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Abstract. Understanding the dynamics of human hosts and tumors is of
critical importance. A mathematical model was developed by Bunimovich-

Mendrazitsky et al. ([10]), who explored the immune response in bladder

cancer as an effect of BCG treatment. This treatment exploits the host’s own
immune system to boost a response that will enable the host to rid itself of the

tumor. Although this model was extensively studied using numerical simula-

tion, no analytical results on global tumor dynamics were originally presented.
In this work, we analyze stability in a mathematical model for BCG treatment

of bladder cancer based on the use of quasi-normal form and stability theory.

These tools are employed in the critical cases, especially when analysis of the
linearized system is insufficient. Our goal is to gain a deeper insight into the

BCG treatment of bladder cancer, which is based on a mathematical model
and biological considerations, and thereby to bring us one step closer to the

design of a relevant clinical protocol.

1. Introduction. Bladder cancer (BC) is characterized by the growth of malignant
cells within the urinary bladder. BC is the fourth most common cancer among men
and the eighth most common cancer among women, accounting for approximately
200,000 new cases worldwide annually ([21]). Bladder cancer is an aggressive dis-
ease with lethal outcome. If untreated, it slowly grows, first into the bladder wall
and then out into the abdomen and nearby organs, such as the prostate, vagina,
uterus and rectum. A typical treatment of bladder cancer consists of chemotherapy
followed by immunotherapy for eradication of any residual cancer cells.

Intravesical administration of Bacillus Calmette-Gurin (BCG) is a type of im-
munotherapy used to treat superficial bladder cancer. BCG is an attenuated non-
pathogenic strain of Mycobacterium bovis that was originally used as a vaccine
against tuberculosis. In this treatment bacterial instillations are introduced into
the bladder via catheter inserted through the urethra. BCG is internalized and
processed by both antigen-presenting cells (APC) and uninfected tumor cells. BCG
antigens stimulate a strong immune response characterized by a surge in cytokine
levels in the infected areas and in the urine. The cytokine cascade stemming from
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the APCs activates cytotoxic T cells (CTL) and natural killer cells (NK) ([8]), which
ultimately destroy the BCG-infected tumor cells ([26]). This targeting of infected
tumor cells can lead to elimination of the entire tumor.

Bunimovich-Mendrazitsky et al. ([10] and [11]) studied the role of BCG im-
munotherapy in bladder cancer dynamics. The model proposed there deals with four
populations: BCG cells; activated cells of the immune system (commonly called the
effector cells), such as cytotoxic T-cells, macrophages and natural killer cells that
are cytotoxic to the tumor cells; the uninfected tumor cells; and finally, tumor cells
infected by BCG.

The model developed by Bunimovich-Mendrazitsky et al. ([10]) exhibits multiple
steady states that depend on biological parameters and initial conditions. The most
important parameters in that study are the treatment term that represents the rate
of administration of BCG cells (b), the tumor growth rate (r), the rate of tumor
cell infection by BCG (p2), and the rate of immune system activation (p4).
A significant clinically relevant feature of the model is the non-trivial dependence
of the tumor dynamics on the treatment rate b:

1. For a non-treatment case (b = 0) with exponential tumor growth, the model,
naturally, lacks any stable equilibrium.

2. The effect of BCG immunotherapy (b > 0) can yield three distinct types of
equilibrium:

3. For low treatment rates: persistence of the tumor which indicates the failure
of the BCG treatment for low treatment rates (tumor equilibrium);

4. For intermediate treatment rates: the tumor is eradicated, with only transient
side effects (tumor-free equilibrium);

5. For high treatment rates: the tumor is eradicated but a persistent immune
response is elicited (side-effects equilibrium).

The analysis of equilibria in [10] was based on studying a linear approximation
to a nonlinear system only. It was shown that the tumor-free equilibrium is stable
at certain criterion on dose BCG. From the medical point of view, this result shows
that with the application of immunotherapy, the tumor will shrink at a rate that
can be controlled by the intensity of BCG treatment. However, analysis of equi-
librium based on linear approximation is valid only in the case where the matrix,
J, associated with the linear approximation has no critical eigenvalues, because the
behavior of a nonlinear system in the critical case may differ from that of a linear
system. As a reminder, critical cases of stability are those cases where some of the
eigenvalues of matrix J are zero or have zero real parts, while all the remaining
eigenvalues have negative real parts ([24]). Because our present system falls into a
critical case, it is necessary to study stability in this critical case. To do so, we use
the theory of normal forms theory, as discussed in this article.

Normal forms are the most important tool for the local analysis and classification
of point equilibrium. The theory of normal forms was initiated by Poincare ([28])
and Liapunov ([24]), and later extended by Birkhoff ([7]) to Hamiltonian vector
fields. Contemporary accounts of normal forms and their applications can be found
in Bibikov ([6]), Arnold ([2]), Bruno ([9]), Chow & Hale ([13]), Guckenheimer &
Holmes ([19]), Iooss & Adelmeyer ([20]), and Arnold et al. ([4]). Normal forms
are obtained through an appropriate change of variables to transform a system of
nonlinear differential equation into a form that exhibits more clearly the interaction
between the linear and nonlinear terms. The purpose of normal forms is to facilitate
the analysis of the local dynamics. There are various types of normal forms in use,
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depending on the specific problem at hand ([14], [1], [12]). The normal form leads
to the maximum simplification of the nonlinear part of the system assuming that
the linear part is reduced to a Jordan form ([19]).

