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Abstract. Cyclic treatment strategies in Chronic Myeloid Leukemia (CML)

are characterized by alternating applications of two (or more) different drugs,
given one at a time. One of the main causes for treatment failure in CML is the

generation of drug resistance by mutations of cancerous cells. We use math-

ematical methods to develop general guidelines on optimal cyclic treatment
scheduling, with the aim of minimizing the resistance generation. We define a

condition on the drugs’ potencies which allows for a relatively successful appli-
cation of cyclic therapies. We find that the best strategy is to start with the

stronger drug, but use longer cycle durations for the weaker drug. We further

investigate the situation where a degree of cross-resistance is present, such that
certain mutations cause cells to become resistant to both drugs simultaneously.

1. Introduction. Chronic Myeloid Leukemia (CML) is a cancer of the hematopoi-
etic system that is initiated and driven by the product of the BCR-ABL fusion gene
[17]. Small molecule inhibitors are a new class of agents that act by specifically
inhibiting a certain enzyme that is characteristic of a particular cancer cell, rather
than non-specifically inhibiting and killing all rapidly dividing cells. In the context
of CML, small molecules specifically target the BCR-ABL gene product, and pro-
vide a successful treatment approach which can lead to a reduction of BCR-ABL+
cells below detectable levels, at least during the early stages of the disease. The
drug Imatinib has been mostly used in this respect [37, 14]. It is the first member of
the class of small molecule inhibitors; while it has some side-effects, in general it is
reasonably well-tolerated [39, 2], compared to traditional chemotherapeutic agents,
and it has not been found mutagenic [40].

As the disease advances, however, the chances of treatment failure rise due to the
presence of drug resistance. In general, several causes of drug resistance in cancers
have been identified. These include (i) genetic changes/variability, (ii) increased
expression of target proteins, (iii) failure of the drugs to enter the target cell and/or
drug ejection, (iv) failure of the drugs to reach the target cells. In this paper we
will focus on the genetic cause of resistance which presents a significant problem for
CML. It has been found that treatment failure often occurs because of the presence
of mutants that are generated mostly through somatic point mutations [44] (in this
paper we will not be concerned with germ-line mutations).
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Drug resistance can potentially be overcome by using multiple drugs, as long
as a mutation that confers resistance against one drug does not confer resistance
against any of the other drugs in use. In addition to Imatinib, the drugs Dasatinib
and Nilotinib are alternative inhibitors of the BCR-ABL gene product [8, 48]. Even
though these tyrosine kinase inhibitors address the same molecular target, they
differ significantly in their activity spectra. In other words, a point mutation in
the BCR-ABL gene may confer resistance, say, to Imatinib, but not to Dasatinib
and Nilotinib [8, 38]. Approximately 50 mutations have been found that confer
resistance against only one or two of the three drugs and not against the others
(the degree of resistance to various combinations of these drugs depends on the
drug dosage and has been studied in detail in [8, 38]). Unfortunately, the three
inhibitors Imatinib, Dasatinib, and Nilotinib exhibit a degree of cross-resistance:
one mutation, namely, T315I, has been identified which confers resistance against
all three of those drugs [13, 41].

One of the current treatment strategies called a “cyclic treatment strategy” in-
volves a sequential application of several (usually, two) different drugs. In this
paper we will formulate a mathematical model that allows for a systematic study
of cyclic drug treatments. We will use computational tools to optimize treatment
regimens with the goal of minimizing the generation of resistant mutants, while
keeping the cumulative drug doses below a certain level. Mathematical modeling of
cancer therapy goes back to Goldie and Coldman [23, 27, 25, 10, 26] and Day [12].
This work had a widespread impact on the design of new chemotherapy regimens
for testing in clinical trials in the late 70s and the 80s [35]. Stochastic models ap-
plied to generation of drug resistance and treatment optimization have been used in
scheduling chemotherapy treatments. In particular, wet lab oncologists undertook
the task of testing a specific, purely theoretical rule proposed by [12, 35]: the “worst
drug rule”. The gist of this rule is (a) “use more of the worst drug” and (b) “use
the worst drug early”. In this paper, we study a question similar to that raised by
[12]: what is the optimal timing of treatment in the context of cyclic therapy? Our
analysis employs a wider variety of methods and is more general and systematic. In
particular, instead of testing a subset of 16 treatment strategies, as was done in [12],
we test all cyclic treatment strategies to find the optimal cycle duration and the
drug sequence. In addition, we extend the studies to drugs with cross-resistance.

