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Abstract. A saturable multi-compartment pharmacokinetic model for the

anti-cancer drug paclitaxel is proposed based on a meta-analysis of pharma-
cokinetic data published over the last two decades. We present and classify

the results of time series for the drug concentration in the body to uncover the
underlying power laws. Two dominant fractional power law exponents were

found to characterize the tails of paclitaxel concentration-time curves. Short

infusion times led to a power exponent of −1.57 ± 0.14, while long infusion
times resulted in tails with roughly twice the exponent. Curves following in-

termediate infusion times were characterized by two power laws. An initial
segment with the larger slope was followed by a long-time tail characterized
by the smaller exponent. The area under the curve and the maximum con-

centration exhibited a power law dependence on dose, both with compatible

fractional power exponents. Computer simulations using the proposed model
revealed that a two-compartment model with both saturable distribution and

elimination can reproduce both the single and crossover power laws. Also, the
nonlinear dose-dependence is correlated with the empirical power law tails. The
longer the infusion time the better the drug delivery to the tumor compartment

is a clinical recommendation we propose.
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1. Introduction.

1.1. Pharmacokinetics. Pharmacokinetics is the study of the absorption, distri-
bution, metabolism, and eventual elimination (ADME) of a drug from the body
[17]. Pharmacological data usually consist of discrete values of the concentration
of a drug in the plasma as a function of time. For drugs administered by direct
intravenous (IV) infusion, a plot of these values generates a concentration versus
time curve that rises during the infusion and then decreases after a maximum con-
centration value is reached. This decline may be relatively short or may last for
several days, and it is mainly governed by the rate of elimination of the drug from
the body. One of the key questions investigated is the functional dependence of
the elimination curve and a single parameter is often used that characterizes the
drug, namely its half-life. Our interest is also focused on the power law exponent
of the elimination curve since it can provide important information about the fate
of the drug in the body and its efficacy. During clinical trials, the concentration-
time curves are used to determine optimum dosing regimens, potential toxicities,
and drug-drug interactions. One of the major challenges in dose optimization is
nonlinear behavior in one or more drug processes. In this study, we investigate new
ways to assess and quantify nonlinear pharmacokinetic behavior using empirical
power laws, with emphasis on their origins and diagnostic applications to the drug
paclitaxel.

1.2. Paclitaxel. Paclitaxel, derived from the bark of either the Pacific Yew tree or
the European Yew tree [51], is one of the most important anticancer drugs developed
in the past two decades. It is active against many human solid tumours related to
breast cancer, ovarian cancer, non-small lung cancer, head and neck cancer and
advanced forms of Kaposi’s sarcoma [20]. Paclitaxel is also used for the prevention
of restenosis. Because it is poorly water-soluble, the current formulation Taxol R©
incorporates a 6 mg/ml solution in a solvent consisting of 50% R© polyoxyethylated
castor oil (Cremophor R© EL-CrEL) and 50% dehydrated alcohol (USP). Paclitaxel
is typically administered by intravenous infusion over one or three hours but has
also been administered over six and twenty four hours. Because a patient may
have an anaphylactic reaction to CrEL, alternative formulations of paclitaxel have
been introduced, including BMS-184476, oral paclitaxel in polysorbate 80, and ABI-
007, Genexol-PM [27] and Abraxane R© (nab-paclitaxel) [49]. Paclitaxel has a long
residence time within the body and can stay trapped in cancer cells for over a week
[37]. Paclitaxel is also highly bound to CrEL micelles, plasma proteins, platelets,
and red blood cells [19].

1.3. Molecular action of taxol. Paclitaxel is a mitotic inhibitor, which binds
preferentially to microtubules, which are cellular components necessary for mitosis,
intracellular transport, maintenance of cell shape, and cellular motility. Usually,
there is a dynamic balance between microtubules and their building blocks, tubu-
lin, free in solution. By shifting the balance towards microtubule polymerization,
however, cell replication is strongly inhibited during the G2 and M phases of the cell
cycle [45, 22]. In vitro, paclitaxel binds reversibly to microtubules with an affinity of
approximately 1 µM and a stoichiometry of one paclitaxel molecule per α/β tubu-
lin dimer. In the body, paclitaxel is highly bound to plasma proteins (95 - 98%),
and it is eliminated through metabolism in the liver by cytochrome P-450 enzymes
CYP3A4 and CYP2C8 [36]. Paclitaxel’s mechanism of action results in the inhibi-
tion of cell replication causing cell death due to apoptosis [23]. A family of related
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compounds known as taxanes, including the drug docetaxel, has been developed
to improve upon the successful therapeutic properties of paclitaxel for example by
increasing its specificity and water solubility; in addition the epothilones, another
family of anti-cancer drugs, are believed to bind at the taxol active site [40, 47].

The binding site of taxol is located on the β-tubulin unit within the α/β hetero-
dimer, the repeating element forming the long protofilaments that together make
up the hollow, cylindrical microtubule structure. Figure 1 shows paclitaxel (panel
a) and docetaxel (panel b) bound to β-tubulin while panel c illustrates its binding
site location on a microtubule protofilament relative to the other two anti-mitotic
drugs: vinblastine and colchcicine. The shortening and lengthening of microtubules,
called the dynamic instability, is necessary for the formation of the mitotic spindle
during cell division, of which microtubules are the main components. Shortening
occurs when the GTP nucleotides linking individual dimers become hydrolyzed to
GDP, causing dimers to depolymerize from the ends of microtubules. Binding of
paclitaxel to tubulin locks these building blocks in place and the resulting micro-
tubule/paclitaxel complex does not have the ability to disassemble. When taxol
binds to microtubules at a site in the microtubular lumen or interior, it modifies
the dynamic properties of the microtubule, leading to stabilization of GDP-bound
tubulin against depolymerization [24]. This adversely affects cell function because
the dynamic instability of microtubules is necessary for the cell’s proper function-
ing as a mechanism to transport other cellular components. For example, during
mitosis, microtubules position the chromosomes during their replication and sub-
sequently lead to the separation into two daughter-cell nuclei [53]. This destroys
the cell’s ability to use its cytoskeleton in a flexible manner. Further research has
indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells
by binding to an apoptosis inhibiting protein called Bcl-2 (B-cell leukemia 2) and
thus arresting its function. In addition to stabilizing microtubules paclitaxel may
act as a molecular mop by sequestering free tubulin effectively depleting the cell’s
supply of tubulin dimers. This activity may trigger the aforementioned apoptosis
[25].

One common characteristic of most cancer cells is their rapid rate of cell divi-
sion. In order to accommodate this, the cytoskeleton of a cell undergoes extensive
restructuring. Paclitaxel is an effective treatment for aggressive cancers because it
adversely affects the process of cell division by preventing this restructuring. Cancer
cells are also destroyed by the aforementioned anti-Bcl-2 mechanism. Some normal
cells are also affected adversely, for example immune system cells, neurons and ep-
ithelial cells, but since cancer cells divide much faster than non-cancerous cells, they
are far more susceptible to paclitaxel treatment resulting in an overall therapeutic
benefit to the patient.

