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Abstract. During pandemic influenza, several factors could significantly im-
pact the outcome of vaccination campaigns, including the delay in pandemic

vaccine availability, inadequate protective efficacy, and insufficient number of
vaccines to cover the entire population. Here, we incorporate these factors into

a vaccination model to investigate and compare the effectiveness of the single-

dose and two-dose vaccine strategies. The results show that, if vaccination
starts early enough after the onset of the outbreak, a two-dose strategy can

lead to a greater reduction in the total number of infections. This, however,

requires the second dose of vaccine to confer a substantially higher protection
compared to that induced by the first dose. For a sufficiently long delay in start
of vaccination, the single-dose strategy outperforms the two-dose vaccination

program regardless of its protection efficacy. The findings suggest that the
population-wide benefits of a single-dose strategy could in general be greater

than the two-dose vaccination program, in particular when the second dose

offers marginal increase in the protection induced by the first dose.

1. Introduction. While vaccination remains the most effective strategy against
influenza infection [3, 12], this preventive measure may not be available during the
initial spread of an emerging pandemic virus. However, upon availability, vaccines
could potentially play an important role in disease mitigation. Given the possibility
of genetic variation in the replication of a novel emerging virus, and the inadequacy
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of immune responses in some vaccinated individuals, a single dose of a virus-specific
vaccine may provide limited protection, necessitating a second dose for boosting
immunity to levels required for infection prevention. A second dose of vaccine may
be administered in a 3-4 week time after the first dose [11], and this delay can be
significant in the context of a rapidly spreading disease.

Decision on the most effective vaccination strategies are compounded by many
factors [2, 5, 8], in addition to the likely increase in the protection efficacy induced
by additional vaccine doses. Policymakers would need to take into account the pos-
sibility of inadequate vaccine supply, as well as the timelines for vaccine availability
and distribution to target groups. With the pressures of a rapidly growing outbreak,
and the manufacturing and logistical realities of production and delivery of large
quantities of a new vaccine [6], it is unclear whether vaccines should be administered
in a single-dose program (with possibly lower protection and higher coverage) or
in a two-dose strategy (with likely higher protection and reduced coverage). This
study aims to address this question by developing a mathematical model for the
transmission dynamics of pandemic influenza.

For the purpose of this study, we develop a model to incorporate several param-
eters that affect the outcome of vaccination campaigns, including the number of
vaccines, efficacy of single- and two-dose vaccination, the time at which vaccination
starts during the outbreak, the rate at which vaccines are distributed, the delay
between first and second vaccine doses, and the severity of the disease represented
by the reproduction number of the pandemic virus [11]. These parameters are par-
ticularly relevant to the 2009 pandemic situation caused by the worldwide spread of
an influenza A/H1N1 strain [17], but the results of this study are equally important
and applicable to future emerging infectious disease challenges.

2. The model. To develop the model, we divide a homogeneously mixing popu-
lation into compartments of individuals that are susceptible (S), asymptomatically
infected (A), symptomatically infected (I), vaccinated with a single dose (V1), and
vaccinated with two doses (V2). We assume that the population is entirely im-
munologically näıve to the disease with no pre-existing immunity. In addition to
susceptible individuals, asymptomatically infected individuals (who show no clini-
cal symptoms) may also be vaccinated without gaining benefit from vaccine during
the relatively short course of infection. Vaccination of asymptomatic infection will
reduce the vaccine supply, and we consider this reduction by the factor S/(S + A)
in the constant rate at which susceptibles are vaccinated. The primary vaccination
(first dose) is assumed to start at time Ts, and end at time Te; although the second
dose vaccination will continue after Te if required. We investigate the importance
of Ts, relative to the time for the onset of the outbreak, on the effectiveness of
vaccination policies considered in this study.