The last four decades are characterized by significant developments in the field
of anticancer therapy modeling. Different approaches to modeling and optimization
of drug treatments in cancer have been proposed. [28] have introduced a model
which treats the evolution of resistance as a dynamic process; they focus on gene
amplification as an important mechanism leading to drug resistance, see also [3, 30].
This line of reasoning is continued in a number of papers [31, 47] in which optimal
control problem resulting from protocol optimization is discussed; for a review of
the optimal control theory in chemotherapy see [45]. Models for tumor growth
incorporating age-structured cell cycle dynamics, in application to chemotherapy
scheduling, have been developed by [18, 19]. Mechanistic mathematical models
created to improve the design of chemotherapy regimes are reviewed in [21]. Another
approach to scheduling of anticancer therapy in the presence of drug resistance is
presented by [22] who suggest that the main goal of chemotherapy in the presence of
drug resistant clones is to enforce a stable tumor burden by permitting a significant
population of sensitive cells to survive in order to suppress proliferation of the less fit
but resistant subpopulations. For a more complete review of recent developments in
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the field of anticancer therapy modeling, see [43, 9, 6, 5, 46, 15]. As our techniques,
we use stochastic and deterministic modeling of cancer growth and treatment, and
concentrate on an intermediate, cellular scale of modeling. For the existing literature
on this type of modeling, see e.g. [49].

2. The general methodology: Stochastic modeling of CML drug treat-
ments.

2.1. The master equations. We start by introducing the mathematical formalism
which describes a convenient way to reason about drug treatments in CML. Here
we will concentrate on the case of two-drug treatments. Other applications of this
method can be found in [34, 32]. The general methodology goes back to early works
of [23, 25, 24, 10, 11, 26]. Let us suppose that a binary number s takes values 00,
01, 10 and 11, and denote by is the number of cells of resistance class s. There are
four separate resistance classes: s = 00, fully susceptible; s = 10, resistant to drug
1 and susceptible to drug 2; s = 01, resistant to drug 2 and susceptible to drug 1;
and s = 11, resistant to both drugs (or, fully-resistant).

Note that the existence of the four separate resistance classes is not meant to
describe the full extent of the tumor’s heterogeneity. It is well-known that tumor
cells contain a large number of mutations (and other genetic alterations) which leads
to a significant phenotypical heterogeneity. However here we classify all the tumor
cells according to their resistance properties (and not according to any other char-
acteristics). Therefore, in the presence of two drugs, there are four different classes
of cancer cells. Within each class, the populations are strongly heterogeneous, and
therefore the growth and mutation characteristics of those classes should be under-
stood as “average”.

Let ϕi00,...,i11(t) denote the probability that at time t there are is cells of resistance
class s, for all classes s. Suppose that cancerous cells divide with the average rate ls,
and die with average rate Ds. Coefficients can depend on the treatment protocol.
In particular, the death rate of cells, Ds, is comprised of the “natural” rate of cell
death in an untreated tumor and the action of the drug(s), if any, upon the cells.
Therefore, in general, this quantity is a function of time.

We further assume that divisions can lead to the generation of resistant mutants.
By u1 we denote the rate at which mutations resistant to drug 1 (and not to drug
2) are generated. Similarly, the rate u2 describes the generation of mutations con-
ferring resistance to drug 2 only. The possibility of mutations conferring resistance
to both drugs simultaneously (the so-called cross-resistance, see [33]) is captured by
the rate u12; in the absence of cross-resistance, u12 = 0.

We assume that the timing of separate kinetic events is exponentially distributed,
and construct a linear birth-death process (for a review of biological applications of
the theory of birth-death processes see [36]). Its Kolmogorov forward equation can
be written:

ϕ̇i00,i10,i01,i11 =

[
ϕi00−1,i10,i01,i11 l00(i00 − 1)(1− u1 − u2 − u12) +

ϕi00,i10−1,i01,i11 l10(i10 − 1)(1− u2 − u12) +

ϕi00,i10,i01−1,i11 l01(i01 − 1)(1− u1 − u12) + ϕi00,i10,i01,i11−1l10(i11 − 1)

]
+
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i00(u1ϕi00,i10−1,i01,i11 + u2ϕi00,i10,i01−1,i11 + u12ϕi00,i10,i01,i11−1)

+i10(u2ϕi00,i10,i01,i11−1 + u12ϕi00,i10,i01,i11−1)

+i01(u1ϕi00,i10,i01,i11−1 + u12ϕi00,i10,i01,i11−1)

]
+[

D00ϕi00+1,i10,i01,i11 +D10ϕi00,i10+1,i01,i11 +

D01ϕi00,i10,i01+1,i11 +D11ϕi00,i10,i01,i11+1

]
− (1)

ϕi00,i10,i01,i11 [i00(l00 +D00) + i10(l10 +D10) + i01(l01 +D01) + i11(l11 +D11)].

In this master equation, the first term in square brackets on the right hand side com-
prises all the processes of faithful cell division, the second term in square brackets
includes all the mutation events, the third one represents all the cell death events,
and the fourth term corresponds to no change in the system’s state.

There are two ways in which we will use the above master equation: deterministic
and stochastic.