1.4. Objectives and organization of the paper. The main objective of this
paper is pharmacokinetic model development intended to capture various sources
of data on the pharmacokinetics of paclitaxel, especially the dependence of the
concentration of the drug in blood plasma on the infusion time, which has been
shown to exhibit bi-phasic behavior. We will analyze the concentration versus time
data from as many published experimental studies as possible to create a general
mathematical model of paclitaxel pharmacokinetics broadly based on the available
information. Once the model has been built, we intend to investigate its solutions
both numerically and analytically. We have developed a three-compartment sat-
urable model that can be simplified to a two-compartment saturable model without
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Figure 1. Illustration of the molecular binding of paclitaxel (panel
a) and docetaxel (panel b) bound to β tubulin while panel c il-
lustrates its binding site location on a microtubule protofilament
relative to the other two anti-mitotic drugs: vinblastine and colch-
cicine.

loss of generality under prevailing kinetic conditions. We have applied both ana-
lytical and numerical approaches aimed at analyzing and explaining the origin of
power laws shown by the concentration versus time curves. While the qualitative
aspects of the model and its preliminary analysis were published elsewhere [34], the
current paper presents a detailed description of the mathematical development of
the model and its solutions within the context of its pharmacokinetic relevance. It
is recognized that in the context of biological phenomena, the inference of power
laws should involve several decades on the time axis. While in our case, or in phar-
macokinetics in general, such long-term observations are simply impossible due to
short half-life times of drug entities in the human body, paclitaxel has an unusually
long time scale of elimination spanning at least two or even three orders of mag-
nitude (from minutes to days). Therefore, with clearly distinct functional profiles
from classical exponential decay in pharmacokinetics, we strongly believe the use of
power laws is justified in this case.

In the next section we systematically analyze experimental data extracted from
various sources according to the control parameters (infusion time, dose) and group
them accordingly to find characteristic properties of the data sets and the underlying
mechanisms of paclitaxel activity in the body. We look for the key properties of
paclitaxel pharmacokinetics by studying the area under the curve (AUC), half-life
and the maximum concentration (Cmax). We define the concentration of the drug in
the blood as both a function of time t and total dose D, C(t,D). We can then define
two pharmacokinetic quantities relevant to high-dose chemotherapeutic drugs: the
AUC (holding the dose D constant):

AUC =

∫ ∞
0

C(t)dt (1)

and Cmax, the maximum concentration reached in the blood:

Cmax = C(t,D)| dC
dt =0 (2)
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Datasets from various studies were taken from the literature. Graphs of pharma-
cokinetic profiles were digitized, while AUC and Cmax values were taken directly
from tables.

In Section 3, we develop a pharmacokinetic model using initially a saturable
three-compartment model where the compartments represent: (a) the blood plasma
including the organs of elimination, e.g. the liver, (b) the tumor compartment and
(c) an optional compartment that involves drug binding with other organs that
are neither eliminating the drug nor part of the tumor. These could be plasma
proteins or organs rich in tubulin such as the brain or epithelial structures. We
then argue that combining the elimination compartment with the blood plasma
compartment is a reasonable simplification in view of the values of the kinetic
coefficients involved. This section is further subdivided into three subsections that
deal with: 3.1 model development, 3.2 numerical analysis of the data, and 3.3
analytical investigations including some exact solutions. The last section of the
paper summarizes our findings with practical suggestions for optimal drug dosage
and infusion times due to the insights gained in this work into paclitaxel distribution,
binding and elimination.

2. Analysis of the experimental data. One of the main challenges with ad-
ministering paclitaxel is its observed dose-dependence; a given increase in dose
results in a greater than proportional increase in both Cmax and AUC of the drug.
In addition, compartment models with linear rate constants provide less than ad-
equate fits to the pharmacokinetic profiles. As a result, two-compartment and
three-compartment models were introduced with saturable Michaelis-Menten ki-
netics incorporated into both the distribution and elimination [53, 26, 16]. The
same studies all observed that the Cmax and AUC values for paclitaxel in patients
increase disproportionately with an increase in dose, although the relationships were
less evident for the longer, twenty four-hour infusions. Furthermore, the rate con-
stant for elimination was much higher than that for distribution (Kearns et al.[26]
found a seventeen-time greater value).

There is evidence that concentration versus time curves for many drugs, including
paclitaxel, exhibit long-time power law tails of the form

C(t) ∼ tα; t > T, (3)

where T marks the onset time and α is the negative power exponent. However, these
curves are not adequately modeled by single processes such as straight-forward linear
absorption or elimination. In this article, we demonstrate how a multi-compartment
model with two Michaelis-Menten processes [35] of saturable binding and elimina-
tion can produce both single and dual power law tails with characteristic negative
exponents.

It is worth mentioning that negative power laws were first applied empirically
to describe the washout of bone-seeking radioisotopes [41, 66]. Subsequently, other
types of clearance curves have been fitted by a single power law, two sequential
power laws, or the gamma function, y(t) = a1t

−a2e−a3t. [2, 3, 42, 65] Although
most of these applications of the power law have been strictly empirical, several
explanatory models have been proposed including: a stochastic random walk model
based on molecules cycling in and out of the plasma [64], a set of convection-diffusion
equations for transit in the liver [42], gamma-distributed drug residence times [61],
and fractal elimination kinetics under both homogeneous and heterogeneous condi-
tions [7, 33, 9, 10, 58, 59]. In addition, Beard and Bassingthwaighte [4] showed that
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a sum of scaled exponential functions can produce power law behavior. However, a
model based on this assumption would necessarily imply a well-stirred compartment
situation without saturation. Therefore, while exponential functions could be used
for retrospective fits to data points, in our opinion this type of modeling would have
limited applicability for long-term trend representation and, especially for prospec-
tive modeling not to mention their limited explanatory power. We believe that in
the case of paclitaxel pharmacokinetics conditions of saturable concentrations as
well as non-homogeneous compartments apply, hence the importance of power-laws
is clear. In parallel, power law relationships between pharmacokinetic variables
have also emerged in fractal models that describe enzyme kinetics occurring within
heterogeneous environments [29, 28, 31].

Power laws have also been used to model dose-proportionality of pharmacokinetic
parameters, such as the AUC and the Cmax. If a doubling of the dose of a drug
produces no change in the values of the pharmacokinetic parameters, the system
is dose-independent. If a doubling of the dose produces a doubling of one or more
pharmacokinetic parameters, the system is considered to be dose-proportional (lin-
ear). If the parameter decreases or increases by a factor other than two, the system
is considered to be nonlinear. To quantify the extent of nonlinear dose-dependence,
Gough et al. [18] proposed the “power model”:

P ∼ cDβ , (4)

where P represents the pharmacokinetic parameter and D is the dose. However,
the authors only considered cases corresponding to β = 0 (dose-independence) and
β = 1 (linear dose-dependence). Their solution for fitting a nonlinear relationship
was the addition of higher-order polynomial terms to equation 4. In addition, the
authors stressed that their model is empirical and that their application of the power
law was not mechanistic. To the best of our knowledge, a critical consideration of
noninteger values of β has yet to be made. Here, we report such values and attempt
to relate them to characteristics of the concentration versus time curve.

To this end, forty-one sets of concentration versus time data from twenty pub-
lished clinical trial studies were included and digitized using Macromedia Fireworks
Version 4 (San Jose, California). The data were tested for power law tails of the
form expressed by equation 3, where T coincides with the end of the IV infusion of
paclitaxel. Regression analysis was performed on log-log data, with the goodness
of fit evaluated using the coefficient of determination, R2. The mean number of
data points in the tail was 9 ± 2 (minimum of 6 and maximum of 13). Eight sets
of AUC and Cmax data were taken directly from ten published studies and were
fit to equation 4. The mean number of dose levels per study was 4 ± 1 (minimum
of 3 and maximum of 6). Thirty-nine of the forty-one concentration versus time
curves exhibited power law tails. Values calculated for the power exponent α are
summarized in table 1. Although the exponent was relatively independent of pa-
tient characteristics (such as weight, age, sex, and the type and stage of cancer)
and the dose level, it varied with the length of the infusion. For short infusions
(one hour duration), a single long-time tail was observed with a power exponent of
α = −1.57 ± 0.14. The tails persisted up to twenty-four hours and in one case up
to thirty-six hours. For long infusions (six hours or twenty-four hours duration), a
single long-time tail was also observed but with an exponent of over 3. The tails
extended up to twenty-four hours for the six-hour infusions and up to forty-eight
hours for the twenty-four-hour infusions.
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Table 1. The power law exponent α quantifying the tails of pa-
clitaxel concentration curves. [1, 32, 38, 14, 43, 26, 16, 56, 52, 13,
39, 55, 57, 15, 11, 19, 6, 62, 67, 63, 53, 44]

