the product St · It. The infection
is transmitted at a rate proportional to the coefficient βt which relates to both the
number of contacts a typical infected person will meet over the generation time of
the disease, and the probability of infection in each meeting.

After every timestep, the number of susceptible decreases by the number of new
infective cases:

St+1 = St − It+1 (2)
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Figure 2. Daily number of influenza-like illness cases amongst
Maccabi Health Services, 1 Jan 1998 – 30 May 2008. The 2002–
2003 season and the 2005–2006 seasons were dominated by the
influenza B virus, and are characterized by a low number of ILI
cases, a relatively gradual increase in the number of cases and a
sudden curtailing of the epidemic in the spring.

The transmission rate can be calculated by rearranging (1) as

βt =
It+1

It · St
(3)

Thus the above formulae 1,2 and 3 may be used to reconstruct the transmission
rates from the time series of infectives. Figure 1 displays Fine and Clarkson’s
reconstruction of transmission rates for the England and Wales measles data.

Fine and Clarkson [7] estimated the initial number of susceptibles using infor-
mation concerning birth rates, age-specific measles incidence data and results of
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seroepidemiological surveys. However, the method is designed for standard child-
hood diseases such as measles, and cannot be applied in its current form to the Israeli
influenza data. While measles is caused by a relatively stable virus and infection
with measles results in most cases in a lifelong immunity against this virus, influenza
is caused by different types, subtypes and strains of viruses, with a different strain
being the dominant one in each influenza season, and an infection with one strain
results in different, and usually unknown, levels of immunity against other strains
[1]. The number of susceptibles in the beginning of each flu season is, therefore,
unknown. We therefore explored model runs with different initial conditions S0.

Figure 3 shows the model results for the 2007–2008 season based on two different
values of S0. The left panel is based on S0 = 60,000 while the right panel is
based on S0 = 400,000. We first note that direct application of Eqns. 1-3 will
always reproduce the observed infective cases exactly, as this is built into the model
formulation (see Figure 3 top panels). The goal is to use the infectives to reconstruct
the susceptibility and missing transmission parameters. For the left panels with
initial condition S0 = 60,000, one notes the number of susceptibles drop significantly
as the epidemic evolves and reach almost 50% of their initial value by the time the
epidemic has ended. During the epidemic (t = 25 to t = 45) the transmission rate
βt remains relatively constant. These two features are typical for an epidemic that
is purely driven by the infection process with little interference from seasonal factors
or changes in contact rates due to school term. In short, this scenario represents an
epidemic that dies out solely due to an exhaustion of susceptibles.

In contrast, in the right panel with initial condition S0 = 400,000, as the epidemic
evolves the number of susceptibles remain relatively constant and are only reduced
by less than 10% by the end of the outbreak. It is important to note that the contact
rate shows a marked decrease in the late stage of the epidemic, possibly indicative
of a seasonal change. This scenario with a higher initial S0 has all the features of an
epidemic that is curtailed [24], [19] and disease dies out due to a change of season.
The curtailing manifests by the large drop in the contact rate as seen from t = 80
of the bottom-right panel of Figure 3.

Over the ten years of the surveillance study, the December-February period in
Israel would seem to have no major holiday period where contact rates might be
considered to change radically. Moreover, features concerning the timing of the epi-
demic such as the point where infectives/susceptibles drop simultaneously does not
appear to coincide with any obvious climatic event or event that relates to closure
or opening of the school year. (See, however, [11], where fine-scale changes were
detected.) One is tempted to conclude that the left panel with low initial condi-
tion and relatively constant transmission rate (at least over the epidemic period), is
likely to be the most representative for Israel. Moreover, such a possibility consider-
ably simplifies the modeling process and allows us to explore a number of scenarios
that would otherwise be inaccessible. We would suppose that seasonal changes are
more likely to come into play in the influenza B years (e.g., 2005–2006 of Figure 2)
where the epidemic is clearly curtailed. As such, in this exploratory investigation
of seasonal influenza A in Israel, we base our modeling on the plausible assumption
that the seasonal contact rate is relatively constant over the epidemic period.

We now attempt to estimate the initial value of S0 and the transmission param-
eter by fitting the model with constant contact rate to the data. Any model fit will
depend on the actual date that is set for the epidemic initiation (ti) as well as the
initial number of susceptibles S0. We therefore searched over the parameter space
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Figure 3. ILI cases (top panels), estimated susceptible numbers
(middle panels) and contact rates (bottom panels) in the 2007–
2008 season. The left hand side column has figures generated from
simulations with S0 = 60, 000 while the right hand side panels have
S0 = 400, 000. Time steps are in units of three days.

of these two variables (S0, ti) until obtaining the model that best fits the data (in
the least squares sense) thus yielding the best fitting parameters. In this scheme, for
each pair (S0, ti), the model was run using the observed data and the transmission
rates βt were reconstructed using Eqns 2-4. As an example, Figure 4b displays βt
for the 2007–2008 season. The transmission rates were averaged in the weeks over
the epidemic, to find the mean transmission rate β̄, which is represented in Figure
4b by the horizontal line segment. The deterministic epidemic model eqns 1 and
2 were then iterated after setting βt = β̄, yielding a time series of simulated infec-
tives. The least squares distance between the simulation and the observed data was
calculated and recorded. The procedure was repeated over (S0, ti) parameter space
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until the closest fitting model was found that covered a timespan to include a min-
imum of 80% of the epidemic’s infectives. The best fitting initial conditions S0 are
presented in Table 1 for all relevant seasons over the 10 year period, together with
the effective reproductive number Reff = R0 · S0/N . Note that for this particular
case of a constant transmission rate, we have the simple relation R0 = β̄ ·N .