Since vaccination may not be 100% effective [11], those who receive vaccines (in
single- or two-dose strategy) remain still susceptible to the disease, but at a reduced
rate of acquiring infection (compared to unvaccinated individuals) corresponding to
the efficacy of the vaccine. Individuals in the V1 class leave the class either by
acquiring infection (moving to I or A), or by receiving their second dose of vaccine
(moving to V2) at a fixed time a∗ after primary vaccination. Individuals in V2 may
still be susceptible to the disease, and leave via infection to I or A. We assume
that vaccinated individuals who become infected are less likely to develop symptoms
(with an increased probability of being asymptomatic) due to the immunological



VACCINATION DURING PANDEMIC OUTBREAKS 115

effects of vaccination [11]. Since we are only concerned with the short time-scale of
a pandemic outbreak, we ignore demographics and the waning of vaccine-induced
protection. Given these assumptions, the model is expressed as the following system
of ordinary differential equations, along with a partial differential equation.

S′ = −fS − V1(t, 0), (1a)

A′ =
(

(1− p)S + (1− p1)δ1V̂1 + (1− p2)δ2V2

)
f − µ

A
A, (1b)

I ′ = (pS + p1δ1V̂1 + p2δ2V2)f − µI, (1c)

V ′2 = V1(t, a∗)− δ2fV2(t), (1d)( ∂
∂t

+
∂

∂a

)
V1(t, a) = −δ1fV1(t, a), 0 ≤ a ≤ a∗ (1e)

with boundary condition

V1(t, 0) =

γS0

( S(t)

S(t) +A(t)

)
, T ≤ t ≤ Te and S > 0

0, otherwise
(2)

and initial conditions S(0) > 0, A(0), I(0) ≥ 0, V1(0, a) = 0 for all 0 ≤ a ≤ a∗ and
V2(0) = 0, and where for notational convenience we have defined

f = β(δ
A
A+ I),

V̂1(t) =

∫ a∗

0

V1(t, a)da.

In this model, S0 is the initial size of the susceptible population; β is the base-
line transmission rate of disease; γ is the rate at which susceptible individuals are
vaccinated per day; p, p1 and p2 are, respectively, the probabilities that suscepti-
ble, primary vaccinated, and secondary vaccinated individuals develop symptoms
upon infection; δ1 and δ2 are, respectively, the reduced transmission factors due to
first and second dose vaccination; δ is the reduced transmissibility of asymptomatic
infection; and µ and µ

A
are the recovery rates of symptomatic and asymptomatic

infection, respectively. We assume that recovered individuals are protected against
re-infection. For the above model, the equation for removed (recovered) individuals
is given by R′ = µ

A
A + µI, which has no influence on other equations and the

dynamics of the system, and we therefore ignore it here. The values of the model
parameter with their respective ranges are given in Table 1.

The equation for V1 in (1e) can be solved using the method of characteristics
along the lines a = s and t = T + s, with s as a new variable. Doing so, V1(t, a) is
explicitly expressed as

V1(t, a) = V1(t− a, 0) exp
(∫ t

t−a
−δ1f(ξ)dξ

)
. (3)

Defining,

ζ(t) =

∫ t

0

δ1f(ξ)dξ,

and substituting into (3), leads to

V1(t, a) = V1(t− a, 0)eζ(t−a)−ζ(t),
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which converts the distributed delay into a discrete one. Defining the new variable

ν(t) =

∫ t

0

V1(s, 0)eζ(s)ds,

the total number of individuals that have been vaccinated with a single dose is given
by

V̂1(t) = e−ζ(t)
(
ν(t)− ν(t− a∗)

)
.