2.2. Deterministic approach. From the master equation, information about all
the moments can be extracted. In particular, the equations for the mean numbers
of cells in each class can be written. They read:

ẋ00 = [l00(1− u1 − u2 − u12)−D00]x00, (2)

ẋ10 = [l10(1− u2 − u12)−D10]x10 + l00u1x00, (3)

ẋ01 = [l01(1− u1 − u12)−D01]x01 + l00u2x00, (4)

ẋ11 = [l11 −D11]x11 + l00u12x00 + l10u2x10 + l01u1x01. (5)

These equations can be obtained directly from the master equation; for example,
the first equation is nothing but equation (1) multiplied by i00 and summed over
all the indices. The initial conditions can be written as

x00(0) = M0, x10(0) = x01(0) = x11(0) = 0; (6)

in other words, we assume that at time zero, there are M0 fully-susceptible cells,
and no mutants initially present. The deterministic equations obtained in this way
can help one reason about the expected dynamic of the colony growth and resistance
generation. However, they cannot address questions of the probability of treatment
success. If we are interested in the probability of treatment success (that is, if we
want to quantify the likelihood of a successful treatment outcome), we need to use
the stochastic approach, which is described next.

2.3. Stochastic approach. An alternative approach to studying the system of
resistance classes is to calculate directly the probability of treatment success. This
is done by using the probability generating function, defined in a usual way [20]:

Ψ(~ξ; t) =

n∑
s=0

ϕi00,i10,i10,i11(t)ξi0000 ξ
i10
10 ξ

i01
01 ξ

i11
11 ,

with ~ξ = (ξ00, ξ10, ξ01, ξ11). The above transformation maps an infinite number of

unknown functions onto one function of a continuous variable, Ψ(~ξ; t). This function
satisfies a linear hyperbolic partial differential equation (see e.g. [4]), which can be
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solved by the method of characteristics [32]. The equations for the characteristics
are as follows:

ξ̇00 = l00(1− u1 − u2 − u12)ξ2
00 + (l00(u1ξ10 + u2ξ01 + u12ξ11)

− (l00 +D00))ξ00 +D00, (7)

ξ̇10 = l10(1− u2 − u12)ξ2
10 + (l10(u2 + u12)ξ11 − (l10 +D10))ξ10 +D10, (8)

ξ̇01 = l01(1− u1 − u12)ξ2
01 + (l01(u1 + u12)ξ11 − (l01 +D01))ξ01 +D01, (9)

ξ̇11 = l11ξ
2
11 − (l11 +D11)ξ11 +D11, (10)

where the time-dependence of the coefficients is implicit. Solutions of this system
with the initial conditions

ξ00 = ξ10 = ξ01 = ξ11 = 0 (11)

are used to calculate the probability of treatment success. We note that the quantity
ϕ0,0,0,0(t) = Ψ(~0; t) is the probability of having zero cells of all types at time t. This
probability includes the scenario where the colony goes extinct spontaneously, as
well as the scenario where the tumor grows and is subsequently treated successfully.
The latter process has the meaning of the probability of treatment success. In other
words, we have,

ϕ0,0,0,0(t) = (d/l)M0 + (1− (d/l)M0)Psuccess(t),

where M0 denotes the initial number of wild-type cells. Thus we have

Psuccess(t) =
ξM0
00 (t)− (d/l)M0

1− (d/l)M0
. (12)

In particular, one can study the limiting value of the probability of treatment suc-
cess,

lim
t→∞

Psuccess(t), (13)

which corresponds to long-term treatment strategies where the drugs are used long
enough for all the susceptible types to be eliminated.

3. Mutually strong drugs and treatment optimization.

3.1. Modeling cyclic treatment strategies. Cyclic drug treatments are as-
sumed to proceed as follows, see figure 2(a). Treatment starts at time t∗. Drug
1 is applied for a time-duration of ∆t1. Then the drug is discontinued and replaced
by drug 2. After time-duration ∆t2, drug 2 is in turn replaced by drug 1. The total
treatment duration is denoted by Ttreat and it consists of 2N cycles of treatment
(here the word “cycle” refers to a one-drug treatment with drug 1 or 2).

Mathematically, each treatment protocol corresponds to specific values of the
death rates, Ds, at different moments of time:

Ds = ds + hs(t),

where the coefficients ds are natural death rates of the cancer cells, and hs(t) are
the drug-induced cell death rates. The functions hs(t) depend on the particular
treatment strategy used. As different drugs are applied, the “strength” of each drug,
which depends on the concentration of the drug in the patient’s blood, changes as
some smooth function of time. The exact shape of these functions, and therefore,
the shape of hs(t), depends not only on the treatment strategy (that is, whether
drugs are applied in combination, or cyclically), but also on the way the drugs
are administered, and on how quickly they are absorbed. For example, it can be
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assumed that hs(t) for a susceptible class reaches a maximum sometime after the
drug is taken, and decays until the next administration of the drug. However,
in this paper we simplify this picture by assuming that the functions hs(t) are
piecewise constant. They are assumed to have a constant nontrivial value for all
the susceptible classes as long as the patient is treated with a given drug, and they
become zero after the drug is discontinued. For the effects of pharmacokinetics on
the dynamics of treatment see [19].

