
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.171
AND ENGINEERING
Volume 8, Number 1, January 2011 pp. 171–182

A NOTE ON THE USE OF INFLUENZA VACCINATION

STRATEGIES WHEN SUPPLY IS LIMITED

Sunmi Lee, Romarie Morales
and Carlos Castillo-Chavez

Mathematical, Computational and Modeling Sciences Center

School of Human Evolution and Social Change
Arizona State University

Tempe, AZ 85287, USA

Abstract. The 2009 A (H1N1) influenza pandemic was rather atypical. It
began in North America at the start of the spring and in the following months,

as it moved south, efforts to develop a vaccine that would mitigate the poten-

tial impact of a second wave were accelerated. The world’s limited capacity
to produce an adequate vaccine supply over just a few months resulted in the

development of public health policies that “had” to optimize the utilization

of limited vaccine supplies. Furthermore, even after the vaccine was in pro-
duction, extensive delays in vaccine distribution were experienced for various

reasons. In this note, we use optimal control theory to explore the impact of
some of the constraints faced by most nations in implementing a public health

policy that tried to meet the challenges that come from having access only to

a limited vaccine supply that is never 100% effective.

1. Introduction. The World Health Organization (WHO) declared an influenza
A(H1N1) pandemic on June 11, 2009 [17, 18], that is, just a few months after a
novel strain had been identified from an infectious individual in Mexico [19]. The
subsequent spread of this new strain of H1N1 in the southern hemisphere increased
the fear that a more virulent strain would return to the northern hemisphere in the
fall. Hence, efforts to develop a vaccine that could be distributed prior to the return
of H1N1 to the northern hemisphere became a global priority. The uncertainties
associated with the magnitude and nature of this health emergency dramatically
increased the demand for a vaccine that was still in the design phase.

It soon became apparent that no more than 900 million vaccine dosages would be
available in 2009-2010 [25]. Wealthy nations soon purchased most of the expected
vaccine production leaving an inadequate supply available for the rest of the world.
Canada for example ordered more than 50 million dosages while the USA secured
200 million dosages [20, 21]. On the other hand the WHO was able to secure only
37 millions dosages that had to be judiciously distributed to poor nations from
December to February [26]. The first batches arrived in the USA on October 19
and in Canada on October 21, 2009 [22]. Limited supplies were used to vaccinate
primarily pregnant woman, young children, and medical personnel [14, 23, 24].
In other words, nations that had managed to secure large supplies still had to
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wait several months for full delivery, with most dosages arriving well within the
second wave. The challenge posed by vaccine production restrictions and logistic
distribution limitations (experienced over the course of this pandemic) raised several
questions: What is the impact of having access only to a limited number of dosages?
What is the impact of delays in accessing the available vaccine supply? What is the
role of a large percentage of H1N1 asymptomatic infectious individuals?

In this note, we only address the first question but its relationship to the others is
addressed briefly in the conclusion. A single-outbreak epidemiological model is used
to study the impact of a limited vaccine (not 100% effective) supply on the fall 2009-
wave in the northern hemisphere. It is assumed (a highly conservative assumption)
that the vaccine is available from the beginning of the outbreak. The role of this
vaccine is first analyzed under the assumption that the population has access to an
unlimited supply. Next, the case when the vaccine supply can only protect a small
proportion of the total population at risk is studied numerically. In both cases,
optimal control theory is used to find the optimal vaccine-strategy (unconstrained
and constrained cases) in situations where the vaccine fails to protect a fraction of
the vaccinated populations.
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Figure 1. Flow chart of the single outbreak influenza transmission
model with vaccination

2. Pandemic influenza model with vaccination control. In this section, we
use an existing single outbreak model [2, 3] modified through the incorporation
of a control function, the time-dependent vaccination rate. Two optimal con-
trol problems are formulated and their impact of (numerically derived) optimal
vaccination strategies is evaluated under distinct vaccine coverage scenarios and
various values of the basic reproduction number R0. The model classifies indi-
viduals as susceptible (S), effectively vaccinated (V ), ineffectively vaccinated (F ),
(perfectly) protected by vaccination (P ), latent (E), infectious (I), hospitalized
(J), recovered (R), and dead (D) (see Figure 1). Susceptible individuals are ex-

posed to the influenza virus with a force of infection given by β I(t)+J(t)
N(t) where

β is the transmission rate and N(t) denotes the total population size (N(t) =
S(t)+V (t)+F (t)+P (t)+E(t)+I(t)+J(t)+R(t)). The control function (denoted
by u(t)), the vaccination rate of susceptible individuals, is calculated under a par-
ticular set of assumptions. Susceptible individuals (S) go to the vaccination class
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at the rate εu(t), where ε in (0,1) is a measure of the vaccine efficacy. Therefore,
(1− ε) denotes the fraction of ineffectively (failure) vaccinated individuals per unit
of time. Vaccinated individuals go to the P (perfectly protected) class at the rate η
while infected individuals enter either the Recovered class R(t) at the rate γ1 or the
Hospitalized class (J(t)) at the rate α. Individuals in the Hospitalized class enter
the Recovered class at the rate γ2 or the Death (D(t)) class at the rate δ [3]. These
definitions and assumptions lead to the following system of nonlinear differential
equations that models the dynamics of a single epidemic outbreak.

