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Abstract. Although the generation time of an infectious disease plays a key
role in estimating its transmission potential, the impact of the sampling time
of generation times on the estimation procedure has yet to be clarified. The
present study defines the period and cohort generation times, both of which are
time-inhomogeneous, as a function of the infection time of secondary and pri-
mary cases, respectively. By means of analytical and numerical approaches, it is
shown that the period generation time increases with calendar time, whereas
the cohort generation time decreases as the incidence increases. The initial
growth phase of an epidemic of Asian influenza A (H2N2) in the Netherlands
in 1957 was reanalyzed, and estimates of the basic reproduction number, R0,
from the Lotka-Euler equation were examined. It was found that the sam-
pling time of generation time during the course of the epidemic introduced a
time-effect to the estimate of R0. Other historical data of a primary pneu-
monic plague in Manchuria in 1911 were also examined to help illustrate the
empirical evidence of the period generation time. If the serial intervals, which
eventually determine the generation times, are sampled during the course of an
epidemic, direct application of the sampled generation-time distribution to the
Lotka-Euler equation leads to a biased estimate of R0. An appropriate quan-
tification of the transmission potential requires the estimation of the cohort
generation time during the initial growth phase of an epidemic or adjustment
of the time-effect (e.g., adjustment of the growth rate of the epidemic during
the sampling time) on the period generation time. A similar issue also applies
to the estimation of the effective reproduction number as a function of cal-
endar time. Mathematical properties of the generation time distribution in a
heterogeneously mixing population need to be clarified further.

1. Introduction. Understanding the time intervals between successive generations
of infected individuals is crucial to appropriately quantify the transmission dynam-
ics of infectious diseases. The generation time is defined as the time interval between
infection of a primary case and infection of a secondary case caused by the primary
case [40]. Similarly, the defined interval of the onset event, the serial interval, is the
time interval between onset of a primary case and onset of a secondary case gener-
ated by the primary case [12]. Although it is difficult to directly observe the actual
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time of infection of a non-sexual directly transmitted disease, the serial interval
can be partly observed in practice (e.g., based on contact tracing which indicates
who acquired infection from whom with calendar times of onset among traced cases
[25, 36] or on the time intervals between the onset of the first and of the subsequent
cases in households [3]), which eventually elucidates the generation time [40].

The generation-time distribution is known to play a key role in estimating the
transmission potential of a disease [29, 38, 45] which is measured by the basic repro-
duction number, R0, defined as the average number of secondary cases generated
by a single primary case in a fully susceptible population [8, 9, 10]. From the initial
growth phase of an epidemic, the intrinsic growth rate, r0, i.e., the natural rate of
increase in infected individuals [11], is estimated, and R0 is subsequently estimated
using the Lotka-Euler equation:

1

R0
=

∫

∞

0

exp(−r0σ)g0(σ) dσ (1)

where g0(σ) is the probability density of the generation time of length σ. In many
instances (e.g., see [7, 25, 27, 44]), R0 is inferred by using the estimate of r0 and
by assuming that the generation-time distribution is known, and in addition, by
implicitly ignoring the time-dependency of the generation time [35]. Nevertheless,
the estimation methods of the generation time and its sampling scheme have yet to
be firmly developed, and hence, advantages and disadvantages of the sampling time
of generation time have to be clarified. A similar issue applies to the estimation
of the effective reproduction number as a function of calendar time t, R(t), defined
as the average number of secondary cases per primary case at time t [4, 17]. To
date, several different algorithms have been proposed to transform the epidemic
curve into R(t) using the distribution of either generation time or serial interval
[5, 6, 13, 15, 34, 46, 47], but only a few studies explicitly accounted for the time-
inhomogeneity of the generation time or serial interval [4, 6, 21], and moreover, the
impact of the time-inhomogeneity on the estimation procedure of R(t) has been
only partly clarified [4, 21].