In this study, we used a variation of the normal form introduced by Bibikov ([6]),
applicable to the critical case, and called the quasi–normal form. The rationale for
conversion of a system to a quasi-normal form is similar to that for the normal
form. Using a quasi-normal form allows us to simplify preliminary calculations in
the critical case and apply the results on stability obtained by Liapunov ([24]) and
Malkin ([25]) to the nonlinear model of BCG treatment of bladder cancer.

In this article, we describe our BCG model, analyze its spectrum, describe the
normalization procedure and relevant quasi-normal forms, and finally apply this
theory to the study of stability of the tumor-free equilibrium in the BCG model.

2. Model.

2.1. Description. The model proposed in ([10]) was the first mathematical model
to describe tumor-immune interactions in the bladder as a result of continuous BCG
therapy. A full explanation is given in [10]; here we summarize it briefly as follows.
We assume that BCG is introduced into the bladder at a constant rate b. The free
BCG binds to tumor cells, infecting them at a rate p2. We denote by µ1 the natural
death rate for BCG.

Tumor cells are tracked by a continuous variable as their number is large and
tumor population is generally homogeneous. In our model, tumor cells are divided
into two subpopulations: those that have been infected (Ti) with BCG (B) and those
that are still uninfected (Tu). Immune cells are also large in number, including those
cells that have been stimulated and are ready to respond. To simplify the model,
we grouped the immune cells (APC, CTL, NK) into a single population of cells,
which we term effector cells (E). They target and destroy infected tumor cells (Ti)
at a rate p3 and take up BCG at a rate p1. Activation of the immune response is
a result of the encounter between immune cells and BCG, and it is controlled by
parameter p4. Infected tumor cells stimulate recruitment of cytotoxic effector cells
from the bone marrow ([5]) at the total rate αTi. The rate of inactivation of E cells
via encounter with Ti is given by p5ETi. Finally, we denote by µ2 the natural death
rate of effector cells.

The equations that describe the interactions of these four variables are given in
the following system, assuming exponential tumor growth:

dB

dt
= −µ1B − p1EB − p2BTu + b

dE

dt
= −µ2E + αTi + p4EB − p5ETi

dTi
dt

= −p3ETi + p2BTu

dTi
dt

= −p3ETi + p2BTu

. (1)

We examine equations (1) with the following initial conditions: B(0) > 0; E(0) =
Ti(0) = 0; Tu(0) > 0.
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To further clarify the dependence of system (1) on parameters and to improve
the performance of calculations, we non-dimensionalize the system and reduce the
number of system parameters. Introduce the following dimensionless state variables:

B
′

=
B

B0
, E

′
= p1

E

E0
, T

′

i =
Tip3
Ti0p1

, T
′

u =
Tu
Tu0

, t
′

= µ1t

and the corresponding parameters:

b
′

=
b

µ1B0
, r

′
=

r

µ1
, µ =

µ2

µ1
, p

′

1 =
p1
µ1
E0, p

′

2 =
p2
µ1
Tu0

,

p
′

3 =
p3
µ1
E0, α

′
=
α(p

′

1)2

µ1p
′
3

, p
′

4 =
p4
µ1
B0, p

′

5 =
p5p

′

1

µ1p
′
3

Ti0 , p6 =
p

′

1p
′

2

p
′
3

.

In practice, there is a trade-off between reducing the number of parameters and
retaining parameters that have operational meaning. For these reasons, we chose
the scaling B0 = E0 = Ti0 = Tu0

= 106 cells ([23]), which allows us to deal
with smaller values of state variables. Leaving the other parameters unchanged and
dropping the primes for notational clarity, the non-dimensional system is now given
by:

dB

dt
= −B − EB − p2TuB + b

dE

dt
= E(−µ+ p4B − p5Ti) + αTi

dTi
dt

= −ETi + p6BTu

dTu
dt

= Tu(−p2B + r)

. (2)

Those model parameters that can be estimated from biological data are summa-
rized in Appendix B. The estimates are based on the values reported in [10]. We
emphasize that dimensionless units are used throughout the model analysis that
follows unless stated otherwise.

2.2. The spectrum of system (2). Qualitative research of the system (2) in-
cludes studying its local and global properties. On the first stage, we will limit
ourselves to the local study of fixed points, which is a necessary component of
the study of global dynamics. In the [10] study, fixed points were studied for the
linearized system. Here, we continue this study for the nonlinear system (2).

We separate the linear and nonlinear parts in the nonlinear equation (2):

dX

dt
= JX + f(X) + β , (3)

where X = (B,E, Ti, Tu), β = (b, 0, 0, 0) and entries of matrix J are represented by
the coefficients for linear terms of (2). Denote X∗ = (B∗, E∗, T ∗i , T

∗
u ) as equilibrium

(or fixed) point of the system. Introduce the vector Ξ = (ξ1, ξ2, ξ3, ξ4) as

Ξ = X −X∗ . (4)

The purpose of the linear transformation (4) is to move the fixed point to the
origin. After transformation (4) system (3) becomes homogeneous and takes on the
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form:
dΞ

dt
= JΞ + g(Ξ) , (5)

where J is the linear part and g is the nonlinear part of the system (5):

J =


−(1 + E∗ + p2T

∗
u ) −B∗ 0 −p2B∗

p4E
∗ −µ+ p4B

∗ − p5T ∗i −p5E∗ + α 0
p6T

∗
u −T ∗i −E∗ p6B

∗

−p2T ∗u 0 0 −p2B∗ + r

 ,

g(Ξ) =


−ξ1ξ2 − p2ξ1ξ4
p4ξ1ξ2 − p5ξ2ξ3
−ξ2ξ3 + p6ξ1ξ4

p2ξ1ξ2

 .