As a check of self-consistency, it was useful to examine the epidemic dynamics
produced from a stochastic simulation model that uses the best-fitting initial sus-
ceptibility (S0) and the constant transmission rate β̄, as calculated arbitrarily for
the 2007–2008 season. The model assumes that the epidemic trajectory may be
approximated by a Poisson distribution such that:

It+1 ∼ Pois(It · St · βt) where St+1 = St − It+1.

For large populations, the model is in fact a good approximation to the better
known chain binomial model (see e.g., [6]). By running 10,000 simulations of the
Poisson model, it is possible to report both the mean and range for which 95% of
the simulations fall within. We might consider these as “pseudo 95% confidence
intervals”. As seen in Figure 4a the observed time series of the 2007–2008 season
(black) fits well within the pseudo 95% confidence intervals of the stochastic model.

2.1. The Chain Binomial (CB) model. Ferrari et al. [6] describe a technique
for Maximum Likelihood estimation of S0 and β based on fitting a chain binomial
SIR model of the following form:

It+1 ∼ binomial(St, 1− e−βIt) (4)

A key difference between this model and the FC model is that here the transmis-
sion term β is constant. Eqn.4 states that the number of newly infected individuals
in a population at time-step (t+ 1) is binomially distributed and may be viewed as
a random draw from St individuals with probability of any susceptible individual
coming into contact with an infected individual (1 − e−βIt). As before, β is the
rate of contacts transferring infection between any two members of the population
in interval ∆t.

The conditional probability of It+1 is:

P (It+1|It, ..., I1, S0, β) =

(S0 −
t∑
i=1

Ii

It+1

)
(1− e−βIt)It+1(e−βIt)

S0−
t∑

i=1
Ii−It+1

(5)

The likelihood for both β and S0 given the entire dataset I is:

L(S0, β|I) =

T∏
t=1

P (It|It−1, ..., I1, S0, β) (6)

and β and S0 can be found by numerically maximizing this likelihood function. This
is a straightforward numerical optimization implemented with the Matlab routine
fmincon.

Table 1 summarizes the results of the analysis for the eight flu seasons in which
the dominant strain was influenza A using the SIR Fine Clarkson (FC) method and
the maximum likelihood (ML) method described in [6]. There we report estimates
of the percentage of susceptibles in the population before the epidemic (S0), the
effective reproductive number Reff , the percentage of susceptibles infected over the
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Figure 4. ILI cases in the 2007–2008 season (black dots) and F-C
model fit (red dots) and “pseudo 95% confidence intervals” (red
bars). Bottom: contact rates for the 2007–2008. The period to
which the model was fit is highlighted in dots and the horizontal
line is β̄.

epidemic Z (as estimated by the FC model), as well as the attack rate A, the per-
centage of the population infected.

3. Discussion. The SIR (FC) model used to estimate S0 and Reff is the simplest
form of an SIR model, which assumes uniform mixing of susceptibles and infectives
within the population, a closed population without migration, and an infectivity
period of exactly three days for each infective person. In spite of these unrealistic
assumptions, this simplistic FC model gives, in many of the seasons checked here, a
good fit to the data and parameter estimates which match well with those found by
an established maximum likelihood approach based on the chain binomial model.
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Table 1. Results comparing the FC and ML models (see text).

Season S0 (FC) S0 (ML) Reff (FC) Reff (ML) Z = %S0 infect Attack Rate

1998–1999 6.10% 5.85% 1.14 1.16 31.2% 1.89%

1999–2000 8.08% 7.10% 1.16 1.18 31.6% 2.56%

2000–2001 6.98% 7.20% 1.12 1.12 25.0% 1.74%
2001–2002 5.69% 5.00% 1.25 1.27 41.5% 2.36%

2003–2004 5.29% 4.20% 1.19 1.21 28.6% 1.51%

2004–2005 5.11% 4.60% 1.25 1.25 37.2% 1.90%
2006–2007 4.71% 3.70% 1.28 1.33 38.1% 1.79%

2007–2008 3.06% 2.79% 1.25 1.29 45.9% 1.40%

The FC method which our model is based on dictates that the model uses discrete
time, with time units being close to the average generation time of influenza. As
Diekmann and Hesterbeek [4] show, for the simple SIR model, there is a direct
equivalence between continuous and discrete time versions if the time unit is the
generation time. Nevertheless, some differences are usually to be expected when
discretizing a process that operates in continuous time. Our choice of three day
time-intervals is relatively small (c.f. 2-week intervals of Fine and Clarkson) and
should minimize any discrepancies. Although the results here were not compared
to results of continuous-time models, it would be interesting to do so in the future.