Infusion Dose Range Initial Slope Terminal Slope
Time (h) (mg/m2) α R2 α R2

1 150 -1.25 – -1.59
1 175 -1.40 – -1.68
1 200 -1.58 – -1.61
1 225 -1.50 – -1.67
1 250 -1.69 – -1.71

AVG 150 – 250 -1.57 (0.14) 0.97 (0.02)
3 60 -6.56 (0.41) 0.989 -1.22 (0.13) 0.959
3 105 -3.57 (0.71) 0.863 -1.63 (0.14) 0.944
3 135 -3.04 – -3.38 -1.56 – -1.72
3 150 -3.08 (0.47) 0.956 -1.87 (0.04) 0.998
3 175 -2.85 – -3.94 -1.14 – -1.84
3 180 -3.14 (0.50) 0.908 -1.61 (0.04) 0.996
3 225 -3.19 – -3.67 -1.77 – -1.79
3 240 -3.37 (0.42) 0.942 -1.70 (0.06) 0.991
3 250 -3.30 – -3.34 -1.74 – -1.78
3 290 -2.29 – -2.72

AVG 150 – 250 -3.38 (0.27) 0.95 (0.04) -1.70 (0.16) 0.99 (0.02)
6 175 -3.35 (0.25) 0.962
6 230 -1.22 (0.08) 0.987
6 250 -3.40 (0.23) 0.955
6 275 -2.46 (0.13) 0.968

AVG 175 – 275 -3.07 (0.53) 0.96 (0.01)
24 105 -1.97 (0.09) 0.991
24 180 -2.62 (0.09) 0.996
24 250 -3.06 (0.18) 0.981
24 275 -3.69 (0.69) 0.851
24 290 -3.37 (0.27) 0.977
24 350 -3.35 (0.21) 0.988
24 825 -3.41 (0.18) 0.981

AVG 180 – 290 -3.23 (0.55) 0.94 (0.08)

In contrast, for the intermediate infusion time of three hours, the concentration
versus time curves exhibited a crossover between two power law regimes. At the
end of the infusion phase, there was an initial period of one to two hours where the
slope has a power exponent, which is equal within error to the slope exhibited by
the six-hour and twenty-four-hour infusion curves. This initial slope was followed
by a long-time tail with a power exponent equal within error to that exhibited by
the one-hour infusion curves. The length of the long-time tail ranged from nine to
sixty-eight hours post-infusion. Figure 2 shows the distinct dual nature of the tails
for three-hour infusions of paclitaxel. In addition, the rise of each curve also appears
to follow a power law relationship. In pharmacokinetics, the shape of the curves
is called a flip-flop situation because the initial slope is steeper than the terminal
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long-time tail. One would expect the opposite, since smaller plasma concentrations
should be cleared more rapidly. Usually, a flip-flop is linked to orally-administered
drugs whose absorption rate constant is smaller than the elimination rate constant
[5]. In the case of paclitaxel, however, we believe that the flip-flop is associated
with the distribution of drug from the plasma to other tissues especially the tumor
compartment.
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Figure 2. Pharmacokinetic data obtained for three-hour infusions
of paclitaxel, replotted from Kearns et al. [26] for three dose levels
(open circles, 135mg/m2; solid circles, 175mg/m2; open triangles,
225mg/m2). (A) Log-Lin plot showing the non-exponential nature
of the tails of the curves. (B) Log-log plot showing three distinct
power law regions.

The observed power law behavior is likely not a consequence of binding to the
CrEL formulation vehicle or blood components but of the saturable processes at
play as discussed above. This is evidenced by the fact that analysis of two CrEL-
free formulations of paclitaxel produced results consistent with those observed for
regular paclitaxel. Two concentration versus time curves for thirty-minute infusions
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Table 2. The slope of ln(AUC) versus ln(dose) illustrating the
paclitaxel dose-dependence. [1, 32, 15, 56, 7, 33, 11]

Infusion Dose Range
Time (h) (mg/m2) Slope R2

1 150 – 250 1.84 (0.17) 0.975
1 150 – 250 1.85 (0.32)
3 54 – 94.5 1.61 (0.46) 0.862
3 105 – 270 1.65 (0.12) 0.978
3 135 – 175 1.57 (0.28) 0.970
3 135 – 300 1.84 (0.16) 0.997
6 175 – 275 1.65 (0.63) 0.774
24 54 – 94.5 1.61 (0.46) 0.862

of the drug ABI-007 taken from Damascelli et al. [8] demonstrated single power
law tails with α = −1.61. Four curves for three-hour infusions of 175− 390 mg/m2

of the drug Genexol-PM taken from Kim et al.[27] exhibited dual power law tails
with α = −4.99 ± 0.57 for the initial slope and α = −1.65 ± 0.15 for the terminal
slope. The concentration versus time curve reported by van Zuylen et al.[57] for
paclitaxel in whole blood following a three-hour infusion produced an initial power
exponent of α = −3.86± 0.59 and a terminal exponent of α = −1.64± 0.01.

We conjecture that the steep curves (described by the larger power exponent)
correspond to the case where the distribution process is not saturated, allowing the
maximum fraction of drug to be distributed outside the blood plasma. This situa-
tion occurs when the drug is infused relatively slowly. The shallow curves, however,
result when the distribution process is saturated, and therefore the smaller power ex-
ponent predominantly reflects the elimination process. This situation occurs when
the drug is infused relatively rapidly. The fact that the power law tails persist
even at low concentrations (below the reported KM values) provides additional in-
formation about the system. This continued adherence to a power law indicates
a failure of the drug to attain a steady state in the peripheral compartment(s).
Therefore, drug distribution to and release from the tissues plays a dominant role
in the pharmacokinetics of paclitaxel at all plasma concentrations.

We should qualify the above statements with the following comment. Due to the
natural limitations to the quantification of the drug concentration, the empirical
power laws described here are only valid over one to two decades. Therefore, the
term power law as used in this article technically refers to an empirical characteristic.
Nonetheless, the empirical power exponents have practical and clinical significance
because they allow us to distinguish between different regimes of a process.

The dose-dependence of AUC and Cmax were found to be nonlinear, in agreement
with the literature, as shown in tables 2 and 3. The relationship in equation 4
provided a good fit to the data, and the results are listed in table 4. The two values
of β agree within error with each other and with the exponent characterizing the
shallow long-time tails. Note that these results are only valid over the therapeutic
dose ranges considered, and caution should be used in extrapolating beyond this
range.

After confirming the existence of power law tails in paclitaxel concentration ver-
sus time curves, we wanted to test whether they could be generated using a model
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Table 3. The slope of ln(Cmax) versus ln(dose) illustrating the
paclitaxel dose-dependence. [1, 32, 56, 7, 33, 11, 63, 67]

Infusion Dose Range
Time (h) (mg/m2) Slope R2

1 150 – 250 1.87 (0.35) 0.904
1 150 – 250 1.86 (0.19) 0.918
3 105 – 270 1.66 (0.15) 0.969
3 135 – 175 1.64 (0.36) 0.955
3 135 – 300 1.66 (0.12) 0.984
6 175 – 275 1.74 (0.78) 0.713
24 200 – 275 1.70 (0.31) 0.968
24 250 – 390 1.82 (0.54) 0.919

Table 4. The power law exponent β quantifying the dose depen-
dence of pharmacokinetic parameters for one-hour paclitaxel infu-
sions. The number of data sets is eight. [26, 16, 32, 38, 43, 56, 62,
50, 63, 46]

Dose Range
Parameter (mg/m2) β R2

AUC 54 – 300 1.76 (0.17) 0.94 (0.08)
Cmax 135 – 390 1.74 (0.09) 0.92 (0.09)

involving the competition between two saturable processes arising in the tumor
compartment and the elimination (combined liver and blood plasma) compartment.
Below we provide a mathematical description of the model proposed here. The main
building blocks of the model and some numerical analysis aimed at reproducing ex-
perimental data was first presented by Marsh et al. [34]. However, our focus in
the present paper is to go beyond the replication of experimental data and hence
we intend to provide the reader with an in-depth analytical investigation of the
underlying mathematical equations and their solutions.

