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Abstract. Finding optimal policies to reduce the morbidity and mortality of

the ongoing pandemic is a top public health priority. Using a compartmental

model with age structure and vaccination status, we examined the effect of
age specific scheduling of vaccination during a pandemic influenza outbreak,

when there is a race between the vaccination campaign and the dynamics of the

pandemic. Our results agree with some recent studies on that age specificity is
paramount to vaccination planning. However, little is known about the effec-

tiveness of such control measures when they are applied during the outbreak.
Comparing five possible strategies, we found that age specific scheduling can

have a huge impact on the outcome of the epidemic. For the best scheme, the

attack rates were up to 10% lower than for other strategies. We demonstrate
the importance of early start of the vaccination campaign, since ten days de-

lay may increase the attack rate by up to 6%. Taking into account the delay

between developing immunity and vaccination is a key factor in evaluating the
impact of vaccination campaigns. We provide a general framework which will

be useful for the next pandemic waves as well.

1. Introduction. Developing strategies for mitigating the severity of the influenza
epidemics is a top public health priority. As soon as vaccine became available,
vaccination campaigns started in several countries as a primary mitigation strategy
against the first wave of the 2009 A(H1N1) pandemic. Mathematical models are
powerful tools for evaluating intervention strategies and quantifying the potential
benefits of different options (Moghadas et al. 2009 [33]). We use a compartmental
system with five age groups representing the European population, that incorporates
transmission dynamics based on social contact profiles from survey data (Mossong
et al. 2008 [34]) and vaccination status. Vaccination has not only direct benefit to
the individual, but also reduces the risk for those who have not been vaccinated.
Giving priority to groups who are the most responsible for spreading the infection
can be a benefit to other groups as well.

US officials have announced that over several months, vaccines for up to 20%
of the population per month could be delivered (Robinson 2009 [39]), although
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later they were facing difficulties with providing supplies. Hungary has a similar
maximal production capacity in the range of up to 5% of the population per week
(Falus 2009 [16]), thus here we targeted a 60% vaccine coverage by the end of
a three months campaign. Recent studies revealed the importance of age specific
intervention strategies, and discussed how to distribute vaccines among age groups,
assuming preseasonal vaccination (Longini & Halloran 2005 [25]; Medlock & Galvani
2009 [27]). Here we focus on a completely different aspect: how to prioritize the
different groups in the timing of the schedule. Therefore for the purposes of this
study, in the baseline scenario we assume that a 60% total coverage is reached within
each age group by the end of the vaccination campaign, and we compare different
strategies for the order and the timing of vaccinating different age groups during
the campaign. Furthermore, a range of different scenarios are considered in the
sensitivity analysis. The relatively low basic reproduction number of influenza (see
Chowell et al. 2007 [8] and Chowell et al. 2006 [7] for estimations of the reproduction
numbers for seasonal and pandemic influenza in temperate countries) implies that
effective measures such as vaccination before the pandemic wave could be important,
however little is known about the effectiveness of such measures during a pandemic
wave.

As it could be observed all around the world, vaccination campaigns and
A(H1N1)v outbreaks overlapped in time, thus the preseasonal vaccination assump-
tion does not hold. There is an ongoing race between the vaccination campaign
and the dynamics of the outbreak, hence it is necessary to implement a dynamic
modelling of the interplay of the vaccination and the influenza transmission.

Age structured models are necessary for multiple reasons: various age groups
have very different contact profiles thus playing different roles in transmitting the
disease. Furthermore, age specific susceptibility, infectiousness, vaccine efficacy and
mortality patterns are also important issues. We developed a compartmental model
to track five age groups. We incorporated the fact that it takes about two weeks
to develop antibodies and acquire immunity after vaccination, and during this in-
termediate period an individual might contract the disease (Nichol 1998 [36]). This
time delay is shown to be a significant factor during the outbreak. To our knowledge
this is the first modelling study which reckons with that.

Here we evaluate vaccination strategies for two outcome measures: overall attack
rate and total deaths estimated from recent mortality data of the novel A(H1N1)v
pandemic (Donaldson et al. 2009 [13]). Though there are several other possible inter-
ventions (antiviral treatment, social distancing, school closures etc., see Alexander
et al. 2007 [1], 2008 [2] ; Ferguson et al. 2006 [17]; Merler et al. 2009 [29]; Moghadas
et al. 2008 [31], 2009 [32]; Gojovic et al. 2009 [19]) to mitigate the burden of the
outbreak, here we focus only on vaccination. The effect of other control measures
can be taken into account in a simplified way by lowering the reproduction number.
To show the robustness of our results, a sensitivity analysis was performed with
respect to several key model parameters, such as the basic reproduction number,
vaccine efficacy, epidemiologic characteristics of the virus, moreover the duration
and the intensity of the vaccination campaign.