We proceed to describe a cyclic two-drug treatment protocol. As described above,
for 0 < t < t∗, we have Ds = ds; normally, ds < ls, that is, the cancer is assumed
to grow stochastically before treatment. At time t∗, the first drug is applied for a
length of time, ∆t1. During this time, we have

D00 = d00 + h1, D10 = d10, D01 = d01 + h1, D11 = d11, (14)

where h1 is the drug-induced death rate for drug one; see figure 2(b), on the left.
After time t∗ + ∆t1, drug 2 is applied for the duration ∆t2, resulting in

D00 = d00 + h2, D10 = d10 + h2, D01 = d01, D11 = d11, (15)

for t∗ + ∆t1 < t < t∗ + ∆t1 + ∆t2 (figure 2(b) on the right). Here, h2 denotes the
drug-induced death rate of drug two. After that, treatment is again switched to
drug 1 for duration ∆t1, and so on, for a total time duration Ttreat, with a total of
2N cycles.

In this paper we assume that the division rates, ls, and the death rates, ds, of
cells are time-independent. We will further assume that some of the coefficients in
equations (7-10) are the same, namely, that ls = l and ds = d, and denote

γ = l − d.

The time of the start of treatment, t∗, can be related to the initial colony size, N ,
by the deterministic relationship, N = M0e

(l−d)t∗ .
In this study we are not making any assumptions on the timing of resistant mu-

tation generation. New resistant mutants can stochastically arise before or during
treatment (in fact, we have previously argued that a large percentage of resistance
mutants are generated before treatment starts, [34]). Therefore, in our calcula-
tions of the probability of treatment success we will include both the pre-treatment
regime and the during-treatment regime.

3.2. Modeling different types of drugs. We will discuss two characteristics of
drugs, their potency and their activity spectra. The conventional measure of drug
potency used in vitro is the drug concentration needed to achieve a certain log kill.
From the biochemical point of view this is related to the affinity, or on-rates, of
the inhibitors. The mathematical definition uses the following way to quantify the
potency. For the purposes of this study we assume that one drug is more potent
than another if, under the given dosages, it results in a higher drug-induced death
rate. The latter is measured as the (exponential) rate of the decay of a colony of
target cells exposed to the given dose of the drug. Therefore, in what follows we will
assume that higher potencies are correlated with higher values of hs for susceptible
mutant classes.

The activity spectra of the drugs are described as follows. Drugs with broader
activity spectra are characterized by a smaller number of mutations which confer
resistance to such drugs. In other words, these drugs are active against a larger
number of mutants (and fail against a smaller number of mutants). On the other
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hand, the more specific, or narrow, drugs fail against a larger number of mutants. In
this context we consider the values of cells’ mutation rates with which various types
of mutants are produced. If mutants resistant to drug 1 are produced with rate
u1, and mutants resistant to drug 2 are produced with rate u2, then the inequality
u1 < u2 means that drug 1 has a broader activity spectrum. That is, in our
model drugs with a narrower activity spectrum correspond to larger mutation rates
associated with the generation of corresponding resistant mutants.

3.3. Insights from the deterministic theory: Mutually strong drugs. Let
us apply the deterministic methodology described in Section 2.2 to study the course
of a cyclic treatment protocol. We are interested in maximizing the chances of treat-
ment success, that is, in finding a protocol which is characterized by the highest
probability of cancer cell eradication in a patient, while remaining within tolerance
bounds in terms of its side-effects. In particular, we are interested in the production
of fully-resistant mutants, because such mutants can become the reason for treat-
ment failure. These mutants are produced by mutations of partially-resistant mu-
tants, and also, in the presence of cross-resistance, by mutations of fully-susceptible
mutants. This happens both before the treatment starts, and after it starts. The
former process is treatment-independent. Therefore, in order to evaluate the effec-
tiveness of different treatment protocols, it is sufficient to only consider the latter
process. Solving system (2-6) for t ∈ [0, t∗], we can calculate the total number of
cells of each type, which is expected to be present in the colony by the time treat-
ment starts. In particular, the numbers of partially-resistant mutants are given
by

x10(t∗) = N logNu1, x01(t∗) = N logNu2 (16)

(here we used the smallness of the mutation rates with respect to 1). If by that
time there are already fully-resistant mutants, then treatment will most probably
fail (unless those mutants go extinct spontaneously). The goal of a cyclic treatment
strategy is to minimize the production of fully-resistant mutants in the course of
treatment, which helps to minimize the chances of treatment failure.

In figure 2 we plot the population sizes of the two partially-resistant colonies,
x10(t) (dashed lines) and x01(t) (solid lines), in the course of treatment, for some
fixed values of the parameters. Note that the terms “susceptible colonies”, “partially-
resistant colonies” etc have to be interpreted in terms of so-called “quasispecies”
[16]. There is a “master sequence” which determines the typical properties of the
cells in the given class (e.g. that they are resistant to a drug), and there is a “cloud”
of other sub-types which evolved from the “master sequence” my mutations (or other
genetic/epigenetic modifications). All these sub-types may have different character-
istics, but still satisfy the main definition of the type (e.g. that they are resistant to
a drug). Having a large degree of heterogeneity in a cancer does not contradict the
kind of “coarse-grained” description used here. As mentioned before, the specific
rates characterizing each type must be understood as the average rates.