3. Theoretical analysis.

3.1. Model development. The most common type of pharmacokinetic model is
the compartmental model [21], in which a compartment is defined as the number of
drug molecules having the same probability of undergoing a set of chemical kinetic
processes. The exchange of drug molecules between compartments is described
by kinetic rate coefficients. The number of molecules in a compartment can be
converted to a concentration using the concept of the volume of distribution, the
theoretical volume into which the drug is dispersed.

Consider a one-compartment model post-infusion, such that

dC

dt
= −kC, (5)

where k is the kinetic rate coefficient describing the elimination process. If the
compartment is homogeneous and instantaneously-mixed (well-stirred), the kinetics
are classical and

k = k0, (6)
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where k0 is a constant. The resulting concentration versus time curve has an ex-
ponential tail. Inhomogeneous compartments are typically modeled using fractal
kinetics [12] with a time-dependent kinetic rate coefficient:

k = k0t
−η, (7)

where η is a fractal exponent which could be related to the fractal dimension of
the organ in which the process takes place. The resulting concentration versus time
curve has a stretched exponential tail. Saturable kinetics are usually modeled using
Michaelis-Menten kinetics [35], where

dC

dt
= − vmaxC

KM + C
. (8)

The quantity vmax is the maximum rate of the reaction, and KM is the concentra-
tion required to achieve half the maximum rate of the process. The corresponding
concentration versus time curve exhibits an initial linear segment followed by an
exponential tail at low concentrations.

Clearly, a single compartment model is insufficient to capture the complexity
of the pharmacokinetic data exhibited by paclitaxel. We believe that the simplest
non-trivial model required for this purpose is a two-compartment model in which
both compartments are saturable due to the limitations on: (a) the number of liver
enzymes in the elimination compartment and (b) the molecular targets (i.e. micro-
tubules available for binding) in the tumor compartment. This general scheme is
illustrated graphically in figure 3 and described mathematically in equations 9 to 11.
Both figure 3 and these equations explicitly contain a third compartment that can
be understood as non-eliminating organs that also bind the drug since microtubules
are organelles widely distributed in various healthy tissues, especially in the brain.
This is, in our opinion, an optional generalization of the model that does not appear
to greatly impact the analysis, especially if the kinetic coefficients k13 and k31 are
smaller than k12 and k21 as one would expect from highly efficacious drugs, such
as paclitaxel and docetaxel, that preferentially target the tumor tissue. Therefore,
we have decided to proceed with an effective two-compartment model that can be
understood to implicitly contain the third compartment through rescaled kinetic
coefficients.

Clinical trials indicate that the area under the plasma curve and the maximum
plasma concentration for paclitaxel increase disproportionately with an increase in
dose. Not surprisingly, compartmental models with linear rate constants have pro-
vided less than adequate fits to paclitaxel concentration versus time curves. As a
result, two-compartment and three-compartment models with both saturable distri-
bution and saturable elimination have been used to model clinical data [53, 26, 16].
Figure 3 shows the central plasma compartment, transfer to a second compartment
via Michaelis-Menten kinetics, and optional transfer to a third compartment via lin-
ear kinetics. Saturable distribution has been attributed to either transport [53] or
binding [25] processes. The model is described by the following system of equations:

Ċ1 = − vdmaxC1

Kd
M + C1

+ k21C2 − k13C1 + k31C3 −
vemaxC1

Ke
M + C1

+
i(t)

Vd
, (9)

Ċ2 =
vdmaxC1

Kd
M + C1

− k21C2, (10)

Ċ3 = k13C1 − k31C3. (11)
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Figure 3. The diagrammatic representation of a two-
compartment model with both saturable distribution and
saturable elimination from the central compartment; as well as an
optional third compartment with linear binding.

Table 5. Mean population values reported by Kearns et al.[26]
and the hypothetical values with Kd

M << Ke
M by Marsh et al.[34].

Parameter Kearns’ Values Marsh’s Values
vdmax 10.20µMh−1 10.0mgL−1

Kd
M 0.32µM 0.1mgL−1

k21 0.68h−1 0.5h−1

vemax 18.80µMh−1 1.0mgL−1

Ke
M 5.50µM 5.0mgL−1

k13 2.20h−1 0h−1

k31 0.65h−1 0h−1

Vd 4.00L 4.00L

The superscript d indicates parameters that describe the distribution process, the
e superscript indicates the elimination process, i(t) is the input function (infusion
rate), and Vd is the volume of distribution.

Some analytical solutions were obtained for the two-compartment model illus-
trated in figure 3, which is discussed in Sec. 3.3 below. As well, computer simu-
lations of the two-compartment and three-compartment model illustrated in figure
3 were performed using a fourth-order Runge-Kutta algorithm [48] to numerically
solve equations 9 to 11. The parameter values used were those reported by Kearns et
al.[26] and are summarized in table 5. The molecular weight of paclitaxel is 853.93
g/mol, so the conversion factor between units is 1mg/L = 1.171µM . The values
were not simulated below the quantification limit of paclitaxel (0.005 mg/L [54]).
AUC was calculated using Simpson’s method, and Cmax was simply the largest
value of C attained during the Runge-Kutta algorithm.

3.2. Numerical simulations. We subsequently confirmed that the data shown in
figure 2 were best fitted by the model illustrated in figure 3. We indeed found that
the Akai Information Criterion (AIC) [30] was lower for both the two-compartment
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version (AIC = −16.3± 3.6) and the three-compartment version (AIC = −15.4±
2.9) than for either a linear two-compartment model (AIC = −5.8± 1.8) or a two-
compartment model with fractal Michaelis-Menten elimination kinetics [33] (AIC =
−6.5± 2.1).

Simulations of the model shown in figure 3 with the parameters listed in column
1 of table 5 did indeed replicate the behavior. Figure 4 shows the shape of the con-
centration versus time curve as a function of the infusion time. For the three-hour
infusion, a dual power law tail is evident. As the infusion time decreases, the initial
slope becomes longer and less steep, and it is feasible that a single power law may
be observable after short infusion times under certain conditions. Conversely, as
the infusion time increases, the initial slope becomes shorter until there is a tran-
sition to a single steep power law, which occurs for the twenty-four-hour infusion
curve. It should be noted that the long-term asymptotic of this model leads natu-
rally to exponential behavior. However, due to the quantification limit of the drug
concentration, the transition to an exponential may not be observed.
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Figure 4. The effect of the infusion time on the shape of the con-
centration versus time curve. Open circles, one hour; solid circles,
three hours; open triangles, six hours; solid triangles, twenty-four
hours.

An advantage of simulations is that they allow us to perform “virtual experi-
ments” and study the effects of different parameters on the shape of the concen-
tration versus time curve. By perturbing the parameter values, we found that the
duration of the initial steep slope is determined by parameters describing the sat-
urable distribution process, vdmax and Kd

M , while the value of the exponent of the
initial slope is determined predominantly by the parameters describing the saturable
elimination process, vemax and Ke

M . The slope of the shallow terminal curve is de-
termined mainly by vdmax, where an increase in its value produces an increase in α.
This confirms the hypothesis proposed above that the steep curve reflects both the
distribution and elimination processes while the shallow curve is dominated by the
maximum rate of elimination.

In order to confirm our initial decision to ignore the third compartment we an-
alyzed the effect of its inclusion in the model as a linear binding compartment and
found not to have an important effect. For low values of k13 (weak binding), the
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slopes of the two segments remain unchanged, but the duration of the initial slope
increases (Figure 5). As k13 becomes larger, however, the long-time tail eventu-
ally goes through a transition to an exponential shape. Therefore, an increase in
the strength of the linear binding process decreases the plasma concentration and
minimizes the effect of the saturable processes.
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Figure 5. The effect of the strength of the linear binding compart-
ment on the shape of the concentration versus time curve. The tail
becomes exponential for high k13 values. Open circles, k13 = 0h−1;
solid circles, k13 = 2.2h−1; open triangles, k13 = 8.8h−1.

