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In their recent paper in this journal Beardmore and Pena-Miller [1] use opti-
mal control theory to determine strategies that maximally delay the emergence
of resistance to antibiotic therapy. Specifically they determine optimal treatment
regimens for two different models from the literature [2, 3] and conclude that ap-
propriate schemes of rotating antibiotic usage select optimally against antibiotic
resistance. Using the same models and parameters we show that this conclusion is
not warranted, and that instead strategies based on optimal mixing, i.e. optimally
dividing the drugs between appropriately sized patient groups, are always at least
as good as optimal cycling, but in most cases considerably better.

In their paper Beardmore and Pena-Miller refer to two optimization problems
to minimize resistance in a patient population treated with two antibiotics A and
B. Problem 1 consists of finding the treatment strategy that minimizes the integral
over the total number of infected individuals based on a population dynamical model
originally formulated in ref [2] and given by eq. 1 in ref [1]. Problem 2 consists of
finding the treatment strategy that minimizes the average prevalence of resistance
in a patient population based on a different population dynamical model originally
formulated in ref [3] and given by eq. 2 in ref [1].

Instead of using a control theoretic approach, we repeat part of Beardmore and
Pena-Miller’s analysis by means of straightforward computer simulations. We focus
here only on strategies that can realistically be implemented in clinical settings and
disregard the more complex non-periodic bang-bang solutions that can only be de-
rived using a control-theoretic approach and rely on the availability of a model that
perfectly describes the patient population dynamics. Moreover, we show here only
results regarding Problem 2, although we have performed the equivalent simulations
also for Problem 1.

To determine the optimal mixing strategy for Problem 2 we scanned through
all values of partitioning drug use in the patient population (i.e. 0.1 < 73 < 04
with step size 0.005 and 72 = 0.5 — 71) and then determined the optimal mixing
strategy as that partitioning which minimizes the average prevalence of resistance
over the time window over which the simulations are run. To find the optimal
periodic cycling regime we determined for each period T = t4 + tp the optimal
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time partitioning of drug usage for by scanning through 0 < t4 < T with steps of
0.01 x T for T'=1,2,5,10,25,50 days. Because the optimal rotation strategy may
not be periodic, we also implemented an adaptive treatment strategy as suggested
by Beardmore and Pefia-Miller (i.e. Rules 1 and 2 in ref. [1] ). This treatment
strategy relies on measurements of the prevalence of resistance in the population
at predefined intervals t.,q;. Treatment is switched to the other drug whenever
resistance against the current drug exceeds that of the other drug. This strategy
was proposed by Beardmore and Pena-Miller as a practically feasible treatment
strategy that is a good approximation to the impracticable optimal non-periodic
rotation regimes found by optimal control theory.

(A) Integration time = 50 days (B) Integration time = 500 days
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FIGURE 1. Optimal mixing (thick solid line) generally performs
at least as well as but often much better than optimal periodic cy-
cling (circles) or adaptive treatment (triangles). The simulations
shown here are based on Problem 2 (for comparison see figs. 2 and
6 in ref. [1]). The optimal treatment strategy is that which mini-
mizes the average prevalence of resistance over the entire time over
which the simulations are run, here referred to as the integration
time. In panel A the integration time is 50 days as in ref. [1]. In
panel B the integration time is 500 days. Comparison of optimal
periodic cycling with optimal mixing shows that the mixing strat-
egy generally outperforms the cycling strategy. Optimal periodic
cycling only marginally outperforms optimal mixing for short cy-
cling periods T and the short integration time of 50 days (panel A).
This marginal benefit is likely attributable to transient dynamics
resulting from the initial conditions as the benefit disappears if the
problem is integrated over longer times (panel B). Similarly, adap-
tive therapy (see main text) only marginally outperforms mixing
if the sampling interval t.,,; is small and the integration time is
short (compare panels A and B). For sampling intervals that could
be used realistically in clinical settings, adaptive therapy performs
considerably worse than optimal periodic cycling or mixing.
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The results of our numerical optimization of Problem 2 are shown in figure 1
and correspond to the results shown in the figures 2 and 6 of ref. [1]. We use the
same set of (asymmetric) parameters and initial conditions as in ref. [1] (specified

as p® and s((f) in ref. [1]). Fig. 1A corresponds to figure 2c in ref. [1] (but is
there mistakenly referred to as problem 1). In panel A we integrated only over 50
time days, where as in panel B we integrated over 500 days to reduce the effects of
transients that result from the particular choice of initial conditions. In all plots the
black line shows the value of the time averaged optimization criterion for optimal
mixing. The circles and triangles give the corresponding value for optimal periodic
mixing and adaptive therapy, respectively.

We see that optimal mixing generally outperforms optimal periodic cycling. Only
for small period lengths 7" and only for the short integration time of 50 days optimal
periodic cycling marginally outperforms optimal mixing (see panel A, and fig 2c in
ref. [1]). However, comparison with panel B shows that this marginal benefit of
optimal periodic cycling disappears for the longer integration time of 500 days and
is therefore likely attributable to transient dynamics resulting from the particular
choice of initial conditions. Notably, in ref. [1] the initial condition for Problem 2
was chosen such that the resistant variant with higher fitness cost was more abun-
dant than that with lower fitness cost at the start of the simulation. Given the
chosen fitness costs, it would have been more natural to assume that the variant
with higher fitness cost would be less abundant at the start of the simulation and
thus the chosen initial conditions presumably amplify the effects of any transient dy-
namics. Adaptive treatment strategies also marginally outperforms optimal mixing
if resistance is measured at high frequency (i.e. tepar < 3 days), but as for optimal
periodic cycling this is only observed if the integration time is short (compare figl A
and 1B and see fig. 6 in ref. [1]).

We have also performed analogous simulations for Problem 1 (data not shown).
Here, we found that optimal mixing always outperforms optimal periodic cycling,
even for the shorter integration time of 50 days. Transient effects may be weaker
for this problem, because the initial conditions for Problem 1 are chosen such that
both resistant variants are absent at the start of the simulation.

Beardmore and Pena-Miller argue that for both Problem 1 and 2 the optimal
treatment strategy is one of non-periodic cycling, which can be determined by op-
timal control theory. Apart from the fact that optimal control theory cannot be
implemented for any real problem of resistance management, because it relies on
complete knowledge of the correct model underlying population dynamics and all its
parameters, it is important to note that these optimal strategies are only marginally
(i.e. < 1%) better than optimal mixing (see figure 3 in ref. [1]). Moreover, it is
conceivable that also this marginal improvement disappears, when integrating over
longer time periods.

We do not contend the mathematical correctness of Beardmore and Penia-Miller’s
analysis, but we are concerned that the reader is led to draw the conclusion that
optimal cycling regimes generally outperform optimal mixing regimes. Resistance
in management in hospitals is a serious problem as antibiotic resistance is costing
many patient lives. Therefore it is important to make clear that within the context
of the models investigated here there is no evidence supporting the conclusion that
any realistically implementable cycling strategy outperforms optimal mixing. The
superiority of optimal cycling regimes in ref. [1] is limited to Problem 2 and may have
resulted from initial transient behavior that does not play a role when integrating
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over longer and more realistic time spans. We emphasize, however, that our as well
as Beardmore and Pena-Miller’s results have been obtained only in the framework
of the two simple models originally published in refs. [2, 3]. In particular, these
models neglect any stochastic effects that likely arise in small patient populations
as are characteristic for hospital wards. More complex and realistic models of the
patient population dynamics may well lead to different conclusions. In our view,
the final word on cycling versus mixing may well not have been spoken yet.
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