Ṡ(t) = −u(t)S(t)− β I(t) + J(t)

N(t)
S(t) (1)

V̇ (t) = εu(t)S(t)− ηV (t)− β I(t) + J(t)

N(t)
V (t)

Ḟ (t) = (1− ε)u(t)S(t)− β I(t) + J(t)

N(t)
F (t)

Ṗ (t) = ηV (t)

Ė(t) = β
I(t) + J(t)

N(t)
(S(t) + V (t) + F (t))− kE(t)

İ(t) = kE(t)− (α+ γ1)I(t)

J̇(t) = αI(t)− (γ2 + δ)J(t)

Ṙ(t) = γ1I(t) + γ2J(t)

Ḋ(t) = δJ(t)

Ẏ (t) = u(t)S(t)

The model’s basic reproduction number R0 (using the next generation operator
approach [5, 16]) is given by

R0 = β(
1

α+ γ1
+

α

(α+ γ1)(γ2 + δ)
). (2)

R0 is a measure of the transmissibility of the infectious disease when the popu-
lation is completely susceptible. Specifically, R0 accounts for the average number
of secondary cases generated by a primary case during his/her infectious period
given that S(0) ≈ N(0). Typically, we have that when R0 > 1 an outbreak takes
place while R0 < 1 indicates that an outbreak cannot be sustained. We take
S(0) = S0, E(0) = E0, and I(0) = I0 with S0 +E0 + I0 = N0 [I0 > and E0 > 0 and
N0 >> I0 + E0]. Using the approach in [1], we derive the final size relationship

ln
S0

S∞
< R0[1− S∞

N0
]

where the percentage of individuals recovered or dead from the infection is given
by [1− S∞

N0
].

The aim of this work is to minimize the number of infected individuals over a
finite time interval [0, T ] at a minimal cost. This outcome would be the result
of implementing an optimal vaccine policy during the course of an influenza pan-
demic outbreak. These unconstrained (unlimited vaccines) and constrained (limited
vaccines) optimal control problems are handled using the approach illustrated in
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[8, 9, 10, 11]. The objective functional to be minimized is therefore

F(u(t)) =

∫ T

0

[I(t) +
W

2
u2(t)]dt (3)

where the control effect is modeled by a quadratic term in u(t). The weight con-
stant W is a measure of the relative cost of vaccination over a finite time period.
The constrained optimal problem with the isoperimetric-constraint (limited vaccine)
consists of finding an optimal control function u∗(t) such that

F(u∗(t)) = minΩF(u(t)) (4)∫ T

0

u(t)S(t)dt = B (5)

where Ω = {u(t) ∈ L1(0, T )‖0 ≤ u(t) ≤ b, t ∈ [0, T ]} and subject to System (1).
The equality constraint (isoperimetric constraint) represents the total amount of
vaccines available B over the time interval [0, T ]. Constraint (5) can be reformu-

lated in terms of the differential equation Ẏ (t) = u(t)S(t) with the initial condition
Y (0) = 0 and final condition Y (T ) = B (added to System (1)). This way of includ-
ing the isoperimetric constraint lets us apply the standard Pontryagin’s Maximal
Principle in our search for an optimal solution of the constrained optimization prob-
lem (additional necessary conditions are derived in Appendix). The solution of the

unconstrained optimal control problem excludes the Ẏ (t) equation while the solu-

tion of the constrained problem requires the inclusion of the Ẏ (t) equation which
is equivalent to (5). The default values for initial conditions and model parameters
are in Table 1. Units are per day for all rates. These baseline values are used
throughout the manuscript unless otherwise indicated.

3. Simulations and results. We present numerical simulations under two scenar-
ios: the unconstrained optimal vaccination and the constrained optimal one. The
first case assumes that there exists a large vaccine supply to protect the (almost)
full population while the later assumes that there is limited access to the vaccine.
Our focus is on understanding the effects of optimal vaccination strategies on the
dynamics of pandemic influenza. The impact of such controls is evaluated under
different values of the basic reproductive number, R0, and under pre-selected levels
of vaccine coverage. A sensitivity analysis is carried out on the weight constants, on
the upper bounds of the controls, and a mean vaccine efficacy in the unconstrained
optimal vaccination strategy.