To understand the concept and role of the generation time as a function of
calendar time, the present study aimed to comprehensively discuss the time inho-
mogeneous generation time and to characterize the impact of the sampling time
on the estimation of R0. In the next section, epidemiological definitions of the
generation time and the serial interval are discussed in light of the historical devel-
opment of their concepts. The subsequent three sections are devoted to defining
two different generation times as a function of calendar time, offering practical in-
terpretations with respect to their increase and decrease with calendar time. A
numerical illustration follows in section 6. A reanalysis of historical datasets of
Asian influenza and pneumonic plague in section 7, suggest epidemiologic conse-
quences of the time-inhomogeneity of the generation time on the estimation of R0,
and partly demonstrate empirical evidence of the time variation. A discussion and
future implications follow in section 8.

2. Generation time and serial interval in epidemiology. As briefly men-
tioned in the Introduction, the generation time and the serial interval are distin-
guished by their definitions; although both are concerned with the time-interval
between a primary case and a secondary case directly infected from the primary
case, the generation time represents the interval between their times of infection
and the serial interval refers to the interval between their times of illness onset
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[40]. To the best of the author’s knowledge, this distinction was not explicitly made
when Pickles [37] initially referred to the serial interval as the transmission inter-
val with reference to empirical observations of a hepatitis epidemic in the United
Kingdom. The followers of Pickles, most notably Hope Simpson [18] and Bailey [3],
used the term serial interval and clearly defined it as the interval between succes-
sive illness onsets. The distinction became much clearer only recently, when Fine
[12] reviewed that (i) the transmission interval (i.e., the interval between succes-
sive infections) and (ii) the clinical onset serial interval (i.e., the interval between
successive clinical cases) are different both conceptually and quantitatively. In the
present day, the former is referred to as the generation time, and the latter as the
serial interval.

It is worth mentioning another issue of the epidemiological definition of the gen-
eration time in relation to model building. Anderson and May [2] considered the
generation time as a sum of the latent period (i.e., non-infectious period) and the
infectious period [7]. According to strict arguments by Fine [12], the sum of the
latent and infectious periods is concerned with the course of a single infection (in a
primary case), and thus, is different from the interval between successive infections.
The sum of latent and infectious periods may be identical to the generation time
if the contact frequency and infectiousness (e.g., conditional probability of trans-
mission given a contact) are independent of the time since infection in a primary
case, and this is particularly the case for many models written by ordinary differ-
ential equations [2]. Nevertheless, the infectiousness profile tends to vary during
the course of infection in a primary case (e.g., HIV infection), and the generation
time which strictly reflects the interval between successive infections may well be
shorter than the sum of latent and infectious periods [48]. The generation time in
the present study is derived from a simple class-age structured model, but refers to
the interval between successive infections.

3. Infection-age structured Kermack and McKendrick model. We first
present the system of equations with which we define the time-inhomogeneous gen-
eration times. To appropriately capture the characteristics of time-inhomogeneity,
and also, to reflect the interval between successive infections in the model, we used
an infection-age structured Kermack and McKendrick model [22]. Hereafter, we
refer to the time since infection of an infected individual as the infection-age.
Although a model of Kermack and McKendrick, governed by ordinary differential
equations, may be more widely known than that given by the McKendrick-von-
Foerster equations (i.e., partial differential equations), it should be noted that the
infection-age structured model was actually proposed and investigated in an initial
publication in 1927 [22]. Indeed, the infection-age structured model has been shown
to better capture the detailed intrinsic dynamics [14].

The following assumptions are made throughout this article: (i) the population
is homogeneously mixing, (ii) the epidemic occurs in a fully susceptible population,
(iii) the time scale of the epidemic is assumed to be sufficiently shorter than the aver-
age life expectancy at birth of the host, and the background demographic dynamics
(i.e., natural birth and death) are ignored, (iv) the epidemic occurs in a closed
constant population without immigration and emigration, (v) once an infected in-
dividual recovers, he/she becomes completely immune against further infections,
and (vi) the initial attack size is extremely small as compared with the total popu-
lation size N , so that the number of susceptible individuals at the beginning of an
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epidemic (t = 0), S(0) is sufficiently approximated to N .
Let us denote the numbers of susceptible and recovered individuals at calendar

time t by S(t) and U(t) (we use the notation U(t) for recovered individuals to avoid
any confusion with the effective reproduction number at calendar time t, R(t)). Fur-
thermore, let i(t, τ) be the density of infectious individuals at calendar time t and
infection-age τ . In reality, these numbers have to be discrete (i.e., a positive inte-
ger) as is practiced using the stochastic Markov jump process. Here a deterministic
approximation is made with constant population size N = S(t)+