Apart from the 2000–2001 season, the SIR-FC method appears to give slightly
larger estimates for S0 compared to the maximum likelihood method. Conversely,
the calculated values of Reff given by the FC method were always slightly lower.
The seasons in which the results were most similar by both methods were found to
be those in which the SIR model gave the best fit to the data.

It is important to note that the estimates of S0 and R0 made here depend on the
assumption that the number of cases in the data is in fact the true number of cases.
In fact we expect that only a certain fraction r of cases are reported, for various
reasons such as incorrect diagnosis of the disease by the doctor and simply failure to
visit a doctor. Another possible source for unreported cases would be asymptomatic
cases. These individuals lack symptoms of influenza, and are thus not registered
in the dataset, but nevertheless infect others. If one assumes that the infectivity
of non-asymptomatic individuals is the same as that of asymptomatic individuals,
then the asymptomatics can be treated as just another group of unreported cases,
which is what we do here. Some models have accounted for different transmission
rates for asymptomatic cases (e.g. [9]). However, as discussed in [15] (supplement),
the difference in transmission rate of asymptomatics relative to symptomatics is a
parameter which is not identifiable based on the incidence data alone. We note also
that being asymptomatic has two opposite effects on the transmission rate: on the
one hand asymptomatics are likely to be less infectious upon contact, but on the
other hand they are less likely to withdraw to bed, which makes them more likely
to infect others. Therefore we believe that the assumption that asymptomatics
are approximately as infective as symptomatics, and can thus be treated simply as
unreported cases, will not distort the parameter estimates to a great extent.

Assuming that a fraction r of cases are reported, then the true number of cases is
It/r. This implies that to fit the Fine-Clarkson model in (2), we must replace St by
St/r. The true value of the number of susceptibles at the beginning is Strue0 = 1

r ·S0.
Thus in (1) βt must be replaced by r·βt, so the true value of the reproductive number
is Rtrue0 = r ·R0. Hence without an independent estimate of the reporting rate r we
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cannot know the values of of S0 and R0. However the quantity Reff = R0 · S0/N
is invariant, that is, it does not change if R0 is multiplied and S0 is divided by
the same constant, so that our estimate of it does not depend on the reporting
rate r. Another invariant quantity is the ratio of the number of people infected to
the number S0 of susceptibles at the beginning of the season, since changing the
reporting rate means multiplying both the numerator and the denominator of this
ratio by a constant. We denote this ratio by Z, and note that it expresses the
percentage of those people who are susceptible at the beginning of the epidemic
who become infected.

The models estimate that the number of susceptibles S0 in the population range
approximately between 3-8% of the population at the beginning of each influenza
season. This may at first seem perplexing but it should be kept in mind that the
calculations assume 100% reporting rate (r = 1). In this respect we note that the
average attack rate is close to A = 2% (Table 1), yet seasonal influenza is generally
estimated to have an attack rate in the vicinity of A = 5− 15% [21]. Following the
arguments of Katriel and Stone [12], we suppose the real attack rate A = 10% which
would suggest a reporting rate of r = 1/5, a rate that would appear a reasonable
first approximation in the Israeli context. Factoring this in, the true number of
susceptibles are expected to be in the range S0 = 15− 40%.

Given the uncertainty in assessing the exact value of the reporting rate r, it
is also worth examining Z, the percentage of susceptibles which become infected,
which as mentioned is a quantity that is independent of the reporting rate. Table
1 shows that Z ranges between 25 and 41.5%. Intriguingly, independent estimates
[12] based only on rough quantitative features of influenza epidemics find that for
seasonal influenza, Z should approximate Z = 30%. These results give a testable
prediction (in principle): if one can identify individuals who are susceptible by serol-
ogy. One might then take pre and post-season samples and estimate the percentage
of susceptibles who were infected. If this differs radically from 1/3, then the basic
SIR model equations which are widely used in the literature may be in need of
modification.

Our calculations show that the effective reproductive ratio is approximately
Reff ∼ 1.2 (Table 1). This is the same as the estimate for Reff made in [12],
made using the general properties of seasonal influenza. Again, if we assume a
reporting rate of r = 1/5 this implies that R0 = Reff/S0 is expected to be in the
range R0=2.7–8.0 which is also not unlike that reported in [12].

In summary, these approaches for parameter estimations have the potential to
provide very useful information concerning a population’s epidemiological status.
However, one of the key limitations appears to be sources of quality surveillance data
and a realistic estimate of the reporting rate. But even in the absence of the latter,
it is still possible to estimate invariant parameters as Z and Reff . Fortunately,
the Israeli seasonal influenza dataset is sufficiently refined to mostly overcome the
former problem.
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