In figure 2(a), treatment starts with drug 1, and we can see that during the first
cycle the colony x01 which is susceptible to this drug, decays exponentially, while
the colony x10, which is resistant to this drug, grows. In the second cycle, when
drug 2 is applied, colony x01 grows and colony x10 decays. In figure 2(b) we present
the scenario where the order of the drugs is switched (while all the parameters are
kept the same).
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Figure 1. Cyclic two-drug treatments. (a) A cyclic treatment protocol.

(b) The mutation diagrams and drug-induced death rates for treatments with
drug 1 and drug 2. The resistance types are represented by circles with bi-

nary indices; the drug-induced death rates are marked next to the circles; the

mutation rates are indicated next to the arrows.

Our task is to identify a treatment strategy which maximally suppresses the
production of doubly-resistant mutants from the colonies x01 and x10. This is
achieved by varying the cycle durations, ∆t1 and ∆t2, and the order in which the
two drugs are applied. Some useful insights can be obtained by solving system (2-5)
under treatment conditions, with initial values (16). After 2N cycles, that is, for
tN = N (∆t1 + ∆t2), we have

x01(tN ) = A(u2)eN [(γ−h1)∆t1+γ∆t2], x10(tN ) = A(u1)eN [γ∆t1+(γ−h2)∆t2]. (17)

It is clear that in order for the treatment in the absence of doubly-resistant mutants
to work at all, we need to require that

h1, h2 > γ and
γ

h2 − γ
< α <

h1 − γ
γ

, (18)

where we used the notation

α =
∆t2
∆t1

.

If conditions (18) are satisfied, functions x10(t) and x01(t) will on average decay.
Conditions (18) are equivalent to condition

1

h1
+

1

h2
<

1

γ
, (19)

which can be viewed as a requirement for the two drugs to be sufficiently strong
(compared to the colony growth-rate γ) such that they can eliminate a population
of partially resistant mutants. We will refer to drugs that satisfy condition (19) as
mutually strong drugs.

Before we proceed to optimize cyclic treatment protocols, we note two important
implications of our model.

• Increasing the total treatment time, Ttreat, will increase the chances of cancer
elimination. This follows from the fact that under treatment with mutually-
strong drugs, partially-susceptible colonies decay on average, and they grow
in the absence of treatment. We note however that time Ttreat cannot be
increased indefinitely because of drug toxicity consideration.

• Combining two drugs instead of using a cyclic treatment protocol will always
correspond to a larger probability of colony elimination. Figure 2(c) shows the
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Figure 2. Cyclic two-drug treatments. The deterministic dynamics of the

populations of partially-resistant mutants, x01 (solid lines) and x10 (dashed
lines). (a) Worst drug first (black lines), (b) best drug first (gray lines), (c)

lines from panels (a) and (b) are plotted together; also, the thin dotted lines

present the same populations under a combination treatment. The parameters
are h1 = 3, h2 = 3.5, γ = 1, the total number of cells at the start of treatment

is N = 1011, u = 10−7, the numbers of partially-resistant mutants at start of

treatment are N01 = N10 = N logNu, and ∆t1 = ∆t2 = logN/γ/50 ≈ 0.5.
Neither of the two treatment strategies is optimal.

dynamics of the two partially-susceptible colonies under the cyclic treatment
protocols of figures 2(a) and (b) together with the dynamics corresponding to
the combination treatment where drugs 1 and 2 are applied simultaneously
and continuously (dotted lines). The drug-induced death rates of all types
are always smaller (or at least not larger) under combination treatment, thus
eliminating the two colonies at a faster rate. Again, using two drugs simulta-
neously may not be feasible because of toxicity factors.

3.4. The optimization problem. In this paper we formulate and solve an op-
timization problem for cyclic treatment protocols with the goal of minimizing the
generation of resistant mutants, while trying to minimize the drugs’ side-effects. The
requirement that the drugs’ side-effects have to be kept under a certain tolerance
level, imposes certain constraints on the timing and dosages of drug administra-
tion, especially in the context of traditional chemotherapeutic agents. The problem
of optimizing treatment protocols with such drugs has been addressed in [29]. In
this paper we focus our attention on the treatment of CML with small molecule
inhibitors, which are generally considered only weakly-toxic, with relatively mild
side-effects. To this end, we will assume that the side-effects of the drugs can be
kept at the reasonable level by restricting the total treatment time (and thus re-
stricting the cumulative drugs doses). In terms of our model, this means that the
total treatment time, Ttreat, cannot exceed a given value.

Then the optimal strategy is the pair (∆t1,∆t2) which corresponds to the highest
probability of treatment success for a given set of parameters, with the treatment
time not exceeding Ttreat. In order to find the optimal strategy for given parameters,
we need to solve system (7-10) with initial conditions (11), and obtain the value
ξ00(t), which is then used in formula (12). Once this is done for a number of choices
(∆t1,∆t2), we have to find the pair of cycle durations that give the maximum
probability of treatment success.