∫

∞

0
(t, τ)dτ +U(t),

and thus, for example, the approximated proportion susceptible is given by S(t)/N .
The SIR (susceptible-infected-recovered) model is given by

dS(t)

dt
= −λ(t)S(t),

(

∂

∂t
+

∂

∂τ

)

i(t, τ) = −γ(τ)i(t, τ), i(t, 0) = λ(t)S(t), (2)

dU(t)

dt
=

∫

∞

0

γ(τ)i(t, τ)dτ,

where λ(t) is the force of infection at calendar time t which is given by

λ(t) =

∫

∞

0

β(τ)i(t, τ)dτ, (3)

and γ(τ) is the recovery rate at infection-age τ and β(τ) is the effective transmission
rate at infection-age τ . γ(τ) is intended to represent infection-age dependent rate
of ending infectious period, while β(τ) reflects infection-age dependent variations
in contact frequency and transmission probability per contact. In an SIR model
written by ordinary differential equations, both are dealt as constant γ and β. To
ease our interpretation, we integrate (2) as

i(t, τ) =

{

Γ(τ)j(t − τ), for t− τ > 0
Γ(τ)

Γ(τ−t)j0(τ − t), for τ − t > 0
(4)

where

j(t) = i(t, 0),

Γ(τ) = exp

(

−

∫ τ

0

γ(σ)dσ

)

,

and j0(τ) is the density of initially infected individuals at the beginning of an
epidemic. By j0(τ), we intend to represent imported infected individuals (e.g., from
abroad) to the previously fully susceptible population. In the following discussion,
we assume that the contribution of the infection-age of initially infected individuals
to the epidemic is negligible. It should be noted that j(t) is often referred to as
incidence (i.e., the number of newly infected individuals at calendar time t).

We simplify our discussion using a renewal equation of j(t) using the rate of
secondary transmissions at time t and infection-age τ , i.e.,

j(t) =

∫

∞

0

A(t, τ)j(t − τ)dτ (5)

where A(t, τ) is interpreted as the rate of secondary transmissions (or the transient
number of secondary transmissions) per single primary case, at calendar time t,
whose infection-age is τ . The classic mass action principle adopted by Kermack
and McKendrick assumes that the non-linearity of an epidemic is characterized by
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the depletion of susceptible individuals alone (i.e., contact and recovery rates are
independent of calendar time). The assumption indicates that A(t, τ) is decomposed
as

A(t, τ) = S(t)β(τ)Γ(τ), (6)

for the autonomous system (2). The importance of this decomposition was recently
emphasized in relation to the generation time [48]. Since R0 is the average number
of secondary cases caused by a single primary case throughout his/her course of
infection in a fully susceptible population (t → 0), we get

R0 = S(0)

∫

∞

0

β(τ)Γ(τ)dτ. (7)

There are two different effective reproduction numbers as a function of calendar
time t, the notations for which we followed Fraser [13] and Grassly and Fraser
[16]. The first is the instantaneous reproduction number, expressed as the average
number of secondary transmissions occurring at calendar time t, i.e.,

R(t) =

∫

∞

0

A(t, τ)dτ. (8)

The second is the cohort reproduction number, Rc(t), representing the average
number of secondary transmissions caused by those in an infection cohort having
experienced infection at calendar time t.

Rc(t) =

∫

∞

0

A(t+ τ, τ)dτ. (9)

Preceding these definitions in infectious disease epidemiology, both R(t) and Rc(t)
have been explicitly defined as the period and cohort total fertility rates, respec-
tively, in mathematical demography [1]. The difference is highlighted when a specific
event at calendar time t occurs (e.g., a public health intervention starts at calen-
dar time t). Then, R(t) abruptly changes (e.g., declines) with calendar time t, but
Rc(t) smoothly changes, because Rc(t) smoothes out the timing (i.e., infection-age)
of secondary transmissions among a cohort who experienced infection at calendar
time t [33].