In the following, we detail the model structure, discuss our results and their
epidemiological implications, and place them in the context of the ongoing battle
against the nascent A(H1N1)v pandemic. Our aim was to develop a model that can
be applied to explore the effect of alternative vaccination strategies, and this model
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can also be used for predicting the future incidence of cases in the next wave of
pandemic influenza.

2. The model. Our model is a compartmental differential system, based on the
classical SEIR (Susceptible, Exposed, Infective, Recovered) model. We have incor-
porated three features to develop a more realistic model:

i) we introduced age structure with five age groups, where the contacts between
age groups are derived from the European survey Mossong et al. 2008 [34],

ii) we account for the fact that it takes up to 14 days after vaccination to produce
sufficient amount of antibodies to provide immunity (CDC 2009 [11], Nichol 1998
[36]),

iii) we did not assume vaccination before the outbreak, because we want to model
the interplay between the dynamics of the epidemics and the vaccination campaign.

It is assumed that the transmission of infection occurs through close contacts
between susceptibles and infected individuals, where for simplicity, mass action in-
cidence is used (Alexander et al. 2007 [1], 2008 [2]; Arino et al. 2006 [3]). Exposed
individuals in the class E cannot transmit the disease in the latent period, during
which viral titres increase to detectable and transmissible levels (Baccam et al. 2006
[4]). Since the latent period is relatively short, we neglected the small probability of
someone receiving the vaccine while being in the class E. We assume further that
infected and recovered individuals will not be vaccinated, therefore vaccination is
administered only for individuals in the S class until we reach the targeted 60%
coverage on the population level. If the pool of susceptibles depleted before reach-
ing that coverage, we stopped vaccination in the simulations. However, contacts of
cases may have already been infected by the time that vaccine is taken up, because
high proportion of infection is not laboratory confirmed, and also asymptomatic
or atypical infections can also occur. The magnitude of such limitation is less of a
problem when considering the first epidemic wave of pandemic influenza than for
the second or third wave. The model tracks 5 age groups, distributed as the 2005
European Union population (Eurostat 2006 [15]). We considered the case when a
single dose is sufficient to induce immunity. A single dose is recommended for the
Hungarian vaccine (Johansen et al. 2009 [24]; Vajo et al. 2009 [45]), and according
to the most up-to-date recommendation of the European Medicines Agency that
can be sufficient for other vaccines as well, see also (Nishiura & Iwata 2009 [37];
Greenberg et al. 2009 [21]). The five age groups we considered are 0-9, 10-19, 20-39,
40-64 and 65+ years old. In the model equations we use the upper index i = 1, ..., 5
to denote the corresponding age group, respectively. Based on the most recent sero-
logical data (Miller et al. 2010 [30]), we assumed no pre-existing immunity in the
first four age groups, and 20% reduction in susceptibility in the elder age group.

Vaccinated individuals move into the class W for an intermediate period, during
that infection is still possible. After 14 days they become immune with probability q,
and move into theRW class, or if the vaccine was ineffective, then they move into SV ,
meaning that they are still susceptible to the disease despite having been vaccinated.
Such individuals will not receive the vaccine again, but can come into contact with
infectious individuals and contract the disease. It is assumed in the baseline scenario
that the same epidemiological parameters apply to these individuals as to the non-
vaccinated, i.e. µEV

= µE and µIV = µI , except that we assumed a reduction of
infectiousness for unsuccessfully vaccinated persons (see Table 1). This factor δ is
set to be 0.75 in the baseline scenario, but other possibilities for the parameters of
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unsuccessfully vaccinated individuals are also discussed in the sensitivity analysis.
The epidemiological parameters, such as the length of incubation and infectious
periods, vaccine efficacy, transmission rates etc. are taken from the literature and
discussed in detail in Section 3.

The transmission diagram of our model is presented in Figure 1, without the age
structure.

Thus, altogether we have 50 compartments and the following non-autonomous
system of 50 differential equations
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where the force of infection is given by

λi =

5∑
j=1

(βj,i(I
j + δIjV ))

and the upper index i = 1, .., 5 represents the corresponding age group. Here V i =
V i(t) are the prescribed piecewise constant vaccination rate functions determined by
the specific strategy. In our equations we ignored mortality, since even a 40% attack
rate and 0.05% case fatality rate cause very minor changes in the demographic
scale, and the number of disease induced deaths can be derived simply from the
attack rate and the case fatality ratio. Nevertheless, the age specific mortality is an
important issue, and such information can be obtained from the age specific attack
rates calculated by the model and the mortality patterns when they are available,
see Section 4 and 5. We start the model at t = 0, with time measured in days,
introducing a small number of infectives into the population. The time T refers to
the delay in start of the vaccination campaign, thus V i(t) = 0 for any t < T , and
in a case of a three months campaign, V i(t) = 0 for t > T + 90 as well.