In the current study, we examine the most biologically interesting equilibrium
called “tumor-free” equilibrium. If this fixed point is stable then treatment will re-
sult in cancer elimination and there will no be side effects. “Tumor free” equilibrium
is given by:

B∗ = b, E∗ = T ∗i = T ∗u = 0,

or, in the new variables,

ξi : ξ1 = ξ2 = ξ3 = ξ4 = 0 . (6)

Analysis of the spectrum of this equilibrium ([10]) leads us to consider a critical
case in which the characteristic equation of matrix J has one zero eigenvalue while
other eigenvalues are negative. The spectrum of matrix J has the form: Λ =
[−1; −µ+ p4b ; 0; −p2b+ r] . Thus if

r

p2
< b <

µ

p4
, (7)

then all eigenvalues except one (λ3 = 0) will be negative. It should be noted that
parameters p2 and p4 in (7) were obtained by numerical simulations ([10]) and have
not been previously estimated in medical or biologic literature. Note that the values
of parameters considered in this work (see Appendix B) satisfy conditions (7).

The “tumor-free” equilibrium has zero eigenvalue (λ3 = 0) regardless of the
particular values of model parameters. Hence the study of this fixed point does not
require bifurcation analysis. The existence of zero eigenvalue refers to the neutrality
of the linear approximation to a system of non-linear ODE. In other words, for all
relevant values of model parameters, analysis of the linear approximation cannot
solve the problem of stability for the non linear system. Similar systems, but for
another critical cases, were studied in the papers of Goltser ([15], [16], [17], [18]).
Should all eigenvalues have negative real parts, the local equilibrium would be
asymptotically stable.

In what follows (if condition (7) is true) we study stability of tumor-free equilib-
rium of the nonlinear system in question in the critical case of one zero eigenvalue
and assuming that condition (7) is satisfied. In section 3, we reduce the nonlinear
system to a quasi-normal form. In section 4, we use the results from section 3 and
the reduction principle to perform stability analysis of the “tumor-free” equilibrium.
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3. Critical case investigation: One zero eigenvalue. The normalization pro-
cess for system (5) will be carried out in accordance with the general scheme outlined
in Appendix A.

In this section we perform quasinormalization procedure in a critical case of one
zero eigenvalue and realize procedure of stability research (Theorems 3.1 & 3.3,
Lemma 3.2), using normal form and reduction principle.

Consider a system (5) of nonlinear ODE that has the trivial solution Ξ = 0. We
divide the equations in (5) into two groups: one critical equation, corresponding to
the zero eigenvalue and three non critical equations, containing three non- critical
eigenvalues: 

dy

dt
= F (y, Z)

dZ

dt
= yR+QZ +G(y, Z)

, (8)

where Z = [z1, z2, z3];F (y, Z), G(y, Z) are nonlinear vector-functions; Q is the
matrix Q[3x3] for non critical eigenvalues. The equation for y corresponds to the
zero eigenvalue of matrix J.

The linear part of system (8) is

J =

∣∣∣∣ 0 O
R Q

∣∣∣∣ , (9)

where: element j11 = 0;O[1×3] is the zero matrix; R[3×1] is the column matrix with
elements rs0, s= 1, 2, 3; and Q[3×3] is a matrix with coefficients rsi [1x3] , s, i = 1,
2, 3.

The transformations required for the system normalization procedure performed
in two stages. On the first stage, we make a linear substitution (10) to reduce the
linear part of (8) in a block-diagonal form:{

Y = θ
Z = τ + Sθ

, (10)

where S[3×1]-transform matrix that will convert (9) to block-diagonal form as K =∣∣∣∣ 0 0
0 T

∣∣∣∣, where in block-matrix T[3×3] all eigenvalues have negative real parts. Ma-

trix S is calculated so that in the new system (11) linear approximation is depended
on non-critical variables only. (All necessary calculations for a matrix S are executed
for the BCG system in section 4).

After substitution (10) system (8) becomes
dθ

dt
=

∞∑
j=2

h(j)(θ, τ) = H(θ, τ)

dτ

dt
= Tτ +

∞∑
j=2

p(j)(θ, τ) = Tτ + P (θ, τ)

, (11)

whereh (j)(θ, τ), p (j)(θ, τ) are j-th order nonlinear terms in the power series expan-
sion of vector-functions H(θ, τ), P (θ, τ) in the neighborhood of the origin ( τ1 =
τ2 = τ3 = θ = 0), respectively.

Transformation from (8) to (11) with (10) is always possible, because (10) is
inverse linear transformation, hence (8) and (11) are equivalent. In particular, the
zero solution of both systems is stable or unstable simultaneously.
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The stability of system (11) is depends on the structure of nonlinear terms. We
assume that these nonlinear terms are computed and their coefficients are known
(as a minimum) up to order k. In the second stage, we transform nonlinear terms
of system (11) using the following substitution:

θ = u+

k∑
j=2

Φ(j)(u, V )

τs = vs +

k∑
j=2

Ψ(j)
s (u, V ); (s = 1, 2, 3)

, (12)

where Φ(j) , Ψ
(j)
s are forms (i.e. a homogeneous polynomial) of order j. Using sub-

stitution (12) we convert system (11) into the quasi-normal form up to order k:
du

dt
=

k∑
j=2

gju
j +O(k+1)(u, 0)

dvs
dt

=

3∑
m=1

tsmvm +

k∑
j=2

v(j)s (u, V ) +O(k+1)(u, V )

. (13)