3.5. The mapping of treatment outcomes for different drug strengths.
We continue our analysis by a numerical exploration of treatment strategies for
cyclic treatments with two drugs of different strengths. As described above, for
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each pair of drug-induced death rates, (h1, h2), we use the stochastic method of
Section 2.3 to evaluate the probability of treatment success for different values of
∆t1 and ∆t2. We then find the optimal strategy (that is, the values ∆t1 and
∆t2 that maximize the probability of treatment success) for each pair (h1, h2), and
calculate the corresponding maximum probability of treatment success. The results
are presented in figure 3, which shows schematically several regions on the h1 − h2

diagram, whose relatively sharp boundaries are defined by the difference in the
treatment success probability for the optimal strategy. Figure 3 illustrates the limit
of long treatment strategies; qualitatively similar maps can be obtained for different
values of treatment durations, Ttreat.

Regions A and B are characterized by the highest probabilities of treatment suc-
cess, which for the particular choice of parameters in figure 3 are of the order one.
There, we have h−1

1 + h−1
2 < γ−1, that is, the two drugs are mutually strong, see

inequality (19). This confirms our finding obtained by the deterministic methodol-
ogy; parameters that correspond to the highest probability of treatment success in
regions A and B satisfy

γ

h2 − γ
< α <

h1 − γ
γ

,

see condition (18). Outside this region, the probability of treatment success drops
by orders of magnitude. In the next section we will explore regimes A and B in
more detail. Here we give some numerical illustration of the conditions listed here.
Suppose that the net growth rate of cancer cells is γ = 8.4 yrs−1; this means that
the untreated tumor grows to the size of 1011 cells in 3 years. Further suppose that
the drug-induced death rates of the two drugs are h1 = 59.1 yrs−1 and 33.7 yrs−1,
which means that the first drug is capable of eliminating the cancerous colony in
6 months (given that there is no resistance), and the second drug eliminates it in
12 months. In this case, the condition of mutual strength (h−1

1 + h−1
2 < γ−1) is

satisfied, and the two drugs belong to region A/B in the diagram of figure 3. For
a relatively successful treatment, the ratio between the two cycle lengths must be
somewhere in the window between 0.33 and 5.0. For example, if we apply each of
the drugs for 1 month cycles (which corresponds to α = 1), this protocol would
satisfy the condition. On the other hand, if we chose the cycle length for drug 1
to be 4 months and for drug 2 to be 1 month, this would violate the inequality
γ/(h2 − γ) < α, and the prediction is that the treatment would give a very poor
outcome.

In regions C, D, E, and F the deterministic method predicts treatment failure, no
matter what cycle lengths are used for the two drugs. Consistently with that, the
stochastic method demonstrates a sharp drop in probabilities of treatment success as
we cross the regions’ borders. In particular, in Region C, each drug is strong enough
to eliminate the mutants susceptible to it, if we apply the drug continuously, but
in a cyclic treatment, we cannot reach extinction of both partially-resistant types,
because condition (19) is violated. Regions D and E are characterized by very
weak drugs; only one of the drugs is capable of eliminating mutants susceptible to
it. Finally, in region F, neither of the drugs is capable of eliminating susceptible
mutants, and the probability of treatment success is practically zero (and equals to
the probability of the tumor’s spontaneous extinction).

We can see that for all practical purposes, the drugs can be considered effective
in the context of a cyclic treatment only if they satisfy condition (19). Moreover,
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condition (18) should be satisfied to achieve a reasonable treatment schedule. The
rest of this paper’s analysis is therefore devoted to regions A and B.

4. Analysis of drug treatments with mutually strong drugs. Let us fix a
certain treatment time, Ttreat, and vary the number of cycles, 2N , used in the
protocol. First we consider drugs of different potencies. We would like to determine
the following features of the optimal protocol:

(i) What drug should be used first: best drug first (BDF) or worst drug first
(WDF)?

(ii) What number of cycles, 2N , should be implemented within the allocated
treatment time?

(iii) What is the optimal cycle duration ratio for the two drugs?

In figure 4 we consider two drugs: drug A has potency h = 5γ and drug B has po-
tency h = 3γ; the two drugs have the same activity spectra. The contourplots show
the levels of the probability of treatment success calculated by using the stochastic
methodology. Solid contours correspond to BDF strategies, and dashed contours -
to WDF strategies. In figure 4(a), the treatment time is taken essentially infinite;
in other words, doubling the treatment times does not change the probabilities of
treatment success. It turns out that treating with BDF in this case is a better
strategy; it corresponds to a finite number of cycles. If treating with WDF, the
optimum corresponds to an “infinite” number of cycles, a theoretical confirmation
of this result was obtained in [29] by using the deterministic methodology which
works very well for long treatment times.
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In figure 4(b) we decrease the treatment time by approximately a factor of 3.
The effect is very noticeable. First of all, we can see that the maximum probability
of treatment success achieved by shorter protocols is significantly lower than that
for longer protocols. Further, we observe that treating with BDF has a significant
advantage compared to treating with WDF. Also, the contourplot of the probabil-
ities changes its shape significantly: for BDF treatments, the optimal treatment
consists of only 2 cycles of each of the drugs, and for WDF treatments - of 3 cycles.