3.1. Results in the unconstrained vaccine supply case. First, the uncon-
strained optimal control problem is solved under two distinct transmissibility levels
modeled by R0. Figure 2 illustrates the optimal control functions computed (as a
function of time) when R0 = 1.3 and R0 = 2.0 (top). The corresponding daily inci-
dence of the infected class with/without vaccines is displayed in Figure 2 (bottom).
The implementation of an optimal vaccine strategy reduces the number of infected
cases significantly (almost no outbreak) when R0 is low (R0 = 1.3). We observe that
maximum vaccination effort must be allocated at the beginning of the pandemic for
both values of R0. The optimal vaccination must be applied for a longer period
of time when R0 is high (R0=2.0) since there are much more infected individuals
(red solid curve in the top graph). In the absence of vaccines, a higher peak in the
incidence of infected cases over a shorter time period is detected when R0 = 2.0
(red dotted curve in the bottom graph). Even though a considerable increase in the
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number of vaccines is put in place, there is still an outbreak (red solid curve in the
bottom graph).

3.2. Sensitivity analysis. We explore the effect of changes in model parameters
on the dynamics of influenza pandemics by carrying out a sensitivity analysis. Our
sensitivity analysis focuses on studying the role of varying the control weight con-
stants (W ), the control upper bounds (the maximum vaccination rate), and the
vaccine efficacy. The impact of these parameters on the fraction of cumulative
infected cases is compared in the presence and the absence of vaccines.
Weight constant. We choose four values of the weight constants, W = 1, 102, 104,
and 106 when R0 = 1.3. A comparison of results implementing optimal vaccina-
tion policies is shown in Figure 3 under different weight constants on the control.
Time series of optimal control functions are in the top of Figure 3 (left) while the
corresponding incidence of infected individuals are in the bottom graph of Figure
3 (left). The general shapes of the control functions are similar (monotonic de-
creasing in time) with large changes in magnitude. As the weight constants are
increased, the cost of vaccinations also increase. These changes result in increases
in the height of the epidemic peak that are the result of reductions in the number
of vaccines available to individuals. The impact of the weight constants on the
fraction of cumulative infected cases and vaccinated cases is displayed as a function
of R0 in the right graph. Under higher vaccination coverage (almost 90% using the
weight constants in the range of 102-106 ), the fraction of infected cases is reduced
significantly (less than 10% of the total infected cases up to values of R0 <= 1.6).
Upper bounds of the control. We carry out a sensitivity analysis on pre-selected
control upper bounds starting from their impact on the fraction of cumulative in-
fected cases. Four different upper bounds on controls (a priori maximum vaccination
rates for susceptible individuals) are chosen in the range (0.05, 0.1, 0.2, 0.5). Fig-
ure 4 shows the results of implementing optimal vaccination controls constrained
by these upper bounds when R0 = 1.3. Optimal controls are graphed at the top
while the corresponding incidence of infected individuals are plotted at the bottom
(left). The cumulative fraction of infected and vaccinated cases are shown in the
right graph of Figure 4 under different values of R0. The larger upper bound, the
better impact of vaccines in reducing the number of infected cases for all ranges
of R0 values. For example, the use of the largest upper bound (b = 0.5) generates
dramatic reductions in the number of infected cases, regardless of the value of R0.
Vaccine efficacy. We explore the impact of changes in vaccine efficacy on the
control functions as well as on the fraction of cumulative infected cases. Figure 5
presents the results of implementing optimal vaccination strategies using different
values for vaccine efficacy (ε = 0.4, 0.6, 0.8, 1) when R0 = 1.3. The optimal controls
and the corresponding incidence of infected individuals are given in Figure 5 (left).
It is observed that the vaccination strategy with larger vaccine efficacy uses less
number of vaccines. For example, the amount of vaccines with an efficacy, ε <= 0.4
is almost double of those required when ε >= 0.8. The role of vaccine efficacy
variation becomes clearer when one looks at the cumulative fraction of infected
cases as R0 is varied (Figure 5 right). The optimal vaccination strategy using a
higher value of vaccine efficacy (ε = 0.8) manages to keep the fraction of infected
cases under 20% for most ranges of R0 (< 2) even though it uses less vaccines.