In the first equation of (13) contains resonant terms, which are explained in detail
in Appendix A. According to the reduction principle (Appendix A), setting V = 0
in (13) and selecting the critical equation from the system, we obtain:

du

dt
=

k∑
j=2

gju
j +Ok+1(u, 0) . (14)

As shown in Malkin([25]), Pliss ([27]) and Kelley ([22]), stability of system (13)
reduces to that of equation (14). The number k in this equation should be chosen
according to the following rule: k is the number such that g2 = g3 = ... = gk−1 = 0
and gk−is the first non-zero resonance coefficient (see Appendix A). If such k exists
then the critical case is called an algebraic case, otherwise it is called a transcenden-
tal case. According to the well-known results ([24], [25], [6]) the following theorem
holds:

Theorem 3.1. In an algebraic case, fixed point of system (8) is asymptotically
stable if and only if gk < 0 and k is an odd number. Otherwise, the fixed point is
unstable.

From a theoretical point of view, the coefficient of primary interest is g2. The co-
efficient g2 from system (13) essentially depends on the coefficients of the h (2)(θ, τ)in
the system (11), and, as will be shown below, the coefficient g of the term h(2)(θ, 0) =
gθ2.

This coefficient is closely related to a factor g, which is known prior to the
normalization process and is defined from system (11): h(2)(θ, 0) = gθ2. Our goal
here is to find a relationship between coefficients g and g2.

Lemma 3.2. After the transformation of system (11) to system (13) by means of
transformation (12), the resonant coefficient g2 in (14) will be defined by equality
g2 = g.

Proof. We compare systems (11) and (13). The normalization process is defined by

forms θ(2), τ
(2)
k , Φ(2) , Ψ

(2)
j . Differentiating transformation (12) in t (where is k=2),
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using (11) and (13), we obtain:

dθ

dt
= h(2)

(
u+ Φ(2) (u, V ), V + Ψ(2) (u, V )

)
+O ( ‖u, V ‖3)︸ ︷︷ ︸

I

=

=
du

dt
+
∂Φ(2)

∂u

du

dt
+

3∑
s=1

∂Φ(2)

∂vs

dvs
dt
≡

≡ g2u2 +O(‖u, V ‖3) +
∂Φ(2)

∂u

[
(g2u

2 +O(‖u, V ‖3)
]

+︸ ︷︷ ︸
II

+

3∑
s=1

[
∂Φ(2)

∂vs
(

3∑
m=1

tsmvm +O(‖u, V ‖2)

]
︸ ︷︷ ︸

II

. (15)

Comparison of second order terms in both parts of this identity (I and II) in (15),
we get the following equation:

h(2)(u, V ) = g2u
2 +

3∑
s=1

[
∂Φ(2)

∂vs

3∑
m=1

tsmvm

]
. (16)

By the definition of coefficient g2 in the normal form, we substitute v1 = v2 =
v3 = 0 in (16) and considering that h(2)(θ, 0) = gθ2, we obtain g2 u

2 = h (2)(u, 0),
whence g2 = g. Lemma is proved. �

Remark 1. Theorem 3.1 and Lemma 3.2 show that establishing stability in the case
where g 6= 0 does not require to compute g3: the resonant coefficient g2 coincides
with g, which is calculated at the second step. Only in a case where g2 = g = 0 is
it necessary to do the next step and compute g3 by normalizing the terms of the
third order. More generally, the normalization process continues on until the first
non-zero term gk is found, after which one applies Theorem 3.1.

From Theorem 3.1 and Lemma 3.2 the following result for the studied system (11)
is obtained:

Theorem 3.3. If g 6= 0 in the system (11), then the fixed point of system (13),
and hence also system (11), is not unstable.

In the next section, we analyze stability of the “tumor-free” equilibrium in the
BCG system. We perform the calculations necessary for obtaining coefficient g. It
is important to note that if g 6= 0 then there is no need to calculate all coefficients
of the quasi-normal form in the 2nd order approximation.

4. Application of the quasi-normal form to the analysis of tumor-free
equilibrium in the BCG model. We examine stability of the “tumor-free” equi-
librium (6) of system (5) using the quasi-normal form obtained in the previous
section.

The calculations necessary for the stability analysis are performed as follows.
Step 1: Separation of the critical part from the system

dξj
dt

= pj1ξ1 + pj2ξ2 + pj3ξ3 + pj4ξ4 + Ξj(ξ, ξ1, ξ2, ξ3), (j = 1, 2, 3, 4) . (17)

As we have shown, the linear part of system (17) has a single zero eigenvalue
while the other three eigenvalues have negative real parts.
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For the purpose of separation to identify the equation corresponding to zero
eigenvalue, we introduce a new variable y:

y = a1ξ1 + a2ξ2 + a3ξ3 + a4ξ4 .

The constant coefficients aj (j = 1, 2, 3, 4) are calculated so that:

dy

dt
=

4∑
1

aj
dξj
dt

= 0 .

We obtain:

a1 = 0, a2 = 0, a3 =
p2
p3
− r

bp3
, a4 = 1. (18)

By substituting (18) in (5), we obtain the following transformation:{
y = (

p2
p3
− r

bp3
)ξ3 + ξ4

zj = ξj(j = 1, 3)

After this substitution, the system takes on the form:

dy

dt
= −z2z3 + p3yz1 −

(
p2
p3
− r

bp3

)
z1z3

dz1
dt

= −z1 − bz2 − bp2
[
y −

(
p2
p3
− r

bp3

)
z3

]
−

−z1z2 − p2z1
[
y −

(
p2
p3
− r

bp3

)
z3

]
dz2
dt

= z2(−µ+ p4b) + αz3 + p4z1z2 − p
′

5z2z3

dz3
dt

= bp3

[
y −

(
p2
p3
− r

bp3

)
z3

]
− z2z3 + p3z1

[
y −

(
p2
p3
− r

bp3

)
z3

]
(19)

The matrix J for system (19) is
0 0 0 0

−bp2 −1 −b p2
p3

(bp2 − r)

0 0 −µ+ p4b α
bp3 0 0 bp2 − r


︸︷︷︸
R

︸ ︷︷ ︸
Q

.