4. Period and cohort generation times. As mentioned above, the generation
time distribution in the present study is considered using a model which rests on
the homogeneously mixing assumption. We now follow with the definition of two
generation times, both of which are a function of calendar time t. As we illustrate
in Fig. 1, it is possible to define two generation times at calendar time t during
the course of an epidemic. If we regard calendar time t as the infection time of
secondary cases, the generation time is calculated backward from time t, which we
refer to as the period generation time of length τ , gp(t, τ). The period generation
time is regulated by the incidence prior to calendar time t, because the frequency
distribution of primary cases (i.e., incidence) varies with calendar time. On the
other hand, if the calendar time t is regarded as the infection time of primary cases
(i.e., a cohort of infected individuals born at calendar time t), the forward calcula-
tion applies to the generation time, which we refer to as the cohort generation time
of length σ, gc(t, σ). The number of susceptible individuals declines with calendar
time, which influences the length of the cohort generation time.

Accordingly, the period generation-time distribution reflects the relative fre-
quency of secondary transmissions occurring at calendar time t by the primary
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Figure 1. The concept of the time-inhomogeneous gener-
ation time. Two different generation times are illustrated with
respect to calendar time t. The forward calculation of the genera-
tion time τ , which starts with the infection time of primary cases at
calendar time t, is referred to as the cohort generation time. Future
decline in susceptible individuals with calendar time influences the
length of τ . The backward calculation of the generation time σ,
which considers the infection time of secondary cases at calendar
time t, is referred to as the period generation time. Variation in in-
cidence with calendar time characterizes the frequency of primary
cases at calendar time t− σ and thus, influences the length of σ.

cases at infection-age τ . Since incidence j(t) varies with calendar time, the in-
stantaneous measure of the generation time does not only depend on the rate of
secondary transmission at calendar time t and infection-age τ (i.e., A(t, τ)) but also
incidence j(t− τ), i.e.,

gp(t, τ) =
A(t, τ)j(t − τ)

∫

∞

0 A(t, σ)j(t − σ)dσ
. (10)

On the other hand, the distribution of cohort generation time, gc(t, τ), represents
the relative frequency of secondary transmissions caused by those who were infected
at calendar time t and are at infection-age τ , i.e.,

gc(t, τ) =
A(t+ τ, τ)

∫

∞

0 A(t+ σ, σ)dσ
, (11)

which was computed in a different way in a recent study, for the reconstruction of
a transmission network from an epidemic curve using a stochastic model [21]. Of
course, the mean period and cohort generation times at calendar time t, Tp(t) and
Tc(t), follow equations (10) and (11):

Tp(t) =

∫

∞

0

τgp(t, τ)dτ,

Tc(t) =

∫

∞

0

τgc(t, τ)dτ. (12)
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Equations (10) and (11) also directly offer their interpretations. Equation (10) is
rearranged as

A(t, τ)j(t − τ) = gp(t, τ)j(t). (13)

Both sides indicate the transient number of secondary transmissions occurring at
calendar time t caused by those at infection-age τ . Similarly, equation (11) is
rearranged as

Rc(t)gc(t, τ) = A(t+ τ, τ). (14)

Both sides indicate the absolute number of secondary transmissions per single pri-
mary case at infection-age τ who belongs to a cohort having experienced infection
at calendar time t.

Accordingly, employing a classic assumption of Kermack and McKendrick (i.e.,
equation (6)), the mean period generation time at calendar time t is

Tp(t) =

∫

∞

0
τβ(τ)Γ(τ)j(t − τ)dτ

∫

∞

0 β(σ)Γ(σ)j(t − σ)dσ
, (15)

indicating that the time-effect is caused by an increase (or decrease) in incidence
prior to calendar time t. Similarly, the mean cohort generation time at calendar
time t is,

Tc(t) =

∫

∞

0
τS(t+ τ)β(τ)Γ(τ)dτ

∫

∞

0
S(t+ σ)β(σ)Γ(σ)dσ

, (16)

suggesting that the rate of depletion of susceptible individuals generates the time-
effect. These mean estimates will be used in Sections 6 and 7.