3. Parameters. The epidemiological parameters are summarized in Table 1. So
far there are no precise clinical estimates of the basic model parameters µE and µI

defining the inverse average exposed and infectious time durations, hence we used
plausible values from the range estimated in Balcan et al. 2009 [5]. We used the
age distribution of the European Union (Eurostat 2006 [15]) for our simulations.
For vaccine efficacy we used the same parameters as in Medlock & Galvani 2009
[27], obtained from Basta et al. 2008 [6]. In the sensitivity analysis we considered
various values for the reduction of infectiousness δ and vaccine efficacy against
infection qi. The value of µW , representing the inverse time duration needed to
develop antibodies to gain immunity, is the same as US CDC 2009 [11] uses, being
in accordance with Nichol 1998 [36].

3.1. Baseline scenario. The severity of the influenza outbreak and the initial
rate of increase depends on the basic reproduction number R0, which is among
the most urgently estimated quantities in a pandemic situation, and defined as the
average number of secondary infectious cases caused by an infected individual in
a population consisting of susceptibles only (Diekmann et al. 2010 [12]; Heffernan
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Figure 1. Transmission diagram without age structure. Here W
is the compartment of those who have been recently vaccinated,
RW who have already acquired immunity after vaccination, and
the subscript V denotes the classes of unsuccessfully vaccinated
people.

parameter notation value (range) source
latent period 1/µE 1.25 days Balcan et al. 2009

infectious period 1/µI 3 days Balcan et al. 2009
vaccine efficacy, 0-65 yrs old qi, i = 1..4 0.8 (0.7-0.9) Basta et al. 2008
vaccine efficacy, 65+ yrs old q5 0.6 (0.5-0.7) Basta et al. 2008

transmission rates βi,j see 3.2 Mossong et al. 2008
time to develop antibodies 1/µW 14 days Nichol 1998
reduction in infectiousness δ 0.75 (0.5-1)

vaccination coverage 60%(30%-80%)
basic reproduction number R0 1.4 (1.2-1.8) Tuite et al. 2009

Table 1. Description of the model parameters

et al. 2005 [23]). In the baseline scenario we assumed that the basic reproduction
number R0 is 1.4. This value seems to be reasonable (Tuite et al. 2009 [43]) and
similar to mean estimates of seasonal infuenza in temperate countries, however, we
considered milder and more severe cases (R0 = 1.2, R0 = 1.6, R0 = 1.8) as well.
We run computer simulations for a population of N = 100000. Due to the special
form of the equations, the results are scalable and the attack rates (defined as the
fraction of susceptibles who do not contract the disease during the course of the
outbreak) remain the same for populations of any size. In the baseline scenario,
after the start of the vaccination campaign at time T , vaccine is administered to
0.667% of the population per day, thus reaching a coverage of 60% at the end of
the campaign at time T + 90. This is an intensive, but realizable vaccination plan
(Falus 2009 [16]). The distribution of these vaccines among the age groups on any
given day is determined by the specific strategy (see Section 4). Based on European
Union statistics Eurostat 2006 [15], we use the following age distribution per 100
000 citizens:

N1 N2 N3 N4 N5

10500 12000 28500 32500 16500
,

where N i is the total number of individuals in age group i, and N =
∑5

i=1N
i.
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3.2. The contact matrix and the basic reproduction numbers. There are
practical reasons for using five age groups besides for simplicity: we think that
targeting smaller groups is not feasible in a real situation, and we can not expect
to have vaccination data with such details. Also, in view of the data in Mossong et
al. 2008 [34], the population can be divided into these five age groups with more
or less similar contact profiles within these larger groups, which are then easier
to be targeted. Following Medlock & Galvani 2009 [27], we used the European
survey data Mossong et al. 2008 [34] to estimate the transmission rates between
age groups. That survey dealt with 17 age groups (0,1-4,5-9,10-14,..,70-74 and 75+)
in 8 European countries. Since we work with different age groups, after averaging
the European contact matrices from the 8 countries weighted by their population
size, we calculated a 5 × 5 contact matrix C̄ = (c̄i,j), using weighted averaging
based on EU age distribution (Eurostat 2006 [15]) to combine smaller age groups
into the larger ones. Since contacts are assumed to be mutual, following Medlock
& Galvani 2009 [27], we performed a symmetrization procedure to ensure that the
total number of contacts between two age groups are consistent: we set

ci,j =
c̄i,jN

i + c̄j,iN
j

2N i
.