Thus the model (1a)-(1e) can be written in the following form

S′ = −fS − V1(t, 0), (4a)

A′ =
(

(1− p)S + (1− p1)δ1V̂1 + (1− p2)δ2V2

)
f − µ

A
A, (4b)

I ′ = (pS + p1δ1V̂1 + p2δ2V2)f − µI, (4c)

V ′2 = V1(t− a∗, 0)eζ(t−a
∗)−ζ(t) − δ2fV2, (4d)

ζ ′ = δ1f, (4e)

ν′ = V1(t, 0)eζ(t). (4f)

In the absence of vaccination, the model reduces to the system of ordinary dif-
ferential equations S′ = −fS, A′ = (1− p)fS − µ

A
A, and I ′ = pfS − µI. Using a

previously established method [15], we can calculate the basic reproduction number,
R0, of disease transmission for this reduced model, which is defined as the num-
ber of new infections generated by a single infected case introduced into a wholly
susceptible population [4]. This calculation yields the expression

R0 = βS0

( (1− p)δ
A

µ
A

+
p

µ

)
. (5)

2.1. Reproduction number for the limiting model. Suppose that t → ∞.
Then for sufficiently large t, we have V1(t, 0) = V1(t− a∗, 0) = 0. It is easy to show
that the system (4a)-(4f) is well-posed with continuous nonnegative and bounded
state variables, and as a consequence, it follows that∫ Te

T

S(s)

S(s) + I(s)
eζ(s)ds =: K,

with K ∈ R+. Thus, for large t, ν(t) = γS0K, which implies V̂1(t) = 0. Thus, the
system (4a)-(4f) takes the limiting form

S′ = −β(δ
A
A+ I)S, (6a)

A′ = β
(
(1− p)S + (1− p2)δ2V2

)
(δ

A
A+ I)− µ

A
A, (6b)

I ′ = β(pS + p2δ2V2)(δ
A
A+ I)− µI, (6c)

V ′2 = −δ2β(δ
A
A+ I)V2, (6d)

in which the delay has vanished. Note that this system should not be considered as
a de novo system, for which initial conditions should be provided. Indeed, (4a)-(4f)
is a non-autonomous system of ordinary differential equations (in which all the “non
ordinary” terms make up the non autonomous component), which is asymptotically
autonomous with limiting system (6a)-(6d) [14].

The disease free equilibrium in (6a)-(6d) is found by setting A = I = 0. This is
satisfied at any (S∗, V ∗2 ). This equilibrium cannot be expressed explicitly, and its
values depend on the history of system (4a)-(4d) prior to approaching the limiting
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system. However, this equilibrium can be used to formulate the control reproduction
number in the presence of vaccination. To do so, we apply a previous method [15],
and re-write (6b)-(6c) as (

A
I

)′
= F −W,

where

F =

(
β
(
(1− p)S + (1− p2)δ2V2

)
(δ

A
A+ I)

β(pS + p2δ2V2)(δ
A
A+ I)

)
, W =

(
µ

A
A

µI

)
.

Computing the Fréchet derivatives of F and W, and evaluating them at the
disease free equilibrium, gives

F = β

(
(1− p)S∗ + (1− p2)δ2V

∗
2 0

0 pS∗ + p2δ2V
∗
2

)(
δ
A

1
δ
A

1

)
and

W =

(
µ

A
0

0 µ

)
.

A simple calculation yields

FW−1 =

(
(1− p)S∗ + (1− p2)δ2V

∗
2 0

0 pS∗ + p2δ2V
∗
2

)
δ
A

µ
A

1

µ
δ
A

µ
A

1

µ

 ,

with the eigenvalues 0 and

Rc = βS∗
(

(1− p)δ
A

µ
A

+
p

µ

)
+ βδ2V

∗
2

(
(1− p2)δ

A

µ
A

+
p2
µ

)
.

Thus, the control reproduction number of the limiting systems is given by

Rc = R0
S∗

S0
+ βδ2V

∗
2

(
(1− p2)δ

A

µ
A

+
p2
µ

)
.

3. Simulations and results. Using parameter values given in Table 1, we sim-
ulated the model to draw a comparison between the outcome of single-dose and
two-dose vaccination strategies. To test the robustness of our results, we performed
a sensitivity analysis over a range of key model parameters, including the rate at
which vaccines are distributed and the probability of developing symptoms. In
this analysis, using the Latin Hypercube Sampling technique [10], samples of size
n = 100 were generated in which parameters are uniformly distributed and sampled
within their respective ranges. In what follows, we summarize the results of our
simulations and sensitivity analysis.