In the case of paclitaxel, Kd
M << Ke

M , and therefore the distribution process
saturates before the elimination process. But what occurs when the reverse, Kd

M >>
Ke
M , is the case? An example is shown in figure 6 for the two-compartment model,

and a much wider range of behavior is found in this case. Simply changing the value
of vdmax can produce a single power law tail, a dual regime with an exponential
tail, or a dual power law curve with either a steep or a shallow terminal tail. A
similar transition between different regimes also occurs when the dose increases,
the volume of distribution decreases, or k21 increases. Therefore, this situation is
much more sensitive to changes in the dosing regimen or patient characteristics.
While the asymptotic time-dependence in figures 4, 5 and 6 show a predominantly
concave shape hence indicating characteristic Michaelis-Menten saturable kinetics as
proposed in our model, these very long-tails still leave open room for more detailed
investigation whether this could indeed be fractal Michaelis-Menten kinetics in both
compartments, one of them or none. The issue remains open while more accurate
empirical data are accumulating in the literature.

Simulations can also be used to investigate the dose-dependence of AUC and
Cmax beyond the current clinically-relevant range. Both parameters exhibit three
distinct regions of dose-dependence on a log-log plot (see figure 7). In both cases, the
initial and terminal regions are characterized by approximately β = 1 (see table 6),
indicating linear kinetics when the system is well below or well above the saturable
concentration range. The intermediate regions, however, are characterized by a
transition to a nonlinear regime with β > 1. The curves in figure 6 fall within this
dose range. Because the onset dose of the intermediate slope is higher for AUC
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Figure 6. The effect of the dose on the shape of the concentration
versus time curve for a hypothetical two-compartment model with
Kd
M << Ke

M . Open circles, 40 mg; solid circles, 50 mg; open
triangles, 60 mg; solid triangles, 75 mg; open squares, 100 mg. The
model parameters are given in column 2 of table 5.

Table 6. The power law exponent β describing the graphs in figure 7.

AUC
Dose Range (mg) β R2

0− 10 1.050(0.006) 1.000
55− 300 3.163(0.005) 1.000
> 400 1.0683(0.0004) 1.000
Cmax

Dose Range (mg) β R2

0− 10 1.066(0.009) 1.000
20− 60 3.67(0.01) 1.000
> 150 1.0202(0.0001) 1.000

than for Cmax, and the slope persists over a longer range, there appears to be a lag
between the occurrence of disproportionately higher maximum concentrations and
an overall noticeable effect on the shape of the concentration versus time curve. In
summary, power law analysis is helpful in predicting nonlinear kinetics, and figure
7 emphasizes that the concept of linearity is valid only over a specified dose range.

Additional simulations were performed to investigate whether a relationship ex-
ists between β and α, such that the nonlinear dose-dependence of AUC and Cmax
is correlated with the non-exponential shape of the long-time tail. Figure 8 shows
that β increases as α decreases; therefore the dose-dependence becomes increasingly
disproportionate as the long-time tail becomes more shallow. In other words, the
greater the contribution that the tail portion of the curve makes to the overall AUC,
the greater the increase in AUC with an increase in dose.
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Figure 7. The dose-dependence of (A) AUC and (B) Cmax. The
model parameters are given in column 2 of table 5.

Having confirmed the qualitative correctness, through numerical simulations, of
the saturable two-compartment model and the underlying pharmacokinetic equa-
tions, we now intend to examine the possibility of obtaining some analytical solu-
tions to the problem, which would allow for not only data fitting exercises but also
predictive statements to be generated.

3.3. Analytical solutions. One of the advantages of obtaining semi-analytical
solutions is that different infusion rates and dosage rates can be analyzed and these
quantities can be optimized before giving the drug to patients. As stated earlier, the
third compartment does not have a significant impact on the mathematical modeling
of paclitaxel. Thus, to make the problem more tractable, we shall concentrate on
analytical solutions of the saturable two-compartment model. Setting k13 = k31 =
0, we obtain two coupled differential equations, equations 9 and 10, which can be
shown to be equivalent to a single second order nonlinear differential equation;
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Figure 8. The relationship between β and α for a three-
compartment model. The value for β was determined for three-
hour infusions of 135, 175, 200, 250, and 300 mg/m2 of paclitaxel.
Open circles, AUC; solid circles, Cmax. The model parameters are
given in column 1 of table 5 except for the parameter vdmax, which
varied between 5.1mgL−1h−1 and 20.4mgL−1h−1.

0 = C̈1 +

[
vdmaxK

d
M

(Kd
M + C1)2

+ k21 +
vemaxK

e
M

(Ke
M + C1)2

]
Ċ1 +

vemaxk21C1

Ke
M + C1

− 1

Vd

[
k21i(t) +

di(t)

dt

]
.

(12)

The drug concentration in compartment two is obtained using the relationship
given by equation 9 once the drug concentration in the blood plasma is known by
solving equation 12.

3.3.1. LOW CONCENTRATION SOLUTION. When the drug concentration be-
comes sufficiently small, then equations 9 and 10 are linear and are of the form;

Ċ1 = −v
d
maxC1

Kd
M

+ k21C2 −
vemaxC1

Ke
M

+
i(t)

Vd
, (13)

Ċ2 =
vdmaxC1

Kd
M

− k21C2. (14)

The linear version of equation 12 is;

C̈1 +

[
vdmax
Kd
M

+ k21 +
vemax
Ke
M

]
Ċ1 +

vemaxk21C1

Ke
M

=
1

Vd

[
k21i(t) +

di(t)

dt

]
. (15)

The advantage of studying the linear regime is because of the applicability to
cases where the patient requires a low dosage or to understand the long-term con-
centrations of the drug in the body, which gives an indication of when the next
round of chemotherapy can begin.

The solution to the linear equation for the drug concentration in the blood plasma
is the sum of two exponential solutions plus a solution due to the infusion of the
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drug into the system given by;

C1(t) = A−e
−t∆− +A+e

−t∆+ +

∫ t

to

dτ
i(τ)

Vd(∆+ −∆−)

×
[
[∆+ − k21] e∆+(τ−t) − [∆− − k21] e∆−(τ−t)

]
,

(16)

where A− and A+ are determined from the initial conditions at time t0, and

∆± =
1

2

[
vdmax
Kd
M

+
vemax
Ke
M

+ k21

]
±

√
1

4

[
vdmax
Kd
M

+
vemax
Ke
M

+ k21

]2

− k21vemax
Ke
max

(17)

Consider the special case when there is initially no drug in the system and there
is a constant intravenous infusion, io, from time t = t0 to time t = t1. The solution
given by equation 16 becomes;

C1 =


0, t < t0

i0

[
[∆+−k21](1−e−(t−t0)∆+ )

∆+Vd(∆+−∆−) − [∆−−k21](1−e−(t−t0)∆− )
∆−Vd(∆+−∆−)

]
, t0 < t < t1.

A
(1)
− e−t∆− +A

(1)
+ e−t∆+ , t > t1

(18)

The two parameters, A
(1)
− and A

(1)
+ are determined from the boundary conditions

that C1(t) and C2(t) are continuous at time t = t1. The solution in equation 18 has
been written in a form that already satisfies the initial conditions and the boundary
conditions at time t = t0.