Eventually, we obtained the contact matrix

C =


5, 3580 1, 0865 3, 0404 2, 4847 0, 8150
0, 9507 10, 2827 2, 8148 3, 6215 0, 7752
1, 1201 1, 1852 6, 5220 4, 1938 0, 9016
0, 8027 1, 3372 3, 6776 5, 2632 1, 3977
0, 5187 0, 5638 1, 5573 2, 7531 2, 0742

 ,

where the elements ci,j represent the number of contacts an individual in age group
i has with individuals in age group j, and satisfy ci,jN

i = cj,iN
j .

Age specific contact rates can be converted to the age specific transmission rates
βi,j as follows. An infected individual in age group i has ci,j contacts with individ-
uals in age group j, at some time t a fraction Sj(t)/N j of those contacts are with

susceptibles, Sj
V (t)/N j with vaccinated susceptibles and W j(t)/N j with recent vac-

cinees. Thus, we obtain that the rates of infections in age group j by individuals in
age group i is given by

βci,j
Sj(t)

N j
Ii(t), βci,j

δSj
V (t)

N j
Ii(t), βci,j

W j(t)

N j
Ii(t),

where β is a transmission parameter, which involves the normalization of the con-
tacts to unit time and the infectiousness of the virus. By defining βi,j = βci,j/N

j ,
we obtain the model equations and force of infections described in Section 2. Using
the transmission rates we can construct the next generation matrix N (see Diek-
mann et al. 2010), and then fit β numerically to ensure that the basic reproduction
number, which is the dominant eigenvalue of the next generation matrix, is equal
to 1.4.

Since in the early phase of the pandemic Sj
0 ≈ %jN j (where %j = 1 for j =

1, 2, 3, 4 and %5 = 0.8), the number of infections generated in age group j by an

infected individual from age group j is given by βi,jS
j
0/µI . The elements of the

next generation matrix are given by this formula, i.e.

N = (ni,j) =
(βi,jSj

0

µI

)
i,j

=
(β%jci,j

µI

)
i,j

,



AGE SPECIFIC VACCINATION SCHEDULING 129

thus they can be obtained from the elements of the contact matrix.
By standard numerical procedure we find that if β = 0.0334, then the dominant

eigenvalue of N , which is the basic reproduction number R0, equals to 1.4, thus in
the baseline scenario we use this β value.

Note that in this scenario n2,2 > 1, which means that there is a self sustaining
outbreak in the age group of 10-19 years old individuals.

4. Strategies, simulations and results. We simulate, evaluate and compare five
possible strategies for the vaccination schedule. In each of the strategies, vaccine
is administered to about 0.667% of the population daily and a 60% vaccination
coverage is achieved by the end of the campaign in every age groups. Each strategy
determines the piecewise constant vaccination functions V i(t) straightforward. The
overall attack rates and the final size of the epidemic are estimated from taking the
values of the non-infected classes after the pandemic wave, at t = 250.

The case fatality ratio is yet to be determined for many countries, however esti-
mated rates are coming down for industrialised countries to as low as 0.02% (ECDC
2009 [14], Presanis et al. 2009 [38]; meaning that one in five thousand cases has a
fatal outcome). Most recent risk assessments suggest that in European countries the
overall fatality rate may be less or similar to a moderate influenza season. However,
age specific rates are expected to show a very different picture, with higher mor-
tality in younger age-groups. Here we used the recently published data (Donaldson
et al. 2009 [13], Vaillant et. al 2009 [44]), and calculated with the mortality rate
20:12:30:60:80 fatal outcomes per 100 000 cases in the five age groups to compare
the five strategies, but other patterns are also discussed in the sensitivity analysis.

4.1. The five strategies. Here we describe the five strategies we compare. For each
strategy, 60% overall vaccination coverage is reached by the end of the campaign in
the baseline scenario.

A - Conventional strategy

This strategy consists of three phases and we constructed it to resemble the offi-
cial strategy of Hungarian health authorities. Similar strategies have been proposed
for many other countries.

Phase 1 : 42 days, vaccination of high risk groups, elder people, emergency and
health care personnel, workers of critical infrastructure facilities. According to the
age specific breakdown (which is described in Section 3.1), 2000, 16000, 10000 people
are being vaccinated in age groups 0-19, 20-64, 65+, respectively.