We assumed that the epidemic is triggered by the introduction of I(0) = 1
infected case in an entirely susceptible population of S0 = 100, 000 individuals.
Early findings for the transmissibility of the novel H1N1 infection provided the
range 1.2 − 1.8 for R0 [7, 13, 18], and we assumed R0 = 1.6 that lies within the
estimated range. This value of R0 = 1.6 seems to be a plausible choice as recent
studies have not significantly changed the early estimated range. For simplicity,
we use σ1 and σ2 to represent the protection efficacy induced by single-dose and
two-dose vaccination, respectively. Figure 1 shows the fractional difference in the
final size of the epidemic (total number of infections) between single-dose and two-
dose vaccination as a function of vaccine-induced protection in each strategy. The
colorbars display the increase in final size of the two-dose vaccine strategy, relative to
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Table 1. Model parameters with their values (ranges) [1, 11]. For
a given value of the basic reproduction number, the transmission
rate β can be obtained by substituting parameter values into the
expression (5).

parameter description value (range)

β baseline transmission rate variable

σ1 efficacy of first dose of vaccine 0.2 (0.1− 0.5)
σ2 efficacy of second dose of vaccine 0.8 (0.5− 0.9)

γ fraction of population vaccinated per day 0.01 (0.01− 0.04)

δ1 level of susceptibility after one dose of vaccine 1− σ1
δ2 level of susceptibility after two doses of vaccine 1− σ2
p probability of developing symptoms without vaccination 0.67 (0.5− 0.75)
p1 probability of developing symptoms after one dose of vaccine pδ1
p2 probability of developing symptoms after two doses of vaccine pδ2
δA relative transmissibility of asymptomatic infection 0.142
µA recovery rate of asymptomatic infection 1/4.1 day−1

µ recovery rate of symptomatic infection 1/4.1 day−1

a∗ time between first and second dose of vaccine 30 days
R0 basic Reproduction number 1.6

that of a single-dose vaccination program. Above the solid curve (positive values in
colorbars), a single-dose vaccination outperforms the two-dose strategy with smaller
final size. This situation is reversed for the region below the solid curve (negative
values in the colorbars). The dashed curve corresponds to the scenario in which
σ2 = 2σ1, and clearly illustrates a single-dose vaccination as the favoured strategy.
These simulations demonstrate that, in addition to the relative efficacy of the second
dose, the time at which vaccination begins is crucial. For a longer delay in start of
vaccination after the onset of the epidemic, a substantially higher σ2 is required for
the two-dose vaccination to outperform, as shown by the increasing gap between
solid and dashed curves in Figure 1. If the vaccination is initiated too late during
the epidemic, a single-dose vaccination leads to a lower final size even when the
second-dose induces full protection. The relative importance of the vaccine-induced
protection (with respect to the time for start of vaccination) is further illustrated in
the sensitivity analysis (Figure 2), which is performed to determine the minimum
value of σ2 that results in a lower final size of epidemic when two-dose vaccination
is implemented (compared to a single-dose strategy), as a function of delay in start
of vaccination.