3.3. Results under Isoperimetric-constraint. We solved a constrained (isoperi-
metric) optimal control problem under pre-specified isoperimetric constraints (amount
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of vaccines). We consider three vaccine coverage levels (15%, 30%, and 50%). The
numerical method used to solve this constrained optimal control problem turned out
to be quite sensitive to the levels of vaccine available. As a result of the boundary
conditions in the adjoint system (from the isoperimetric constraint), convergence
issues had to be addressed.

Figure 6 plots time series of the optimal vaccinations under three different vaccine
coverages (15%, 30%, and 50%). These results are contrasted with those obtained
in the absence of vaccines. The left graph displays the control functions as well as
the resulting incidence (infected cases) when a smaller value of the control upper
bound (b=0.05) was in use. The right graph shows the results of using a larger value
for the control upper bound (b=0.2). We see that maximum vaccination rates must
always be implemented at the beginning until all the available vaccines are depleted
in both cases. The effect of two upper control bounds on the incidence of infected
cases does not seem to be significant provided that the maximum vaccination rates
are put in place at the start of the pandemic and that R0 lies in the low range
(e.g R0 = 1.3). The impact of vaccinations with 30% and 50% vaccine coverages
on the fraction of cumulative infected cases is illustrated in Figure 7. When R0

is low enough (<= 1.4), the optimal strategy with 30% still generates significant
reductions (<= 10%). However, the benefits of the application of controls under
higher vaccine coverage (>= 50%) increase as R0 increases (R0 >= 1.5).

4. Conclusion. An existing influenza transmission model is used to explore the
impact of optimal vaccination policies under limited vaccine supplies (isoperimetric
constrained model). Under a rather set of optimistic assumptions (vaccines available
at the beginning of a pandemic), constrained and unconstrained optimal control
problems are formulated. The constraint imposed (a limited vaccine supply) is
incorporated in the isoperimetric optimal control problem through the addition of
a differential equation with two “boundary” conditions.

Results suggest that both optimal vaccination policies (constrained or uncon-
strained) must be implemented at the maximum vaccination rate for all ranges of
R0 and at the beginning of the outbreak. There are no significant differences under
the constrained or unconstrained strategies when R0 is low (<= 1.3) and more in
line with transmissibility estimates for seasonal influenza [4]. Hence, in some sense,
this result indicates that there is no “need” for a nation to have more than 15 %
of the vaccines needed to cover its total population. The pre-selected values of the
upper bounds on controls and vaccine efficacy levels have a significant impact on
the final size of infected cases. Increases on the upper bound of the optimal control
and the efficacy level result in a decrease in the amount of vaccines that must be
administered.

In this study, the focus has been exclusively in the study of constrained and
unconstrained vaccine availability scenarios at the start of an epidemic outbreak.
In other words, the study has been quite limited as noted in the introduction with
important critical questions that should be simultaneously addressed being ignored.
The time delays associated with the process of vaccine preparation, production and
delivery of a new vaccine (around 6 months) just after a new strain was identified
must be factored in. The role of age-specific risk, asymptomatic individuals (which
can infect others) and the impact that these individuals have through their “acci-
dental” use of vaccine supplies, must also be considered. These ignored factors make
it difficult to mitigate the impact of super-fast spreading diseases like influenza. In
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summary, for super-fast spreading diseases limitations in supply can make all the
difference particularly when R0 is large.

Appendix. The goal is to find an optimal vaccination strategy that minimizes
the objective functional (3) subject to (1) and (4-5). The existence of optimal
controls is guaranteed by standard results in control theory (the integrand of F is a
convex function of u and the the state system satisfies the Lipshitz property with
respect to the state variables) [6]. The necessary conditions that optimal solutions
must satisfy are derived using Pontryagin’s Maximum Principle [15]. This principle
converts Systems (1) and (4) into minimizing the Hamiltonian H given by

H = I(t) +
W

2
u2(t) (6)

+ A1(t){−u(t)S(t)− β

N(t)
(I(t) + J(t))S(t)}

+ A2(t){εu(t)S(t)− ηV (t)− β

N(t)
(I(t) + J(t))V (t)}

+ A3(t){(1− ε)u(t)S(t)− β

N(t)
(I(t) + J(t))F (t)}

+ A4(t){ β

N(t)
(I(t) + J(t))(S(t) + V (t) + F (t))− kE(t)}

+ A5(t){kE(t)− (α+ γ1)I(t))}
+ A6(t){αI(t)− (γ2 + δ)J(t)}
+ A7(t){u(t)S(t)}

From this Hamiltonian and Pontryagins Maximum Principle, we obtain

Theorem 1. There exist the optimal control u∗(t) and corresponding state solu-
tions, X∗= (S∗, V ∗, F ∗, P ∗, E∗, I∗, J∗, R∗, D∗) that minimize F(u(t)) over Ω.
In order for the above statement to be true, it is necessary that there exist adjoint
variables Ai(t) such that