Phase 2 : Vaccination campaign in schools for 18 days, 12000 children of age ≤
19 years old.

Phase 3 : In the last 30 days, vaccination is given to the general population such
that we achieve the 60% coverage in each group by the end of this phase.

B - Uniform strategy

This is the universal vaccination strategy, when there are no prioritized age
groups, so we assume that vaccination is completely random and 0.667% of each
age group is vaccinated daily, throughout the 90 days.

C - Elderly first strategy

Phased vaccination of elder people (age ≥ 65 years old) first up to 60 % coverage
before vaccine is delivered to the other part of the population (age ≤ 64 years). This
two-phase strategy is similar to plans usually implemented against seasonal flu.
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Phase 1 : 15 days, 65+ years old
Phase 2 : 75 days, 0-64 years old

D - Children first strategy

Phased vaccination of children (age ≤ 18 years old) first up to 70 % coverage
before vaccine is delivered to adults was studied in Yang et al. 2009 [46]. The only
difference here in the D strategy is that coverage goes up to only 60%, and our
prioritized age group is the 0-19 years old. Specifically:

Phase 1 : 20 days, 0-19 years old
Phase 2 : 70 days 20+ years old

E - By contacts strategy

Here we take advantage of the full contact structure of our five age groups, and
vaccinate them in five phases, according to the decreasing order of their total contact
numbers.

Phase 1 : 10-19 years old, 11 days
Phase 2 : 20-39 years old, 26 days
Phase 3 : 0-9 years old, 10 days
Phase 4 : 40-64 years old, 29 days
Phase 5 : 65+ years old, 15 days

Figure 2. Overall attack rates of the five strategies for various
delays T in starting the vaccination campaign (A - Conventional,
B - Uniform, C - Elderly first, D - Children first, E - By contacts)
for R0 = 1.4. Without vaccination, the attack rate is 42%.

4.2. Main results. We have evaluated and compared the above described five
strategies for various delays in start of the vaccination. Increasing population level
immunity may slow down the spread of infection, reduce the height of the epidemic
peak thus decreasing the pressure on health care facilities, and significantly reduce
morbidity and mortality of pandemic infections. Thus our main outcome measures
are the age specific attack rates and number of fatal cases.
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The overall attack rates are summarized in Figure 2 and Figure 3. We can see
that by means of illness attack rate, the strategy E gives the best result, followed by
D,B,A and C in that order, whenever we start the vaccination campaign. In case
of an early start on day 1, all of the five strategies are effective with attack rates
between 1-4 %. As the delay in start of vaccination increases, the significance of our
choice of strategy becomes more apparent. We can advert the infection of 10 % of
the population by choosing strategy E instead of C if the campaign starts between
days 30 and 45. If vaccination starts on day 50, the attack rates will be between
21-29 %. For the sake of comparison we note that in the absence of a vaccination
campaign, R0 = 1.4 results in an a 42% attack rate.

The delay T in start of vaccination is a crucial factor on the final size of the
pandemics: even for the best strategy, ten days delay can increase the overall attack
rate by up to 6% (see Figure 3).

Figure 3. Overall illness attack rates of the five strategies plotted
versus the delay T (A - Conventional, B - Uniform, C - Elderly
first, D - Children first, E - By contacts) for R0 = 1.4. Without
vaccination, the attack rate is 42%.

Figure 4 shows the attack rates in the five age groups for the five strategies and
also for the case when there is no vaccination at all. Depending on which age group
we want to protect, we can choose different strategies. Since age groups peak at
different times, the delay in start of vaccination may also be a factor in choosing
our strategy: for example for T = 50 the strategy C, which gives priority to the
elder age group, protects them essentially to the same extent as any other strategy
(attack rates slightly over 10%), while there are large differences in the attack rates
for the age groups 0-9 and 10-19 years old. For T = 0 and T = 25 the strategy
E protects the elder better with 0.5% and 3.2% attack rates versus the 1.4% and
5.4% attack rates that correspond to the strategy C among the elder age group,
despite the fact that in the strategy E they are the last to get the vaccine. This
very interesting result may seem counterintuitive, however some similar findings
have already been obtained for preseasonal vaccination in Medlock & Galvani 2009
[27]. Furthermore, the public health implication of this phenomenon is that if the
actual policy is to protect a specific age group, then the best strategy depends also
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on the delay in start of vaccination, therefore authorities must be able to adapt their
strategy as the pandemic evolves. Very high attack rates can be observed among
teenagers for strategies A,B and C.