Figure 5 demonstrates the effects of decreasing the total treatment time in a
systematic way. As Ttreat decreases, the probability of treatment success decreases
(figure 5(a)), and the difference between the optimal BDF and WDF treatment
protocols increases. The BDF strategy remains advantageous. The optimal number
of cycles (figure 5(b)) decreases as the treatment time decreases. The optimal
BDF protocol usually requires fewer cycles than the optimal WDF protocol. Very
short treatment times require the optimal protocol to have only one cycle of drug
application. For BDF treatments, the probability of treatment success experiences
a slowing down in its growth as a function of Ttreat. This corresponds to the regime
where having only one cycle is no longer optimal, and the optimal strategy requires
using more than one cycles.

Next we will assume that the two drugs have an equal potency and only dif-
fer by their activity spectra. As has been mentioned previously, a difference in
the activity spectra of two drugs manifests itself in the different rates with which
mutants resistant to each drug are produced. In figure 6, we consider two drugs,
drug A with a lower activity spectrum (that is, it is active against fewer mutants),
and B with a wider activity spectrum (that is, it is active against a larger number
of mutants). Mutants resistant to drug A are produced with rate u = 10−5, and
mutants resistant to drug B are produced with rate u = 10−9. In figure 6(a), we
fix the treatment time to be approximately 16.49 times units, which for the pa-
rameter values chosen is comparable with the time it takes on average to eliminate
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the colony of susceptible cells with one of the drugs (approximately 12.66 units).
The contourplots of the probability of treatment success obtained by the stochastic
method are presented for the two cases: drug A first (solid lines) and drug B first
(dashed lines). We observe that the optimal probabilities of treatment success in
the two scenarios differ significantly. If we start with drug B, the optimal strategy
is to use 2 cycles, and the corresponding success probability is about 0.12. If, on
the other hand, we start treatment with drug A, then the best strategy is to use
only one cycle, and the corresponding success probability is about 0.39, which is
significantly higher. In both cases, the drug with the lower mutation rate must be
used for longer.
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In figure 6(b), we show that for most finite treatments protocols, it is advanta-
geous to start with the drug characterized by a higher mutation rate, but use the
other (more active) drug for longer cycle durations. The difference between the two
types of protocols decreases as the treatment length increases, and for very long
treatments, the two lines in figure 6(b) cross over. In the limit of long treatments,
it becomes slightly advantageous to treat with the broader drug first [29].

If the treatment time is long, the extinction of the susceptible colony as well
as both partially-resistant colonies is a certainty, and the probability of treatment
success is defined by the dynamics of partially-resistant mutants, which are well
described by the deterministic model. On the other hand, the dynamics of drug
resistance for short treatment times has a purely stochastic component. If the
treatment time is short, the probability of treatment success largely depends on
the chance of the extinction of the susceptible and the partially susceptible colonies
by the end of the treatment. For example, if the time Ttreat is so short that even
the elimination of the fully-susceptible colony is unlikely, then the probability of
treatment success is extremely low. This corresponds to the regime in figures 4(a)
and 6(b) with treatment time below approximately 9; a rough estimate for this
minimum treatment time which leads to clinically meaningful treatment probabil-
ities is lnN/(h + d − l). For treatment times longer that this threshold, the main
reason for treatment failure becomes the non-extinction of partially resistant mu-
tants. While the fully-susceptible colony is killed by the drugs continuously, the two
partially-resistant colonies are killed intermittently. The optimal treatment protocol
maximizes the chances of eliminating these colonies by the end of the treatment.

5. Conclusions. In this paper we studied cyclic drug therapies with the aim to
develop general guidelines on optimal treatment scheduling. Our work continues
earlier studies of [12] and extends the results to cross-resistant drugs.

The main idea behind treatment with multiple drugs is as follows. One of major
causes of cancer drug treatment failure is the development of drug resistance, which
is often associated with genetic events that modify cellular phenotypes inside the
tumor. Drug resistance can potentially be overcome by the combination of multiple
drugs, where a mutation that confers resistance against one drug does not confer
resistance against any of the other drugs in use. Cyclic drug therapies consist
of several alternating treatment courses, such that each of the drugs gradually
eradicates the population of susceptible cells, and the net effect of the alternating
cycles of treatment is the decline of the tumor. We find that in order for a cyclic
treatment to be feasible, the drugs’ strengths must satisfy a certain condition, which
we call the condition of “mutual strength”. Our results suggests that for mutually
strong drugs, the success of cyclic treatments depends on the exact scheduling, and
in particular, on the following factors: (i) which drug is administered first, and (ii)
the durations of the treatment courses.