The solution given by equation 18 was fitted to the experimental data in figure
2. In particular, we set t0 = 0h and t1 = 3h and used the 225 mg/m2 data for time
t > 3h. The fit to the experimental data gives ∆− = 0.219 and ∆+ = 1.772; or in
terms of the original model parameters:

vdmax
Kd
M

= 0.410h−1

vemax
Ke
M

= 1.277h−1.

k21 = 0.304h−1

(19)

Figure 9 shows the linear solution given in equation 18 using the two sets of
parameters given in table 5 as well as the best-fit parameters given in equation 19.
Figure 9a shows the experimental data and the solution given by equation 18 with
the parameters given by equation 19. Figures 9b and 9c illustrate how poorly the
linear solution given by equation 18 with the parameters given in columns 1 and
2 of table 5 fits the experimental data. It is quite clear that the linear model is
inadequate to represent the experimental data except for figure 9a in which a set
of parameters were chosen for the best fit. However, even then the fit is not good.
Moreover, even in figure 9a, the long-time (more than 10 hours) tail drops off much
more rapidly than in the experimental concentration versus time curve.

3.3.2. HIGH CONCENTRATION SOLUTION. When the concentration becomes
sufficiently large, equations 9 and 10 are approximately linear and are of the form;

Ċ1 = −vdmax + k21C2 − vemax +
i(t)

Vd
(20)

Ċ2 = vdmax − k21C2. (21)



COMPETING SATURABLE KINETIC PROCESSES MODEL 343

à

à

à
à
à
à

à

à
à

à

à

à

æ

æ
æ
æ
æ

æ
æ

æ

æ

æ

æ

æ

ò

ò
ò

ò
ò

ò
ò

ò

ò

ò

ò

1.0 10.05.02.0 20.03.01.5 15.07.0

1.00

0.50

5.00

0.10

10.00

0.05

0.01

Time HhL

C
o

n
c
e

n
tr

a
ti
o

n
Hµ

M
L

à

à

à

à

à

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò

ò

ò

ò

ò

ò

ò
1.0 10.05.02.0 20.03.01.5 15.07.0

1.0

10.0

5.0

2.0

3.0

1.5

7.0

Time HhL

C
o

n
c
e

n
tr

a
ti
o

n
Hµ

M
L

à

à

à
à
à
à

à

à
à

à

à

à

æ

æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

ò

ò
ò

ò
ò

ò
ò

ò

ò

ò

ò

1.0 10.05.02.0 20.03.0 30.01.5 15.07.0

1.00

0.50

5.00

0.10

10.00

0.05

Time HhL

C
o

n
c
e

n
tr

a
ti
o

n
Hµ

M
L

Figure 9. Concentration (µM) versus time (h) pharmacokinetic
data for three-hour infusions of paclitaxel, replotted from Kearns
et al. [26] for three dose levels. (triangles, 135 mg/m2; circles,
175 mg/m2; squares, 225 mg/m2). (A) Log-log plot showing a fit
to the linear solution with the parameters given in equation 19.
(B) Log-log plot of the linear solution with the parameters given
in column 1 of table 5. (C) Log-log plot of the linear solution with
the parameters given in column 2 of table 5.
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The solution of these equations for the blood plasma concentration is;

C1(t) = C1(t0)+

[
C2(t0)− vdmax

k21

]
(1−e−k21(t−t0))−vemax(t−t0)+

∫ t

t0

dτ
i(τ)

Vd
. (22)

Interestingly, this solution has both a term with linear time dependence and a
term with exponential time dependence. In the case when the infusion is zero, the
solution given by equation 22 was fitted to the experimental data in figure 2. In
particular, we set t0 = 0 h, t1 = 3 h and used the 225 mg/m2 data for t > 3 h. The
fit gives

vemax = 0.052 µM h−1

k21 = 1.239 h−1
(23)

Figure 10 compares the experimental data with the solution given in equation 22.
Figure 10a shows the solution given by equation 22 using the parameters given in
equation 23. Figures 10b and 10c show the solution given by equation 22 using the
parameters given in column 1 and column 2 of table 5, respectively. The solution
gives an excellent fit for large concentrations of drug in the blood plasma, where
we would expect the solution to be valid. In fact, if we focus only on the high
concentration experimental data from the third hour to the fourth hour, where the
solution given by equation 22 should be valid then figure 10c has the best fit to the
data.

3.3.3. EXACT SOLUTION. The low concentration linear solution has exponential
time dependence whereas the high concentration solution has both a term with
exponential time dependence and a term with a power law time dependence. We,
therefore, expect the exact solution to be a combination of both powers of time and
exponentials of time. This section looks at obtaining an exact analytical solution to
the two-compartment nonlinear saturable model. Equation 9 gives the solution for
C2(t), if we know the concentration in the blood, C1(t), which satisfies equation 12.
Therefore, we need to solve equation 12 and we are interested in two situations; (i)
when there is a constant infusion rate such as an intravenous infusion, and (ii) when
the concentration of drug in the system decays in the body through the elimination
organs. The infusion is assumed to be zero before time t0, a nonzero constant
from time t0 until t1, and zero after time t1. In addition, the initial conditions are
assumed to be C1(t0) = C2(t0) = 0. The solution for the drug concentration in the
blood plasma can be written in terms of parametric functions, as follows;

C1(t) =

 0 , t < t0
Cmax1 x , t0 < t < t1, 0 < x < 1.
Cmax1 (1− y) , t1 < t, 0 < y < 1

(24)

The parametric functions x and y are restricted to have a value bounded between
zero and one. The parametric function x is zero when the infusion begins and is
one when the infusion stops. The parameter function y is zero when the infusion
stops and approaches one as the time goes to infinity. With these constraints on
the parametric functions x and y, it is clear that equation 24 satisfies the boundary
conditions for the drug concentration in the blood plasma.
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Figure 10. Concentration (µM) versus time (h) pharmacokinetic
data for three-hour infusions of paclitaxel, replotted from Kearns
et al. [26] for three dose levels. (triangles, 135 mg/m2; circles,
175 mg/m2; squares, 225 mg/m2). (A) Log-log plot showing a
fit to the solution in equation 22 with the parameters given in
equation 23. (B) Log-log plot of the solution in equation 22 with
the parameters given in column 1 of table 5. (C) Log-log plot of
the solution in equation 22 with the parameters given in column 2
of table 5.
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In order to determine the parametric functions, the rate of change of the drug
concentration in the blood plasma is assumed to have the functional form;

Ċ1(t) =

 Cmax1 ẋ =
Cmax

1 a0

1+
∑∞

n=1 bnx
n , t0 < t < t1

−Cmax1 ẏ =
−Cmax

1

∑∞
n=0 cn(1−y)n+1∑∞

n=0 (n+1)a1cn(1−y)n , t1 < t
. (25)

The time variable can be expressed in terms of the parametric functions by
integrating equation 25;

t =

 t0 + 1
a0

[
x+

∑∞
n=1

bnx
n+1

n+1

]
, t0 < t < t1

t1 − a1 ln
[∑∞

n=1 cn(1−y)n+1∑∞
n=0 cn

]
, t1 < t

. (26)

The solution for the concentration in compartment 2, which is given by equation
9, becomes;

C2 =
1

k21


vdmaxC

max
1 x

Kd
M+Cmax

1 x
+

vemaxC
max
1 x

Ke
M+Cmax

1 x +
Cmax

1 a0

1+
∑∞

n=1 bnx
n − i0

Vd
, t0 < t < t1

vdmaxC
max
1 (1−y)

Kd
M+Cmax

1 (1−y)
+

vemaxC
max
1 (1−y)

Ke
M+Cmax

1 (1−y) −
Cmax

1

∑∞
n=0 cn(1−y)n+1∑∞

n=0 (n+1)a1cn(1−y)n

. (27)

The drug concentration in compartment 2 must also satisfy the boundary con-
ditions when x = 0, x = 1, y = 0 and y = 1. The y = 1 boundary condition is
automatically satisfied. The other three boundary conditions are;

Cmax1 a0 = i0
Vd

, when x = 0

k21C
max
2 =

vdmaxC
max
1

Kd
M+Cmax

1
+

vemaxC
max
1

Ke
M+Cmax

1
+

Cmax
1 a0

1+
∑∞

n=1 bn
− i0

Vd
, when x = 1

k21C
max
2 =

vdmaxC
max
1

Kd
M+Cmax

1
+

vemaxC
max
1

Ke
M+Cmax

1
− Cmax

1

∑∞
n=0 c

n+1
n∑∞

n=0 (n+1)a1cn
, when y = 0

(28)