5. Comparison of generation times. Using equation (6), the previously and
frequently used generation-time distribution g0(τ) in the Lotka-Euler equation (1)
(e.g., see [45]), which was implicitly assumed to be independent of calendar time,
is expressed as

g0(τ) =
β(τ)Γ(τ)

∫

∞

0 β(σ)Γ(σ)dσ
. (17)

As an important premise for further discussions, it must be noted that we assume
that the normalization of the rate of infection A(τ) (or alternatively, A(t + τ, τ)
or A(t, τ)j(t − τ) in the case of time-inhomogeneous generation times in equations
(10) and (11)) results in the probability density function of the generation time; the
assumption implies that the infection process A(τ) has a Markov property. Most
likely, this is not the case if the rate A(τ) is decomposed to the product of β(τ) and
Γ(τ), resulting in a need to account for dependency between R0 and g0(τ) [48]. In
the present study, we ignore this issue for simplicity (see Section 8).

Classically, g0(τ) was referred to as the cohort generation time in mathemat-
ical demography [23]. However, it is inappropriate to deem g0(τ) as the cohort
generation time in infectious disease epidemiology, since a depletion of susceptible
individuals and an increase (and decrease) in infected individuals generate the non-
linear dynamics (i.e., dependent happening). Thus, for clarity, g0(τ) is hereafter
referred to as the basic generation time.

The basic generation time, g0(τ), is the special case of both gp(t, τ) and gc(t, τ).
As for gp(t, τ), assuming that the incidence j(t) grows exponentially with an intrin-
sic growth rate r0, i.e., j(t) = k exp(r0t) where k is a constant (so that we have the
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density i(t, τ) = B exp[r0(t− τ)]Γ(τ) where B is a scaling factor), the equation (10)
is rearranged as

gp(t, τ) =
exp(−r0τ)β(τ)Γ(τ)

∫

∞

0
exp(−r0σ)β(σ)Γ(σ)dσ

. (18)

If the SIR model (2) with demographic dynamics (i.e., an SIR system with birth
and death rates of the host) reaches a stationary state (i.e., r = 0), gp(t, τ) is iden-
tical to g0(τ). In addition, from the Lotka-Euler equation (1) and R0 in equation
(7), the denominator of equation (18) is 1/S(0). Thus, Tp(t) with stable growth of
infected individuals is the monotonically decreasing function with calendar time t
for r0 > 0, and thus is shorter than the mean basic generation time. Because of the
reflection of the frequency of mothers’ age distribution at delivery (which is equiv-
alent to infection-age distribution of secondary transmission among primary cases)
at calendar time t, Tp(t) has been referred to as the mean age of childbearing
in the stable population in mathematical demography [23].

The relationship between g0(τ) and gp(t, τ) can be further simplified by applying
our concept to an SIR model given by ordinary differential equations where the
infectious period is exponentially distributed with mean 1/γ. In the SIR model,
β(τ) is constant β and Γ(τ) = exp(−γτ). Thus, g0(τ) in equation (17) should read

g0(τ) =
β exp(−γτ)

∫

∞

0
β exp(−γσ)dσ

= γ exp(−γτ). (19)

Thus, the mean basic generation time (or, equivalently, the mean period generation
time with zero intrinsic growth rate), T0, is 1/γ. For Tp, the mean period generation
time with an exponential growth in incidence, we consider the linearized version in
equation (18), i.e.,

Tp = βS(0)

∫

∞

0

τ exp(−r0τ) exp(−γτ)dτ

=
βS(0)

(r0 + γ)2

(20)

From the Lotka-Euler equation (1) and R0 in equation (7),
∫

∞

0

exp(−r0τ)β exp(−γτ)dτ =
β

r0 + γ
=

1

S(0)
. (21)

Thus, we can simplify equation (20) to

Tp =
1

r0 + γ
(22)

which reasonably confirms that Tp = T0 for r0 = 0 and Tp < T0 for r0 > 0.
The cohort generation time, gc(t, τ), can be related to g0(τ) when we consider

the initial growth phase of an epidemic. Using equation (6), gc(t, τ) is rewritten as

gc(t, τ) =
S(t+ τ)β(τ)Γ(τ)