Step 2: Block-diagonalization of matrix J
Matrix J represents the linear part of system (19). To obtain its quasi-normal
form, it is necessary to convert J into a new block-diagonal matrix K, so that

K =

∣∣∣∣ 0 0
0 T

∣∣∣∣, where T[3×3] is a matrix.

Introduce vector η = (y, z1, z2, z3), so that the linear part of the system (19) is
given by:

•
η = Jη =

(
0 0
R Q

)
y
z1
z2
z3

 .

We represent vector η in the form:

η = CW , (20)
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where

W =


u
v1
v2
v3

 , C =

(
B11 B12

S B
′

22

)
.

B11 is a scalar and B12 [1×3], S [3x1] and B22 [3x3] are some matrices. The equa-
tion for W then becomes:

•
W = C−1JCW ≡ KW ,

where K = C−1JC. Solving for C we obtain the desired transformation matrix

C =

(
B11 B12

S B22

)
=



1 0 0 0

− b2αp3
(−µ+ p4b)(bp2 − r)

1 0 0

− bαp3
(−µ+ p4b)(−bp2 + r)

0 1 0

− bp3
(bp2 − r)

0 0 1


.

Applying the linear transformations (20) to the nonlinear system (19), we obtain
a new nonlinear system:

dθ

dt
= −

(
αbp3

(−µ+ p4b)(bp2 − r)
θ + τ2

)(
− bp3

(bp2 − r)
θ + τ3

)
+

+p
′

3θ

(
− b2αp3

(−µ+ p4 b)(bp2 − r)
θ + τ1

)
−
(
p2
p3
− r

bp3

)
×

×
(
− b2αp3

(−µ+ p4b)(bp2 − r)
θ + τ1

)(
− bp3

(bp2 − r)
θ + τ3

)
dτ1
dt

= −τ1 − bτ2 − bp2
[
θ − (

p2
p3
− r

bp3
)τ3

]
−

−
(
− b2αp3

(−µ+ p4b)(bp2 − r)
θ + τ1

)
×
(

αbp3
(−µ+ p4b)(bp2 − r)

θ + τ2

)
−

−p2
(
− b2αp3

(−µ+ p4b)(bp2 − r)
θ + τ1

)
×

×
[
θ −

(
p2
p3
− r

bp3

)(
− bp3

(bp2 − r)
θ + τ3

)]
dτ2
dt

= τ2(−µ+ p4b) + ατ3 + p4

(
− b2αp3

(−µ+ p4b)(bp2 − r)
θ + τ1

)
×

×
(

αbp3
(−µ+ p4b)(bp2 − r)

θ + τ2

)
− p5

(
αbp3

(−µ+ p4b)(bp2 − r)
θ + τ2

)
×

×
(
− bp3

(bp2 − r)
θ + τ3

)
dτ3
dt

= bp3

[
θ − (

p2
p3
− r

bp3
)τ3

]
−
(

αbp3
(−µ+ p4b)(bp2 − r)

θ + τ2

)
(
− bp3

(bp2 − r)
θ + τ3

)
+ p3

(
− b2αp3

(−µ+ p4b)(bp2 − r)
θ + τ1

)
×

×
[
θ −

(
p2
p3
− r

bp3

)(
− bp3

(bp2 − r)
θ + τ3

)]

. (21)
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To compute coefficient g2, we choose the first equation from (21) and calculate
the coefficients for θ2 (see Section 3). First, denote

α1 = − b2αp3
(−µ+ p4b)(bp2 − r)

; α2 =
αbp3

(−µ+ p4b)(bp2 − r)
; α3 = − bp3

(bp2 − r)
.

Next, we rewrite the first equation as follows:

dθ

dt
= −(α2θ + τ2)(α3θ + τ3) + p3θ(α1θ + τ1)−

−
(
p2
p3
− r

bp3

)
(α1θ + τ1)(α3θ + τ3) =

= θ2
[
p3α1 − α2α3 −

(
p2
p3
− r

bp3

)
α1α3

]
− θτ3

[
α2 +

(
p2
p3
− r

bp3

)
α1

]
+

+θτ1

[
p3 −

(
p2
p3
− r

bp3

)
α3

]
− α3θτ2 − τ2τ3 −

(
p2
p3
− r

bp3

)
τ1τ3

.

Therefore, the coefficient for θ2 can be rewritten in the following form:

g = p3α1 − α2α3 −
(
p2
p3
− r

bp3

)
α1α3 =

p3b
2α(p3bp2 − p3r − p3 + bp2 − r)

(µ− p4b)(bp2 − r)2
. (22)

We are interesting to find out the set of parameters for which the coefficient
g becomes zero. Taking the fixed set of parameters (see Appendix B) for the
applicable interval of b (.238 = r/p2 < b < µ/p4 = 3.41, see Table 2), we obtain that
the coefficient g has the largest value on the boundary of the interval, decreasing
to the middle of the interval, and equal to zero when b ≈ 1.477. The coefficient g
estimation summary is presented in the Table 1.

b g
Min=.238 -308637
0.7 -17.7
1.1 -6.232
1.47749 .43×10−8

2.15 18.2
Max=3.41 9080

Table 1. Summary of the calculations of the values of g given
by the formula (22), with varying intensities of treatment b (other
parameters are constant as in Table 2: µ= 0.41; p3 =1.1; α=0.52;
p4 =0.12; p2 =0.285; r =0.068). Equating the numerator (22) to
zero, we obtain the function for b when g = 0 for all other fixed

parameters of the BCG model: b = p3(α+r)+αr
p2(p3+α)

≈ 1.47749.
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Applying Theorem 3.3 we conclude that the system (1) is unstable in all pa-
rameter space except the point where b ≈1.477 (g= 0). For this specific case the
additional stability investigation should be done in such a way that the first gn 6= 0
will be found.