Setting x = 1 and t = t1 in equation 26, and combined with equation 28 deter-
mines the value for the three of the parameters; Cmax1 , a0 and a1:

Cmax1 = i0
a0Vd

a0(t1 − t0) =
[
1 +

∑∞
n=1

bn
n+1

]
∑∞

n=0 cn∑∞
n=0 (n+1)a1cn

=
∑∞

n=1 a0bn
1+

∑∞
n=1 bn

. (29)

The unknown parameters in equation 25 are determined by substitution of equa-
tions 24, 25 and 27 into equation 12. The solution of the parametric functions, x
and y, gives a unique set of values for the parameters bn and cn. The parameter a1

is the only parameter with multiple values as shown below in equation 30.

a1 =0;
k21K

d
MK

e
M + vdmaxK

e
M + vemaxK

d
M

2vemaxk21Kd
M

±

√[
k21Kd

MK
e
M + vdmaxK

e
M + vemaxK

d
M

]2 − 4vemaxk21

(
Kd
M

)2
Ke
M

2vemaxk21Kd
M

.

(30)

Equation 26 shows that 1/a1 is the decay constant. Therefore, the solution
a1 = 0 would produce a concentration that would go instantly to zero as soon as
the infusion stops. The other two solutions for a1 are similar to the decay constants
given in equation 17 for the linear solution. Figure 4 shows that the elimination
of the drug always starts with a steep slope and then for short infusions goes to
a shallower slope. This would appear to be contradictory to the one-hour infusion
experimental data; however, the steep slope occurs over a very short period that
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possibly was not observed experimentally. The solution in equation 30 with the
negative square root gives a steep slope and the solution in equation 30 with the
positive square root would give a shallow slope. The expressions for the bn’s and
cn’s are given in the appendix where additional details of our derivation are also
provided.

In order to understand the solution better, we can look at two limiting cases
when the time is greater than t1. In the first case, the time is very close to when
the infusion is turned off and the parametric function y is approximately zero. The
second case is when the drug has been allowed to decay for a very long time and
the parametric function y is approximately one. Equation 26 in these two cases
simplifies to

t− t1
−a1

= ln

[∑∞
n=0 cn(1− y)n+1∑∞

n=0 cn

]
≈

 ln
[
1− y

∑∞
n=0 cn(n+1)∑∞

n=0 cn

]
, t ≈ t1

ln
[
c0(1−y)∑∞

n=0 cn

]
, t→∞

. (31)

These two cases reduce equation 24 to

C1

Cmax1

= 1− y ≈

 1−
∑∞

n=0 cn[n+[1+t1−t]1/a1 ]∑∞
n=0 cn(n+1) , t ≈ t1

exp
[
t−t1
−a1

]∑∞
n=0

cn
c0

, t→∞
. (32)

The short-time limit in equation 32 shows a power law time dependence with
an exponent of 1/a1, which is consistent with the high concentration solution given
in equation 22. This power-law behavior is also consistent with the experimental
data. The long-time asymptotic limit has an exponential time dependence, which is
consistent with both the experimental data and the linear solution given in equation
18. These results are in agreement with the experimental data and the numerical
results shown in the previous section.

4. Conclusion. In this paper we have developed and analyzed a multi-compartment
model applied to the case of pharmacokinetics of paclitaxel. We have demonstrated
the appropriateness of this relatively simple model to the numerous data sets found
in the literature and found numerical fits to the model parameters. Moreover, we
have been able to obtain a number of analytical solutions of the equations underly-
ing the model. Special solutions have been found in several limiting cases including
high- and low-concentration values of the drug as well as short- and long-time limits
in the general case. Two dominant exponents were found to characterize the phar-
macokinetic behavior of paclitaxel following short, intermediate, and long infusion
times, suggesting a potential universality class. In addition, the self-similar nature of
power laws may imply that pharmacological processes are linked over different time
and/or size scales. To date, allometric scaling has been applied to pharmacokinet-
ics to assess interspecies and intraspecies variation in pharmacokinetic parameters,
however the scaling of pharmacological processes within an individual has yet to
be discussed and warrants further investigation. The results obtained here can be
used in the future for predictive purposes as well as for applications of the model to
other members of the taxane family. Consequently, the proposed model has general
value beyond the case studied in this paper.

In particular, analysis of power law tails of the concentration dependence on
time can provide insight into the underlying drug processes as well as valuable
information for clinical applications. Based on our rigorous mathematical analysis of
the problem discussed in this paper, longer infusions leading to a steeper tail would



348 R. E. MARSH, J. A. TUSZYŃSKI, M. SAWYER AND K. J. E. VOS

theoretically be best for paclitaxel, because that would indicate a greater portion
of the drug being transferred to the target tumor tissue. Our recommendation of
extending infusion times while simultaneously lowering the maximum concentration
is consistent with earlier empirical analyses (see e.g. Verweij et al. [60]). Our
analysis specifically explains using a detailed mathematical model why this is so and
how it can be further optimized in future applications. Hence the recommendations
provided here not only have retrospective value but also offer prospective potential.
Furthermore, identification of empirical power law tails has important consequences
for the calculation of pharmacokinetic measures that are extrapolated back from
the tail dependence, and it implies that the concept of a terminal half-life does not
apply. An advantage of our proposed generating mechanism for empirical power
law tails is that it places no restriction on the value of the exponent α, in contrast
to models suggested for the bone-seeking elements, where −1 < α < 0 [36] and for
fractal kinetics in which −1 ≤ α ≤ 0 and ds ≤ 2 [12].

We have shown that two competing saturable processes can generate concentra-
tion versus time curves with empirical power law tails. To the best of our knowledge,
this is one of the first few studies to report power law tails in the concentration ver-
sus time curves of an anticancer drug, and to relate the existence of power law
tails to saturable processes. Although a single saturable process cannot produce a
power law, two competing saturable processes can produce a range of behavior that
includes single and dual power law regimes. Furthermore, although power law tails
have been reported for clearance curves, this is the first study to investigate the
tails of infusion curves and the dependence of the shape of the curve on the infusion
rate.

Before embarking on a full pharmacokinetic analysis, the tails of concentration
versus time curves can be checked for a power law fit. The existence of an empirical
power law tail, especially a shallow one, can signal dose-dependent behavior. In
the case of paclitaxel, a steeper decline is more desirable, since it implies a greater
distribution to the tumor tissues as well as a decrease in the extent of nonlinearity.
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Appendix A. Exact solution. This appendix derives an exact analytical solution
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352 R. E. MARSH, J. A. TUSZYŃSKI, M. SAWYER AND K. J. E. VOS

parametric functions, as follows;

C1(t) =

 0 , t < t0
Cmax1 x , t0 < t < t1, 0 < x < 1
Cmax1 (1− y) , t1 < t <∞, 0 < y < 1

,

which is equation 24.
The parametric function x is zero when the infusion begins and is one when

the infusion stops. The parameter function y is zero when the infusion stops and
approaches one as the time goes to infinity. Equation 24 satisfies the boundary
conditions for the drug concentration in the blood plasma.