∫

∞

0 S(t+ σ)β(σ)Γ(σ)dσ
. (23)

As mentioned above, we ignore the contribution of the small number of initially
infected individuals j0 to the infection-age distribution of all infected individuals
for simplicity. Assuming that the length of generation time is sufficiently shorter
than the calendar timescale of an epidemic (so that multiple generations of cases
exist during the early exponential growth phase), and moreover, assuming that the
depletion of susceptible individuals is negligible during the initial growth phase, we
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Figure 2. Time course of an epidemic in a homogeneously
mixing population. (A) Epidemic curve of susceptible, infec-
tious and recovered individuals in a population of 300,000. R0 is
assumed as 2. (B) Instantaneous and cohort reproduction numbers
estimated from the epidemic curve in A. In both panels, the infec-
tious period (i.e., the basic generation time) is assumed to follow
an exponential distribution with a mean of 3 days.

approximate S(t + τ) → S(0) for t → 0. This leads equation (23) to (17), and
thus, the mean basic generation time, T0, might also be deemed the mean initial

cohort generation time. Except for the initial growth phase, it is difficult to make
an explicit analytical comparison, but equations (14) and (17) yield the relationship
between gc(t, τ) and g0(τ), i.e.,

Rc(t)gc(t, τ) = R0
S(t+ τ)

S(0)
g0(τ), (24)

under homogeneously mixing assumption. That is, adopting the classic assumption
of Kermack and McKendrick (i.e., equation (6)), equation (24) suggests that the
absolute number of secondary transmissions per single primary case at infection-age
τ who is in a cohort having experienced infection at calendar time t, is expressed as
the absolute number of secondary transmissions per single primary case at infection-
age τ during the initial phase of an epidemic, weighted by the density of susceptible
individuals at calendar time t + τ . This argument shares a problem in common
with parameterization of the survivorship function of infected individuals with HIV
[20, 24]; i.e., the survivorship data collected with calendar time are right-truncated.

6. Numerical illustrations. Here we numerically illustrate the time inhomoge-
neous generation times using the simplest SIR model (i.e., an SIR model for a ho-
mogeneously mixing population without a latent period and with an exponentially
distributed infectious period) given by

dS(t)

dt
= −βS(t)I(t),

dI(t)

dt
= βS(t)I(t) − γI(t), (25)

dU(t)

dt
= γI(t),
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Figure 3. Time course of the mean period and cohort gen-
eration times. Mean period (A) and cohort generation times (B)
as a function of calendar time are illustrated, assuming R0 as 2, 4
and 6. In both panels, the infectious period (i.e., the basic genera-
tion time) is assumed to follow an exponential distribution with a
mean of 3 days.

where I(t) is the number of infectious individuals at calendar time t. Again it
should be noted that we use U(t) for recovered individuals to avoid any confusion
with the instantaneous reproduction number, R(t). We assumed that one index case
successfully invaded into a new community with a total sizeN of 300,000 individuals.
Except for the index case, all are assumed susceptible to a disease at calendar time
0 and experience homogeneous mixing. The mean infectious period, 1/γ, is 3 days,
which is equivalent to the mean basic generation time. The transmission rate, β,
was calculated as β = R0γ/N where we assumed three different values for R0 of 2,
4 and 6. The instantaneous and cohort reproduction numbers, R(t) and Rc(t), are
computed as

R(t) =

∫

∞

0

βS(t) exp(−γτ)dτ =
βS(t)

γ
=

S(t)

S(0)
R0, (26)

Rc(t) = β

∫

∞

0

S(t+ τ) exp(−γτ)dτ. (27)

Fig. 2A shows the temporal dynamics of an epidemic (S(t), I(t) and U(t)) assuming
R0 = 2. Corresponding to the epidemic curve, Fig. 2B illustrates qualitative
patterns ofR(t) and Rc(t), confirming thatRc(t) declines earlier than R(t) reflecting
future decline in susceptible individuals at calendar time t (i.e., reflecting S(t+ τ)
rather than S(t)).