To confirm this result, we solved the system of equations (1) numerically using
a fourth order Runge-Kutta scheme. Fig. 1 (a&b) shows a typical simulation for
a treatment protocol in which BCG instillations at respective rates a) b = 0.9; b)
b = 1.477 (critical value of b because g2= 0). Because our goal was to examine
local stability of the tumor-free fixed point, we chose initial conditions close to the
value of this fixed point: B(0) = 0 (BCG is not present at the beginning of the
treatment), E(0) = 0.01; Ti(0)= 0 (no infected tumor cells at the beginning of
treatment); Tu(0)= 0.35.

The presence of zero eigenvalue means that the fixed point is unstable (in the
sense of Lyapunov stability) in the most of the cases. As a result of the simulation
(Fig. 1 a&b), the integral curves for B, E, Ti are increased in the power low [these
sites are marked in the figure by the letter U] and hence this fixed point is not locally
stable. Based on Fig. 1 (a&b), we can confirm that the solutions are unstable for
all values of b with sufficient accuracy.

Figure 1. Numerical simulation of system (1) for two different
therapy regimens. In each case, we plotted the time-series of un-
infected tumor cells (dashed line), effector cells (solid heavy line),
tumor cells infected with BCG (solid line) and BCG (dash-dotted
line). BCG instillation rates are: a)b = 0.9; b)b = 1.4. Parameter
values are as in Table 2 with the initial tumor size before treatment
Tu(0)=0.35.

Fig. 1 & 2 are fully consistent with the definition of instability by Lyapunov.
In each case, we plotted the time-series of uninfected tumor cells (dashed line),
effector cells (solid heavy line), tumor cells infected with BCG (solid line) and BCG
(dash-dotted line).
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Figure 2. Numerical simulation of system (1) for two different
initial conditions: a). b is close to the critical value: b = 1.488.
b). b is a far from critical value: b = 1.65.

5. Discussion. The aim of this work was to study BCG model in the case of zero
eigenvalue, because this issue has not been studied previously. Why is this impor-
tant? Intravesical BCG therapy has been proven to be effective in the prophylaxis
and treatment of superficial bladder cancer but no prognostic indicator of treatment
success has ever been formulated. In addition, several complications occurring after
BCG immunotherapy have been reported in 80% of patients. These complications
were classified as minor side effects and major side effects. In our model, we ex-
amined tumor-free equilibrium without side effects or with only minor side effects
and tumor-free equilibrium with major side-effects. Bladder cancer is rarely cured
without side effects resulting from BCG immunotherapy. In the case that treatment
is successful, it is still difficult to determine what factors brought about this result.
Therefore, by analyzing the mathematical model we are trying to find the answer
to this question.

An important aspect of the study of the model of BCG treatment of bladder
cancer is investigation of the stability of the tumor-free equilibrium. This fixed point
is critical in that one of the eigenvalues of the corresponding linearized system is
zero (regardless of the values of biological parameters of the model) while all others
are negative (under conditions (7)). For our system, zero eigenvalue is always
present; hence degenerate co-dimension one situation cannot occur in our case. In
this case, analysis of stability cannot be performed on the basis of the linearized
system alone but rather requires analyzing nonlinear terms as well. We showed
that stability (or lack thereof) of the tumor-free equilibrium is determined (under
condition (7)) by the value of a single combination g of model parameters, see
formula (22). As a result, the behavior of the system about this fixed point does
not produce bifurcations where stability changes near the singular point. We note
also the irrelevance of the transversality condition, since zero eigenvalue does not
leave the origin of the plane of eigenvalues for all values of model parameters. The
existence of zero eigenvalue in the spectrum is the property of the trajectories of the
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system (rate of parameters changing), and do not fully characterize the behavior of
the entire system.

We showed that stability of the tumor-free equilibrium is possible only at the
intermediate levels of treatment intensity(r/p2 < b < µ/p4). However, even for
intermediate levels of b, if g 6= 0 then this equilibrium is unstable. Thus, stability
is an exceptionally rare phenomenon. Practically, achieving stability requires a
careful selection of the rate b of BCG instillation. From mathematical standpoint,
our main result was obtained through computing the quasi-normal form of the
system and application of the reduction principle.

From the medical point of view, at intermediate levels of treatment intensity
(r/p2 < b < µ/p4), the tumor-free equilibrium is unstable and tumor cure is impos-
sible, except the point b ≈ 1.477, where g=0. The analysis of g3 requires an addi-
tional sophisticated calculations which are not in the scope of this work. However,
considering the simulation results, it can be argued that for b ≈ 1.477, tumor-free
equilibrium is not local stable too.