To compare the vaccination strategies for the peak time and magnitudes of epi-
demics, we simulated the model for the time-courses of infection, with σ1 = 0.2,
σ2 = 0.8, and R0 = 1.6. Assuming a 20% vaccine stockpile (coverage of single-
dose-vaccination), Figure 3 shows that early start of vaccination (at the onset of
epidemic) can decelerate the spread of disease in the population and significantly
reduce the magnitude of the outbreak. This reduction is more pronounced in a
two-dose strategy due to much higher protection efficacy σ2. A longer delay in
start of vaccination (on day 30) results in an earlier peak times in both vaccination
programs, and reduces the effect of two-dose vaccine strategy due to the fact that a
sizable portion of the population has already been infected before the administra-
tion of the second dose of vaccine. These simulations indicate that for longer delay
in vaccine administration (on day 50), a single-dose vaccine strategy outperforms
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Figure 1. Simulations showing the relative difference in final size
of the epidemic between the single-dose and two-dose vaccination
strategies, as a function of σ1 and σ2. The solid curve denotes the
points where both strategies are equally effective at reducing the
final size. The dashed curve corresponds to the scenarios in which
σ2 = 2σ1. Baseline values of the parameters are given in Table 1.
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Figure 2. Sensitivity analysis showing the minimum value of σ2
required for the two-dose vaccination to outperform the single-dose
vaccine strategy, as a function of the delay in start of vaccination.
Solid, dashed, and dotted curves passing through the median values
of boxplots correspond, respectively, to values of σ1 = 0.1, σ1 = 0.2
and σ1 = 0.3. The range of parameter values used for sampling
are: 1% − 4% for the rate at which susceptible individuals are
vaccinated per day; 5% − 40% for the coverage of vaccination in
a single-dose strategy (i.e., the total vaccine stockpile); 0.5 − 0.75
for the probability of developing clinical symptoms; with R0 = 1.6.
Baseline values of other parameters are given in Table 1.

the two-dose program with reduced benefits from both strategies, while there is no
difference between the peak times in the presence or absence of vaccination.
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Figure 3. Time-courses of epidemics with σ1 = 0.2, σ2 = 0.8,
and R0 = 1.6, where vaccination starts on (a) day 0 at the onset
of epidemic; (b) day 30; and (c) day 50 during the epidemic. Solid,
dashed, and dotted curves represent the scenarios of no vaccina-
tion, single-dose vaccination, and two-dose vaccination strategies,
respectively. Baseline values of other parameters are given in Table
1.

4. Discussion. Existing literature on evaluating influenza vaccination strategies
through modelling is mainly concerned with the situation in which vaccination ends
before the onset of the outbreak [2, 16], which is most relevant to seasonal influenza
epidemics. However, in case of pandemic influenza, a strain-specific vaccine cannot
be developed before identification of the pandemic virus. Considering timelines for
vaccine production and distribution, vaccination campaigns will likely start during
the outbreak [9]. In this study, we developed a theoretical framework to investigate
strategies with delay in start of vaccination after the onset of the outbreak.

Our comparison of single-dose and two-dose vaccination programs highlights the
importance of two critical parameters, namely, the time at which vaccination starts,
and the protection efficacy of secondary dose of vaccine compared to that of the
primary dose. When vaccine supply is limited, our results show that if vaccination
begins sufficiently early (within 30 days after the onset of the outbreak), then the
two-dose strategy could potentially lead to a larger reduction in the final size of
the epidemic compared to the single-dose vaccination. This, however, requires a
considerable increase in the protection efficacy induced by the second dose of vaccine
(Figure 2). Further delay in start of vaccination reduces the benefits from both
strategies, and clearly favours the single-dose program with lower magnitude of the
outbreak (Figure 3).

In the scenario of limited supply, the single-dose program appears to have several
advantages over the two-dose strategy. Most conspicuous is that in a single-dose
strategy, twice as many individuals will receive vaccine. Less obvious, but also
important, is the fact that vaccines can be deployed into the community more
quickly in a single-dose strategy. Due to the delay between the administration
of the first and second doses, a supply of vaccine must be held in reserve to be
allocated towards the secondary vaccination, thereby decelerating the rate of vaccine
deployment. Furthermore, a two-dose strategy must contend with the inevitable
drop-out from the vaccination program, whether due to acquiring infection after



VACCINATION DURING PANDEMIC OUTBREAKS 121

receiving the first dose, or simply due to individuals voluntarily forgoing the second
dose. This drop-out leads to waste in the form of unused vaccines at the end of the
epidemic. It may be possible to compensate for this drop-out by allocating larger
vaccine supply for the first dose, but this involves many logistical challenges with
substantial uncertainty for the required vaccine doses.
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