We further computed the mean period and cohort generation times at calendar
time t, Tp(t) and Tc(t) by

Tp(t) =

∫

∞

0 τ exp(−γτ)j(t− τ)dτ
∫

∞

0 exp(−γσ)j(t− σ)dσ
(28)

and

Tc(t) =

∫

∞

0
τS(t+ τ) exp(−γτ)dτ

∫

∞

0
S(t+ σ) exp(−γσ)dσ

. (29)
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Tp(t) and Tc(t) with different R0 are comparatively shown in Figs. 3A and 3B.
Whereas Tp(t) is an increasing function with calendar time t, Tc(t) is decreased
once during the epidemic and recovers close to the mean estimate of 3 days. The
greater the R0, the longer would be the mean period generation time during the late
phase of an epidemic. Tp(t) exceeds T0 shortly before observing the peak incidence.
On the other hand, the mean cohort generation time is always shorter than the
mean basic generation time, and the magnitude of the decline during the course of
an epidemic corresponds to the value of R0.

Fig. 4A further illustrates the mean period generation time as a function of the
period reproduction number. Here, Tp(t) and R(t) are, respectively, monotonically
increasing and decreasing functions with calendar time t. The non-linear relation-
ship in Fig. 4A is seen, because Tp(t) is an inverse function of the growth rate of
an epidemic at calendar time t (i.e., equation (22)) and R(t) indirectly reflects the
growth rate of infection at calendar time t which is a monotonically decreasing func-
tion. It should be noted that the monotonically increasing Tp(t) is consistent with
numerical illustrations given by Burr and Chowell [4]. Fig. 4B shows contraction
of the mean cohort generation time which coincides with the increase in incidence,
j(t). Although the prevalence, I(t), was previously suggested to coincide with Tc(t)
[21], it is worth noting that the incidence more precisely captures the decline in
Tc(t), because the decrease in future susceptible individuals at calendar time t+ τ
(or the rate of the decline in susceptible individuals) depends on new infection (i.e.,
incidence) at calendar time t+ τ . Therefore, the magnitude of contraction in Tc(t)
reflects the absolute incidence, because there is a competition among an infection
cohort (who were infected at calendar time t, j(t)) in finding the susceptible indi-
viduals at calendar time t+ τ , which becomes harder in the population when j(t) is
greater (and thus, the cohort generation time is shortened by an increase in j(t)).

Figure 4. Properties of the mean period and cohort gen-
eration times. (A) Relationship between the mean period gener-
ation time and the period reproduction number. R0 was assumed
as 2, 4 or 6. The infectious period is assumed to follow an exponen-
tial distribution with a mean of 3 days. (B) Relationship between
the mean cohort generation time and incidence (i.e., the number
of new infections) at calendar time t. The parameter values are
equivalent to those in A.
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7. Estimation of R0. Here we examine two different historical datasets, i.e., epi-
demics of influenza and pneumonic plague. The influenza dataset is the daily num-
ber of deaths during an epidemic of Asian influenza A (H2N2) in the Netherlands in
1957 [28]. From 1 September to 30 November, 1957, a total of 1,230 influenza deaths
were reported (Fig. 5A). Examining the initial growth phase in detail, we assess
the impact of the sampling time of generation time on the estimate of R0 using the
Lotka-Euler equation (1). Fig. 5B compares the observed and predicted values of
the daily number of deaths during the first 18 days. Assuming Poisson-distributed
errors, the intrinsic growth rate, r0, is estimated as 0.131 (95% confidence interval:
0.113, 0.147) per day.

Using the estimate of r0 and assuming that the distribution of the basic
generation-time, g0(τ), is known, the Lotka-Euler equation can yield an estimate
of R0. However, as we discussed in the Introduction, known generation time is in
practice often informed by the serial interval from the contact tracing procedure,
which is performed during the course of an epidemic. Although it is difficult to di-
rectly observe the generation time, G, the serial interval, S, is thus partly observed
from the contact tracing, and moreover, using the incubation periods of primary
cases, Fp, and secondary cases, Fs, the generation time is given by [40]