From Theorem 3.1, under the conditions g2 = 0, g3 < 0, the fixed point will be
asymptotically stable. However, a question arises as to whether there are biologi-
cally significant sets of model parameters for which the above conditions are met.
From our study it is clear that stability essentially depends on the estimation of the
values of biological parameters: BCG infection rate (p2), rate of killing of infected
tumor cells by effector cells (p3), rates of recruitment of effector cells (p4) and their
natural mortality rate (µ), natural growth (r) of bladder tumor cells, and the BCG
treatment dose (b).

The general results obtained in section 3 can be used to perform stability analysis
for the other critical fixed points of system (1). The study by [10] revealed in par-
ticular that, in a “side-effect” equilibrium, in which the spectrum contains two zero
eigenvalues, depending on the values of model parameters, bifurcation phenomena
with degeneracy of co-dimension 2 will manifest themselves. Thus, investigating
stability of the system with particular type of nonlinearity should be a matter of
future research.

By addition of term of bursting of infected tumor cells or term of tumor infected
cells mortality in the Ti equation in the system (1), we can liquidate of zero eigen-
value in spectrum. However, these values will be very small relative to the values
of p3 in system (1), and therefore, we should examine the bifurcation in the zero
eigenvalue neighborhood (just as is done in the study of Hopf bifurcation) and this
means that this problem is essentially nonlinear and requires using of the normal
form theory also. In this regard, we assert that our analysis is important for the
study of other models when real eigenvalue is very small.

The analysis of stability presented here was performed under the assumption
of the exponential growth of cancer cells in the bladder. From the mathematical
and biological points of view, it is clear that a similar analysis can be performed
under the assumption that tumor growth can be approximated by any other smooth
differentiable function obtained from biological experiments.

In our work, complex biological interactions between tumor, immune system,
and BCG were represented by a 4-dimensional system. As the dimension of the
system was relatively small, all calculations were performed without the aid of a
computer. Additional variables that would provide a more detailed description of
the underlying biology can be envisioned; however, this would require more complex
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calculations. To perform them, algorithms for the reduction to normal forms of
systems of various orders are available ([32]).

Acknowledgments. The authors would like to thank to reviewers for interesting
suggestions.
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Appendix A. Quasi-normal form and reduction principle.
In this section we examine the notations and basic concepts used in this study

and summarize briefly the ideas of the quasi-normal theory, based on Bibikov ([6]).
To consider the general (n+s) nonlinear ODE system, which is similar to (5) and

having the trivial solution Ξ = 0. Suppose that (n+s) eigenvalues of a matrix J are
divided into two groups: a critical part, containing n eigenvalues and a non critical
part, containing s no critical eigenvalues with negative real parts.

Without loss of generality we may assume that J[(n+s)x(n+s)] =

(
A 0
R Q

)
where the matrix A[nxn]has critical eigenvalue only; the matrix Q[sxs] has no critical
eigenvalues. The ODE system corresponding matrix J looks like:

dY

dt
= AY + F (Y, Z) = AY +

∞∑
j=2

F (j)(Y,Z)

dZ

dt
= RY +QZ +G(Y, Z) = RY +QZ +

∞∑
j=2

G(j)(Y, Z)

, (A.1)

where Y = [y1, y2, ..., yn], Z = [z1, z2, ..., zs];F (Y,Z), G(Y,Z) are vector-functions;
and F (j) (Y,Z), G (j) (Y, Z) are j-th order nonlinear terms in the power series ex-
pansion of functions F (Y, Z), G(Y, Z) in the neighborhood of the origin, respec-
tively.

The system (A.1) is characterized that the equations for the critical variables are
being separated from the equations for non critical variables.

In the research of critical cases, an initial position is the assumption that the
linear part of the studied system has a certain canonical form. For example, it can
be assumed that the matrix of the linear approximation has a Jordan form, and
this is used in the normal forms theory of the resonant type. In our work has been
used a quasi-normal form, which implies that the canonical form of the matrix of
the linear approximation, has a block structure, in which the blocks correspond to
the critical and noncritical eigenvalues appropriately. To use a quasi-normal form,
there is no requirement that the block corresponding to the noncritical part of the
spectrum has Jordan form, and this fact considerably reduces calculations.

http://dx.doi.org/10.1007/s002400050039
http://dx.doi.org/10.1007/s002400050039
http://www.ams.org/mathscinet-getitem?mr=MR0190449&return=pdf
http://dx.doi.org/10.1142/S0218202599000312
http://dx.doi.org/10.1142/S0218202599000312
http://dx.doi.org/10.1016/j.jns.2003.06.001
http://dx.doi.org/10.1016/j.jns.2003.06.001
http://www.ams.org/mathscinet-getitem?mr=MR1866918&return=pdf


QUASI-NORMAL FORM FOR BCG MODEL OF BC 545

In this connection, consider nonlinear transformation in the form of a power
series, having introduced new variables U and V as:

Y = U +

∞∑
j=2

Φ(j)(U, V )

Z = V + SU +

∞∑
j=2

Ψ(j)(U, V )

, (A.2)

where S[nxs] is the matrix; Φ(j) and Ψ(j) are vector-forms of the j order. The
system (A.1) after the transformation (A.1) looks like as:


dU

dt
= AU + h(U, V ) = AU +

∞∑
j=2

H(j)(U, V )

dV

dt
= TV + p(U, V ) = TV +

∞∑
j=2

P (j)(U, V )

. (A.3)

In nonlinear transformation (A.2) its linear part with block-triangle matrix(
A 0
R Q

)
splits the linear part of the system (A.3), completely separating critical

variables from the non critical. Following transformation (A.2), the linear part of

the system (A.3) is characterized by a block diagonal matrix:

(
A 0
0 T

)
.