Ȧ1 = −[A1(u(t)−A1
β

N(t)
(I(t) + J(t)) +A2(εu(t)) (7)

+ A3((1− ε)u(t) +A4
β

N(t)
(I(t) + J(t)) +A7u(t)]

Ȧ2 = −[A2 − η +A2(− β

N(t)
(I(t) + J(t))) +A4

β

N(t)
(I(t) + J(t))]

Ȧ3 = −[−A3
β

N(t)
(I(t) + J(t)) +A4

β

N(t)
(I(t) + J(t))]

Ȧ4 = −[A4(−k) +A5k]

Ȧ5 = −[1−A1
β

N(t)
S(t)−A2

β

N
V (t)−A3

β

N(t)
F (t)

+ A4
β

N(t)
(S(t) + V (t) + F (t))−A5(α+ γ1) +A6α]
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Ȧ6 = −[−A1
β

N(t)
S(t)−A2

β

N(t)
V (t) +A3

β

N(t)
(F (t))

− A4
β

N(t)
(S(t) + V (t) + F (t))−A6(γ2 + δ)]

Ȧ7 = 0

satisfying the transversality conditions,

Ai(T ) = 0, i = 1, · · · , 6 (8)

A7(T ) = θ. (9)

The Hamiltonian H is minimized with respect to the control (at the optimal con-
trol). We differentiate H with respect to u on the set Ω and arrive at the following
optimality condition:

∂H

∂u
= Wu(t)−A1(t)S(t) + εS(t)A2(t) + (1− ε)A3(t)S(t) +A7(t)S(t). (10)

Solving for u∗ (by evaluating ∂H
∂u at u∗), the optimality condition

u(t) =
S(t)

W
(A1(t)− εA2(t)− (1− ε)A3(t) +A7(t)) (11)

is obtained. Furthermore, using the standard argument for control bounds, we
arrive at the following expression for the optimal control function

u∗(t) = min
{
max

{
0,
S(t)

W
(A1(t)− εA2(t)− (1− ε)A3(t) +A7(t))

}
, b
}
. (12)

The unconstrained solution can be computed by solving the optimality system
which excludes the Ẏ (t) equation in (1) and the A7(t) equation in (7). The stan-
dard two point boundary method is used to solve the unconstrained problem: first,
the state system is solved using a forward method with given initial conditions;
secondly, the corresponding adjoint system is solved using a backward scheme with
the transversality conditions; thirdly, a convex combination of previously and cur-
rently computed controls are used to generate updated controls using the optimality
equations; lastly, the process is repeated until a convergence criterion is satisfied.

For, the constrained optimization problem, a new state variable, Y (t) is intro-
duced in (1) from the isoperimetric constraint (5), which requires boundary condi-
tions at t = 0 and t = T . From the requirements on Y (t), the corresponding adjoint
variable to Y (t) must meet a non-zero transversality condition at the final time T ,
namely that A7(T ) ≡ θ. Note that θ is unknown therefore, an iteration process is
needed to find the right transversality condition required to satisfy the isoperimet-
ric constraint (Y (T ) = B). This additional iteration process uses Newton’s method
and the procedure used to implement it numerically identifies convergence issues
that were never generated in the search of solutions for the unconstrained problem.
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Table 1. Parameter definitions and baseline values (and their corre-
sponding sources) used in numerical simulations.

Parameter Description Values Reference

β Transmission rate (days−1) 0.75 − 1.68 [2]
k Rate of progression to infectious (days−1) 0.53 [13]
δ Mortality rate (days−1) 0.01 [7]
γ1 Recovery rate (days−1) for infectious class

(days−1)
0.34 [2]

γ2 Recovery rate for hospitalized class (days−1) 1.10 [2]
α Diagnostic rate (days−1) 0.51 [2]
ε Efficacy of vaccination 0.5 [12]
S(0) Initial number of susceptible individuals 174673 [2]
E(0) Initial number of exposed individuals 207 [2]
I(0) Initial number of infectious individuals 132 [2]
T The simulated time (days) 200 -
b The upper bound of control .05 − 0.2 -
W Weight constant on control 100 -

[26] Science Insider, The Challenge of Getting Swine Flu Vaccine to Poor Nations:

11/03/2009, Available online: http://news.sciencemag.org/scienceinsider/2009/11/

the-challenge-o.html.
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Figure 7. The fraction of the cumulative number of infected individu-
als as a function of R0 is compared with the one under no vaccines using
two different vaccination coverage levels (30% and 50%).
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