Figure 4. Age specific attack rates of the five strategies in the
age groups 0-9, 10-19, 20-39, 40-64 and 65+ years old, represented
by the five columns, respectively, for various delays T in start of
the campaign: T = 0 (blue), T = 25 (red) and T = 50 (yellow)
for R0 = 1.4. The colours indicate the increases in the attack
rates for longer delays in start of the campaign. The strategies: A
- Conventional, B - Uniform, C - Elderly first, D - Children first,
E - By contacts, 0 - No vaccination.

The comparison of the strategies by means of mortality is depicted in Figure
5. The relation between the strategies for this outcome measure is similar to the
attack rates: strategy E being the best and C the worst. However, we can observe
a much bigger difference between the best and the worst schedules: the overall
mortality is 50% higher for the strategy C than for the strategy E for a late start
in vaccination, and six times higher for an early start. The reason of this huge
difference is partly that compared to the elderly, the recent H1N1 causes unusually
high mortality among children and young adults, who has the most contacts as well
and prioritized by strategy E. The age specific details can be seen in Figure 6.

The epidemic curves in the five age groups are plotted in Figure 7 for strategies
A and E with T = 25. Notice that age groups peak in different times, and for the
strategy A the teenagers are affected disproportionally by the epidemics.

5. Sensitivity analysis. We performed a systematic analysis to reveal the sensi-
tivity to several key parameters. Our results turned out to be very robust in the
sense that modifying some parameters do not change which strategy is the best if
our outcome measure is the overall attack rate. However, the mortality pattern is
important to select our strategy to minimize the number of fatal cases. Changing
several parameters at the same time, we did not observe any unexpected behaviour.

Basic reproduction number. We consider a less (R0 = 1.2) and a more severe
(R0 = 1.6) situation, Figure 7 shows the dependence of the attack rates on T . In
the milder case, we can observe that for the early start of vaccination for all five
strategies the attack rates are below 1%, the difference between the strategies shows
only for delayed start, attack rates being between 2-4%. Thus a 60% vaccination
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Figure 5. Overall mortality (number of deaths in a population of
100000) of the five strategies (A - Conventional, B - Uniform, C -
Elderly first, D - Children first, E - By contacts) for T = 0, T = 25
and T = 50 days delay in start of the vaccination campaign, using
the mortality pattern of the baseline scenario (sum of the products
of the age specific attack rates, case fatality rates and population
sizes), for R0 = 1.4. The colours indicate the increases in the attack
rates for longer delays in start of the campaign.

coverage is able to prevent a large outbreak even if the campaign starts relatively
late. Note that without vaccination, the attack rate is 22.5%. In the more severe
situation in the case of late start each strategy can mitigate the pandemic only a
little and there is not much difference between the attack rates: about 50% for all
strategies. In the absence of vaccination, the attack rate is 55%, thus in this situation
the vaccination campaigns are not effective. There is a significant difference between
the strategies if we start the campaign early, in this case with strategy E we have
only 5% attack rate, while for the worst strategy C the attack rate is as high as 19%
if T = 0. In the even more severe case R0 = 1.8, for the early start the attack rates
vary between 18 and 36%, strategy E being far the best. However, for the late start
the difference between the strategies mostly vanishes and the attack rates exceed
60%, being very close to the 64% attack rate of the no vaccination case.

Vaccine efficacy. Monitoring the serological responses to influenza vaccines alone
is not sufficient to establish evidence that a vaccine is effective, because there has
been no clear relationship shown between serological response to influenza vaccina-
tion and subsequent morbidity and mortality. Vaccine effectiveness measures with
clinical outcomes may provide better estimate for the evaluation of how much pro-
tection the vaccine may provide, however such estimates are not readily available at
this stage of the vaccination campaign against pandemic influenza. Considering less
effective (qi = 0.7 for i = 1, ...4 and q5 = 0.5), or more effective vaccine (qi = 0.9
for i = 1, ...4 and q5 = 0.7) against infection (see Basta et al. 2008 [6], CDC 2008
[10]) resulted in slightly lower and higher attack rates, respectively, typically by
0.5-1.5%.

Reduction of infectiousness. Different scenarios were considered regarding the
infectiousness of vaccinees. Taking δ = 1 (no reduction in infectiousness) or δ = 0.5
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Figure 6. Epidemic curves (absolute numbers of infections) in
the age groups for strategies A (conventional) and E (by contacts),
when vaccination starts on day 25, in a population of 100 000 in
the baseline scenario (R0 = 1.4).