The system (A.3) is called a quasi-normal form of the system (A.1) if the system
(A.3) has the following properties:

1) h(U, V ) is not dependent on V and contains only resonance terms;
2) p(U, 0) = 0
For the definition of the resonance term, denote vector Ω = [U, V ], spectrum

matrix J as N = [Λ,M], where N = [ν1, ν2, ..., νn, νn+1, νn+2, ..., νn+s];
Λ = [λ1, λ2, ..., λn] is the critical part of the spectrum and M = [µ1, µ2, ..., µs] is
non critical part of the spectrum. The nonlinear part of the (A.3) is presented as
a serious of vector-monomials. A monomial in the j-th equation appears as:ΩL =
UPV Q, where multi-index L = (l1 , l2 , .., ln+s), lj ≥ 0, lj ∈ Z, i.e. L = (P,Q)
where P = (p1, p2, ..., pn), pi ≥ 0, pi ∈ Z and Q = (q1, q2, ..., qs), qj ≥ 0, qj ∈ Z.

The order of the monomial is |L| = |P |+ |Q| and |L| =
∑n+s
j=1 lj

Monomial ΩLis called the resonance term in the j-th equation (j = 1, 2, ..., n+s)
of the system (A.1) and (A.3), if< N, L >= νj , (j = 1, 2, ..., n+s), where< N, L >
is scalar product. < N, L >= 0 defines resonance term for the case when at least
one of them is zero, i.e. in the j-th equation corresponding eigenvalue will beνj=0.
(It is the case of zero eigenvalue, examined in this work.)

We highlight that in our case, when non critical part of the spectrum has eigen-
values with negative real part, monomial ΩL = UPV Qin the critical equation will
be resonant only if Q = 0, otherwise normal part of the critical equation does not
depend on V.

As a rule, all series are formal and, moreover, divergent in a critical case ([9]). For
the research of critical case stability, when the problem is solved in a final approach,
it is not necessary to use the transformation (A.2) in the series form. It is enough
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to perform polynomial transformation only, as follows:
Y = U +

k∑
j=2

Φ(j)(U, V )

Z = V + SU +

k∑
j=2

Ψ(j)(U, V )

. (A.4)

This transformation normalizes system (A.1) until k-order terms are included,
i.e. instead of system (A.3) we will obtain the following system:

dU

dt
= AU +

k∑
j=2

H(j)(U) +Ok+1(U, V )

dV

dt
= TV +

k∑
j=2

P (j)(U, V ) +Ok+1(U, V )

, (A.5)

where H(j)(U)in the system (A.5) contains resonance terms only;P (j)(U, 0) =
0, j = 2, 3, ..k; and Ok+1(U, V ) are not re-normalized terms of a higher order than
k. It is important to underline that (A.1) and (A.5) are equivalent systems. In
particular, the fixed point (origin point) stability (or instability) is a feature of the
system (A.1) and coincides with a similar property of system (A.5). However, how
should k be chosen?

For stability research it is necessary to choose k by an optimum procedure since
the number of calculations depends on the value of k. The number k actually
characterizes the degree of the degeneracy in a critical case. To describe the property
of the degeneracy, we examined the critical subsystem such as:

dU

dt
= AU +

k∑
j=2

H(j)(U) +Ok+1(U, 0) . (A.6)

Suppose the zero solution of the system (A.6) is asymptotically stable (or stable
or not stable) without dependence on terms of a higher order Ok+1(U, 0).

Considering that the system (A.5) has a quasi-normal form to k-th order (inclu-
sive), it is possible to confirm the following: if the fixed point U=0 of the system
(A.6) is asymptotic stable (or stable or not stable) without dependence on terms of
a higher k order i.e. Ok+1(U, 0), then for the system (A.5) we apply the reduction
principle, as in [24], [25], [27] and [22]. From this principle it follows that the same
property has the fixed point U=0, V=0 of the system (A.6).

From the above it follows that: the number k (Eq. (A.1)) needs to be chosen so
that the trivial solution in system (A.6) will be stable or unstable, independent of
the terms of the Ok+1 order.

Appendix B. Parameter estimation. Parameter values were estimated in [10]
and are summarized in the Table 2.
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Param Physical Interpretation
(units)

Dimensional estimate
(Dimensionless esti-
mate)

Reference

µ1 BCG half life[
days−1

] 0.1(1.00) [3]

µ2 Effector cells mortality
rate[
days−1

] 0.041(0.41) [23]

p1 The rate of BCG killed by
APC[
cells−1][days−1

] 1.25× 10−7(1.25) [31]

p2 Infection rate of tumor
cells by BCG[
cells−1][days−1

] 0.285× 10−6(0.285) [10].

p3 Rate of destruction of in-
fected tumor cells by effec-
tor cells[
cells−1][days−1

]
1.1× 10−7(1.1) [23]

p4 Immune response activa-
tion rate[
cells−1][days−1

] 0.12× 10−7(0.12) [10].

p5 Rate of E deactivation af-
ter binding with infected
tumor cells;[
cells−1][days−1

]
0.03× 10−8 (0.0034) [23]

α Rate of E stimulation due
to infected tumor cells[
days−1

] 0.052(0.52) [31]

r Tumor growth rate[
days−1

] 0.0033 (0.033)
0.012 (0.12)
0.0068 (0.068)

[29];
[30];
In all simulations.

b bio-effective concentration
of BCG
[c.f.u./day]

[3× 105 : 1× 106]
([3 : 10], Range
used[0:10])

[12]

Table 2. List of all parameters. Note that dimensionless estimates
were obtained from source values using the transformations stated
in section 2.1.
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