The methodology used in this paper can be applied directly to cancer drugs with
relatively mild side-effects, such as small molecule kinase inhibitors [50]. Kinases in-
hibitors are currently one of the most promising drug types [1], because of their high
efficiency and low toxicity. One example is Imatinib [37, 14], the first selective tyro-
sine kinase inhibitor targeting Bcr-Abl protein, which has shown clinical efficacy in
the treatment of Chronic Myeloid Leukemia (CML). Small molecule inhibitors such
as Imatinib, have the ability to bind specifically to cancer cells, and spare healthy,
non-cancerous cells. Currently, there are 11 kinase inhibitors that have received US
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Food and Drug Administration approval as cancer treatments, and there are many
more that are at different stages of development [50]. Because of relatively mild
side-effects of these drugs, the main objective of protocol optimization is a maximal
efficiency in killing cancer cells.

The main findings of this paper are as follows:

• Finding the optimal treatment protocol for CML cyclic treatments with small
molecule inhibitors involves restricting the total drug dose (that is, restricting
the total treatment length) to minimize side-effects, and then finding the cycle
durations which maximize the probability of cancer cell elimination.

• In order for a cyclic treatment to be effective, the drugs’ potencies must satisfy
a certain condition (condition (19) in the paper), which we call the condition
of “mutual strength”. For realistic parameters, drugs which are not mutu-
ally strong will yield very poor probabilities of treatment success, if applied
cyclically.

• The general rule for cyclic treatments with mutually strong drugs of similar
activity spectra is: use the best drug first, but use the worst drug for longer.

• The shorter the total treatment time, the more important is the “best drug
first” rule.

• The presence of cross-resistance does not change this rule.
• The general rule for cyclic treatments with mutually strong drugs of similar

potency and different activity spectra is: use the less active drug first, and
use the more active drug for longer.

• The optimal cycle durations for given parameters such as drug strengths and
the mutations rates, can be calculated, and do not depend on the tumor size.
They do depend on other parameters, and in particular, on the total treatment
duration.

• Combination treatments, where both drugs are applied simultaneously, have a
higher probability of treatment success compared to cyclic treatments (given
that combination treatment is tolerated by the patient).

The mathematical model and the optimization techniques developed in this pa-
per are described in the context of CML. There are several reasons why the model
is specific to this cancer: (1) The stochastic model lacks spatial constraints, that is,
geometric considerations of tumor growth and drug delivery are not included. For
this reason, the model is best applicable to non-solid tumors. (2) It has been ob-
served that in CML, the main source of treatment failure is resistance due to point
mutations; in other cancers different mechanisms (such as gene duplication) might
be important, which requires a different approach. An extension of the present
model which included the mechanism of gene duplication was presented in [32]. (3)
Small-molecule inhibitors are used to treat CML. One of the assumptions of the
model is that the drugs must be non-mutagenic, and possess relatively mild side-
effects. Most chemotherapeutic agents used to treat cancer are not as selective as
small molecule inhibitors at killing cancerous cells. Their efficiency against cancer-
ous cells has a side-effect of a high killing rate of healthy cells, and thus a prolonged
administration of such drugs cannot be tolerated by patients. Our methodology can
be applied, with some modifications, to drugs of high toxicity; a detailed account of
the method is given in [29]. (4) There are more than one drugs available at the mo-
ment for treating CML. These drugs, while exhibiting a degree of cross-resistance,
are still characterized by different activity spectra, with well-studied properties. It
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is definitely possible to extend the model to other cancers, as long as these as-
sumptions hold true. A change in these specific properties would require certain
modifications in the model.

Another extension of our modeling approach is related to the the stem cell hy-
pothesis [7, 42], which states that only a small subpopulation of cancerous cells
“matters”. In other words, it is assumed that only a fraction of the cells, if not
eradicated by a treatment, can replenish the cancerous colony. According to this
hypothesis, the other (non-stem) cancer cells have a limited proliferative capacity,
and the main goal of treatment is to target the stem cells. The model described
in the paper is capable of describing cancer treatments in the context of the stem
cell hypothesis. We assume that the population or target cells (which is the cancer
stem cells in this case) is capable of three types of division: (i) symmetric divisions
by which a stem cells divides into two stem cells; (ii) asymmetric divisions where a
stem cell divides into a stem cell and a daughter cell without the infinite prolifer-
ative capacity, and (iii) symmetric divisions whereby a stem cell gives rise to two
(non-stem) daughter cells. From the point of view of the target population, events
of type (i) contribute to the division rate, l; events of type (ii) do not change the
number of stem cells, and events of type (iii) contribute to the “natural” death rate
of cells, d. With these remarks, and with the understanding that the total popu-
lation size is now the population size of the stem cells (which is usually assumed
to be only a few percent of the total population), we can directly proceed with the
application of the model to a cancer stem cell colony. The results of the model
regarding the optimal treatment strategies remain unchanged.

In general, the methodology developed here can help create more detailed theories
of cyclic drug treatments with non-symmetric rates, and different activities and
potencies of the two drugs. It can also be extended to more than two drugs.
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