(more significant reduction in infectiousness) did not change much in the outcomes,
the differences in the attack rates were less than 1%, compared to the baseline
scenario δ = 0.75. Assuming that unsuccessful vaccination shortens the infectious
period by one day in case of infection, i.e. 1/µIV = 2, the attack rates are decreased
by less than 1%.

Intensity of vaccination campaign. For the purposes of this study we assumed
that 60% coverage can be reached in 90 days in the baseline scenario. In the sensitiv-
ity analysis, we compared the strategies A and E with respect to the intensity and
the length of the vaccination campaign, adjusting the phases accordingly. Assuming
that we complete the vaccination of 60% of the population in 120 days (i.e. vaccine
is administered to 0.5% of the population daily), then the attack rates were at most
4% higher for the strategy E, and 6% higher for the strategy A, depending on the
delay in start of the campaign. A less intensive campaign enlarged the differences
between the strategies, which implies that choosing the best strategy is even more
important if the vaccine availability or the capacity of the health care system is
limited.

We found another counterintuitive result regarding the strategy A: vaccinating
60% in 120 days gives a worse outcome than vaccinating 45% in 90 days. The reason
behind this phenomenon is that if we adjust our phases to the given time intervals,
than in the first case the phases will be longer and the most important age groups
in the second phase receive the vaccine in such a delay that outweighs the benefits
of vaccinating more people, and vaccinations after day 90 has very limited effect on
the outcome.

A much less intensive campaign, vaccination of only 30% in 90 days resulted in
drastically higher overall attack rates, up to 12%, depending on the strategy and
the delay in start of the campaign. Strategy E is consistently the best option for a
less intensive campaign, having 5-6% smaller attack rate than strategy A for both
early and late start of the campaign.

For a very intensive campaign, when 80% coverage is reached within 90 days,
the attack rates are lower, for example for strategy E it is 17% for T = 50, 4% for
T = 25 and below 2% for T ≤ 16.
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Figure 7. Overall attack rates plotted versus the delay T in start
of the vaccination campaign for the cases R0 = 1.2 and R0 =
1.6, for the five strategies (A - Conventional, B - Uniform, C -
Elderly first, D - Children first, E - By contacts). In the absence
of vaccination, the attack rate is 22.5% for R0 = 1.2 and 55% for
R0 = 1.6

Mortality patterns. For the sake of comparison, we examined the outcomes of
the strategies for a mortality pattern which is somewhat different from what we
see for A(H1N1)v, namely the 1957 pandemic. Suggested by Serfling et al. 1967
[40], we assumed that the fatality rates for the five age groups per 100 000 cases
have the proportions 0.1:0:0.1:1:4, meaning that mortality is four times higher in
the elderly, than in the age group 40-64 years old etc. We observed that in this
case there is no significant difference in the mortalities between the five strategies,
since the vast majority of fatal cases occurs in the elder age groups, where the five
strategies resulted in similar attack rates.

It is important to notice that in Figure 5 we overestimated the number of fatal
cases for strategy A, since then the high risk groups are vaccinated first in each age
group thus proportionally less high risk people will be infected than in the other
strategies, reducing the mortality. This factor of reduction is hard to determine
(see Fleming & Elliott 2006 [18]), since we need to estimate the fraction of high
risk individuals in each age group, and also their relative risk for a fatal outcome.
Nevertheless, we can see that the ratio of the attack rates for strategy E and strategy
A is 0.3 for the case of an early start, and 0.65 for a late start, thus to fully
compensate the higher attack rate, prioritizing high risk groups in strategy A must
result in a significantly lower mortality.

Time duration to develop immunity after vaccination. Ignoring the time du-
ration 1/µW needed to develop immunity decreased the attack rates significantly,
in some cases by 8% even for the best strategy. This shows the importance of incor-
porating this time period into our model, otherwise the attack rates are seriously
underestimated.
Applicability of the model. To illustrate the applicability of our approach, we
fitted the model to the Hungarian data of the first wave of A(H1N1)v. The epidemic
curve was reconstructed using the public reports of the National Center for Epidemi-
ology (www.oek.hu). For the simulation, we fixed the epidemiological parameters
as in Table 1, employed publicly available vaccination data (www.jarvany.hu) and
performed a grid search with respect to the basic reproduction number and the
reduction of contacts during holidays to find the best fit by means of ordinary least
square method. The result can be seen on Figure 8, where day 1 corresponds to
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Figure 8. Epidemic curve (thin curve with dots) in Hungary (pop-
ulation 10 million) and the fitted model (thick curve), taking into
account the reduced contact numbers during school holidays. Vac-
cinations started on day 29.