In order to determine the parametric functions, the rate of change of the drug
concentration in the blood plasma is assumed to have the functional form;

Ċ1(t) =

 Cmax1 ẋ =
Cmax

1 a0

1+
∑∞

n=1 bnx
n , t0 < t < t1

−Cmax1 ẏ =
−Cmax

1

∑∞
n=0 cn(1−y)n+1∑∞

n=0 (n+1)a1cn(1−y)n , t1 < t
,

which is equation 25.
The solution for the concentration in compartment 2, which is given by equation

9, becomes;

C2 =
1

k21


vdmaxC

max
1 x

Kd
M+Cmax

1 x
+

vemaxC
max
1 x

Ke
M+Cmax

1 x +
Cmax

1 a0

1+
∑∞

n=1 bnx
n − i0

Vd
, t0 < t < t1

vdmaxC
max
1 (1−y)

Kd
M+Cmax

1 (1−y)
+

vemaxC
max
1 (1−y)

Ke
M+Cmax

1 (1−y) −
Cmax

1

∑∞
n=0 cn(1−y)n+1∑∞

n=0 (n+1)a1cn(1−y)n , t1 < t
,

which is equation 27.
The second derivative of the blood plasma concentration with respect to time is;

C̈1(t)

Cmax1

=


−a2

0

∑∞
n=1 nbnx

n−1

[1+
∑∞

n=1 bnx
n]

3 , t0 < t < t1∑∞
n=0

∑n
m=0

∑n−m
k=0 (k+1)(m+1−k)a1cn−m−kcmck(1−y)n+1

[
∑∞

n=0 (n+1)a1cn(1−y)n]
3 , t1 < t

. (33)

Substitution of equations 24, 25, 27 and 33 into equation 12,

C̈1 +

[
vdmaxK

d
M

(Kd
M + C1)2

+ k21 +
vemaxK

e
M

(Ke
M + C1)2

]
Ċ1 +

vemaxk21C1

Ke
M + C1

=
1

Vd

[
k21i(t) +

di(t)

dt

]
.

gives;

0 =
−a2

0

∑∞
n=1 nbnx

n−1

[1 +
∑∞
n=1 bnx

n]
3 +

a0

1 +
∑∞
n=1 bnx

n

[
vdmaxK

d
M

(Kd
M + Cmax1 x)2

+ k21

+
vemaxK

e
M

(Ke
M + Cmax1 x)2

]
+

vemaxk21x

Ke
M + Cmax1 x

− k21i0
VdCmax1

(34)

and

0 =

∑∞
n=0

∑n
m=0

∑n−m
k=0 (k + 1)(m+ 1− k)a1cn−m−kcmck(1− y)n+1

[
∑∞
n=0 (n+ 1)a1cn(1− y)n]

3

−
∑∞
n=0 cn(1− y)n+1∑∞

n=0 (n+ 1)a1cn(1− y)n

[
vdmaxK

d
M

(Kd
M + Cmax1 (1− y))2

+ k21

+
vemaxK

e
M

(Ke
M + Cmax1 (1− y))2

]
+

vemaxk21(1− y)

Ke
M + Cmax1 (1− y)

.

(35)
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Rearranging equations 34 and 35, we obtain;

0 =− a2
0

∞∑
n=0

nbnx
n−1 + a0

[ ∞∑
n=0

bnx
n

]2 [
vdmaxK

d
M

(Kd
M + Cmax1 x)2

+ k21

+
vemaxK

e
M

(Ke
M + Cmax1 x)2

]
+

[
vemaxk21x

Ke
M + Cmax1 x

− k21i0
VdCmax1

] [ ∞∑
n=0

bnx
n

]3

,

(36)

where b0 = 1, and

0 =

∞∑
n=0

n∑
m=0

n−m∑
k=0

(k + 1)(m+ 1− k)a1cn−m−kcmck(1− y)n −
∞∑
n=0

cn(1− y)n

[ ∞∑
n=0

(n+ 1)a1cn(1− y)n

]2 [
vdmaxK

d
M

(Kd
M + Cmax1 (1− y))2

+ k21

+
vemaxK

e
M

(Ke
M + Cmax1 (1− y))2

]
+
vemaxk21 [

∑∞
n=0 (n+ 1)a1cn(1− y)n]

3

Ke
M + Cmax1 (1− y)

.

(37)

In equation 37, the terms with the lowest power of 1-y are;

Kd
MK

e
Ma1 −

[
k21K

d
MK

e
M + vdmaxK

e
M + vemaxK

d
M

]
a2

1 + k21v
e
maxK

d
Ma

3
1 = 0. (38)

Equation 38 is satisfied by solving for the parameter a1, namely;

a1 =0;
k21K

d
MK

e
M + vdmaxK

e
M + vemaxK

d
M

2vemaxk21Kd
M

±

√[
k21Kd

MK
e
M + vdmaxK

e
M + vemaxK

d
M

]2 − 4vemaxk21

(
Kd
M

)2
Ke
M

2vemaxk21Kd
M

,

(39)

which is equation 30.
The solutions to equations 36 and 37 requires reducing the product of sums into

a single sum over x and y.

0 =− a2
0

∞∑
n=0

(n+ 1)bn+1x
n + a0

∞∑
n=0

n∑
m=0

bn−mbmx
n

[
vdmaxK

d
M

(Kd
M + Cmax1 x)2

+ k21

+
vemaxK

e
M

(Ke
M + Cmax1 x)2

]
+

∞∑
n=0

n∑
m=0

n−m∑
k=0

bn−m−kbmbkk21x
n

[
vemaxx

Ke
M + Cmax1 x

− i0
VdCmax1

]
(40)

and

0 =

∞∑
n=0

wn
n∑

m=0

n−m∑
k=0

(k + 1)a1cn−m−kcmck

{[
vemaxk21

Ke
M + Cmax1 w

]
(m+ 1)a2

1

(n+ 1−m− k) +m+ 1− k − (m+ 1)a1

[
k21 +

vdmaxK
d
M

(Kd
M + Cmax1 w)2

+
vemaxK

e
M

(Ke
M + Cmax1 w)2

]}
,

(41)

where w = 1 - y.
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Finally, we rearrange each of the terms in equations 40 and 41 so that all the
terms with a common power of x or w can be combined.

0 =−
∞∑
n=0

xn(n+ 1)a2
0bn+1(Kd

M + Cmax1 x)2(Ke
M + Cmax1 x)2

+

∞∑
n=0

n∑
m=0

xna0bn−mbm [vemaxK
e
M (Kd

M + Cmax1 x)2 + k21(Kd
M + Cmax1 x)2

(Ke
M + Cmax1 x)2 + vdmaxK

d
M (Ke

M + Cmax1 x)2
]

+

∞∑
n=0

n∑
m=0

n−m∑
k=0

xnbn−m−kbmbkk21(Ke
M + Cmax1 x)(Kd

M + Cmax1 x)2

[
vemaxx−

i0(Ke
M + Cmax1 x)

VdCmax1

]
(42)

and

0 =

∞∑
n=0

wn
n∑

m=0

n−m∑
k=0

(k + 1)a1cn−m−kcmck
{

(n+ 1−m− k)(m+ 1)a2
1v
e
max

k21(Kd
M + Cmax1 w)2(Ke

M + Cmax1 w) + (Kd
M + Cmax1 w)2(Ke

M + Cmax1 w)2

(m+ 1− k − (m+ 1)a1k21)− (m+ 1)a1

[
vdmaxK

d
M (Ke

M + Cmax1 w)2

+vemaxK
e
M (Kd

M + Cmax1 w)2
]}
.

(43)

The coefficient of each power of x and w in equations 42 and 43 must vanish, so
that Anx

n = 0 and Bnw
n = 0 for each n. Also, recall that we have the constraint,

b0 = 1.
As an example, consider the case n = 0, then A0x

0 = 0 gives

b1 =
k21K

d
MK

e
M + vdmaxK

e
M + vemaxK

d
M

a0Kd
MK

e
M

− i0k21

a2
0VdC

max
1

(44)

and B0w
0 = 0 gives

a1 =0;
k21K

d
MK

e
M + vdmaxK

e
M + vemaxK

d
M

2vemaxk21Kd
M

±

√[
k21Kd

MK
e
M + vdmaxK

e
M + vemaxK

d
M

]2 − 4vemaxk21

(
Kd
M

)2
Ke
M

2vemaxk21Kd
M

,

(45)

which is equation 30. Similar expressions are obtained for bn+1 and an+1 from the
nth term.
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