September 1 and R0 ≈ 1.3. The immunizations started on day 29, but with very
low intensity first. The intensity increased only in a later phase of the outbreak.
In Hungary, roughly 30% of the population received the vaccine in a three months
period. The decrease in cases after day 50 is due to a one week national school
holiday. Note that we included this very preliminary figure solely for the sake of
illustration, to demonstrate the applicability of our model in a real life situation, a
more comprehensive and thorough epidemiological analysis of the Hungarian data
is in progress, which is beyond the scope of this study.

6. Conclusions. We have extended an established age structured mathematical
population model of influenza transmission, incorporating the interplay between
the vaccination campaign and the dynamics of the outbreak. The model has al-
lowed us to compare various age specific scheduling strategies for the overall attack
rate, age specific attack rates and number of fatal cases. We found that if 60% cover-
age is targeted within each age group, the best scheduling scheme E (i.e. prioritizing
age groups according to the number of social contacts) can reduce the overall at-
tack rate by 5-10 % and mortality by up to 30% relative to the worst strategy,
depending on the delay in start of vaccination. Previous studies suggest that this
can be further optimized by allocating more vaccines to young age groups, however
the scope of our study was to examine the significance of the age specific timing in
the schedule, without changing the overall coverage for the age groups. Our results
clearly demonstrate that consideration of age specific transmission is paramount to
vaccination schedule planning.

Several mathematical models have been developed to evaluate age specific vac-
cination strategies and the impact of timing for influenza outbreaks (Matrajt &
Longini 2010 [26], Medlock et al. 2010 [28], Mylius et al. 2008 [35], Sypsa et al. 2009
[41], Tuite et al. 2010 [43]). They mostly focused on vaccine allocation (for example
in Mylius et al. 2008 [35] and Matrajt & Longini 2010 [26], all vaccines are adminis-
tered at once), while our main purpose was to explore the effect of temporal order of
prioritizations. Generally, recommendations depend on the progress of the epidemic.
Mylius et al. 2008 [35] and Matrajt & Longini 2010 [26] suggested prioritizing high
risk groups if vaccine becomes available in a later phase of the epidemic, while if
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available early, they suggested to protect high-transmission groups. We have consis-
tently found that the attack rates are the lowest when high-transmission groups are
prioritized. However, this is most important when we start the vaccination early.
For a late start and higher reproduction numbers, the differences between attack
rates are much smaller. Thus, if the attack rates are similar, protecting the most
vulnerable first can be a better strategy resulting lower mortality. Medlock et al.
2010 [28] was led to a similar conclusion, hence our findings are in accordance with
previous results in the literature. However, our conclusions can be viewed as a re-
finement of earlier results in the sense that in our model vaccines are administered
continuously, and using our methodology we can easily compare the attack rates
of various scheduling schemes for any delay in start of the campaign and any daily
vaccine uptake. We demonstrated that, besides allocation, the scheduling of age
groups itself can have a huge impact on the outcome of the epidemic, especially
when vaccine is available early and the reproduction number is relatively low.

Since optimizing public health responses to this new pathogen requires difficult
decisions over short timelines, a significant advantage of our approach compared
to some other (stochastic, or agent based network) models in the literature is its
relative simplicity. It can be easily reproduced by other researchers and adapted
to the situations of various countries where the availability of vaccine will be de-
layed, to identify better strategies to mitigate the burden of the pandemic. Also,
such strategies can be translated into a realizable public health policy. Other real
life concerns, such as to protect the most vulnerable by early vaccination of high
risk groups, or vaccinating health care and emergency personnel, and constraints in
vaccine availability or the capacity of the health care system can be readily incor-
porated. Furthermore, the uncertainties involved in the parameters were assessed
through a sensitivity analysis to examine whether such variation results in markedly
different outcomes. The sensitivity analysis showed the robustness of our results.
However, the strategy of public health authorities must be adaptive (see Chowell
et al. 2009 [9] for a Mexican case study), especially when there is a race between
the spread of the infection and the vaccination campaign, and certain parameters
are clarified only during the outbreak. As the mortality pattern becomes clear as
the pandemic progresses, it might be necessary to switch to a different strategy to
minimize the number of fatal cases.

Finally, we wish to emphasize the utmost importance of the early start of the
vaccination campaign: ten days delay may cause a significant, up to 6 % increase in
the overall attack rate.

Acknowledgments. DK was supported by the Hungary-Serbia IPA Cross-border
Co-operation programme, HU-SRB/0901/221/088. GR was supported by the Hun-
garian Research Fund grant OTKA K75517, the Bolyai Research Scholarship of the
Hungarian Academy of Sciences, and the TÁMOP-4.2.2/08/1/2008-0008 program
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