G = S + Fp − Fs (30)

as long as two conditions are met; i.e., (i) there is no asymptomatic transmission [19]
and (ii) there is no dependency between the incubation period and the generation
time [12, 40]. Although both may not be the case for various directly transmitted
viral diseases, we assume at least for now that the equation (30) is justified. We
now consider the impact of mistakenly regarding gp(t, τ) or gc(t, τ) as g0(τ) in
the estimation of R0 using the Lotka-Euler equation (1). Although unrealistic,
here we assume the simplest case where the Asian influenza epidemic in Fig. 5A
was fully described by the SIR model (25) with 300,000 initially fully susceptible
individuals among whom homogeneous mixing takes place and with an exponentially
distributed infectious period (i.e., the basic generation time) with mean 1/γ = 3
days. Again, we ignore the underlying demographic dynamics. From the Lotka-
Euler equation (1), the unbiased estimate of R0 is thus 1 + r0/γ = 1.39. If the
autonomous system (25) fully captured the dynamics, the final size would have been
50.6% (i.e., 151,867 cases). Furthermore, assuming that 70% of infection resulted
in symptomatic disease [26, 42], this would yield a (perhaps overestimated) case
fatality of 1.16%.

We assume that the generation times are sampled during the middle phase of an
epidemic (i.e., Days 60, 80, 100 and 120), because the prevalence is high in that
stage and contact tracing likely happens then (Fig. 5C). The contact tracing during
the midst of an epidemic tends to fail to identify all the contacts, but we ignore the
issue of incomplete observation and any other relevant epidemiological problems for
simplicity. Days 60 and 80 are before the peak incidence, whereas Days 100 and 120
are shortly after the peak of the epidemic curve. We assume that the serial intervals
(which will determine the generation times) are sampled at these points of time;
although in reality the sampled serial intervals may reflect observation at a certain
interval [t1, t2] (and thus, reflects the generation time in this period weighted by
the sampling frequency with calendar time), we ignore this issue for simplicity. Fig.
5D shows the consequence of the sampling time on the estimate of R0 using the
Lotka-Euler equation. Application of the period generation-time distribution before
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Figure 5. Analysis of the Asian influenza epidemic in the
Netherlands, 1957. (A) The reported number of deaths as a
function of calendar time. In total, 1230 deaths were reported
from 1 September to 30 November [28]. (B) Observed and ex-
pected values of the daily number of deaths during the first 18
days. Assuming Poisson-distributed errors, the intrinsic growth
rate is estimated as 0.131 (95% confidence interval: 0.113, 0.147)
per day. (C) Mean period and cohort generation times, based on
an SIR model, are illustrated as a function of calendar time t. The
infectious period is assumed to follow an exponential distribution
with a mean of 1/γ = 3 days. Using the intrinsic growth rate
r0 = 0.131 per day, the unbiased R0 = 1 + r0/γ = 1.394. We
assume that the generation times are sampled at a point in time,
on Days 60, 80, 100 or 120. (D) Estimates of R0, if the generation
time is sampled at a point in time during the course of an epidemic,
and if the obtained generation-time distribution at calendar time t
is mistakenly applied to the Lotka-Euler equation as if the obser-
vation were the basic generation time. The dashed horizontal line
is the reference line of the unbiased estimate (i.e., R0 = 1.394).

observing the peak incidence (i.e., Days 60 and 80) leads to underestimation of R0,
whereas the use of the distribution after the peak (i.e., Days 100 and 120) results in
the overestimation. On the other hand, if the cohort generation-time distribution
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Figure 6. Serial intervals of primary pneumonic plague in
Manchuria, 1911, as a function of calendar time (n = 88).
Serial intervals are plotted according to the calendar time of onset
of secondary cases. Among a total of 228 cases that were reported
in the politically directly-controlled area of the Japanese Empire,
88 serial intervals were identified by means of contact tracing. The
straight line represents the linear predictor. The density ellipsoid
was computed from the bivariate normal distribution fit to the
serial interval and calendar time. The dataset was extracted from
historical publications [31, 41].

is mistakenly regarded as the basic generation-time distribution, R0 will always be
underestimated. Although the extent of this underestimation is small in Fig. 5D,
this would be more obvious if the incidence is greater (or if the unbiased R0 is
greater than 1.39; see Fig. 4B).

As another example, we sought to validate our findings empirically. Fig. 6
shows the serial interval estimates of individual pairs of cases of primary pneumonic
plague in Manchuria, China in 1910-11 [31, 41]. In total, 88 serial intervals were
observed based on contact tracing among a total of 228 cases developing the disease
in an area under direct political control of the Japanese Empire. In the original
study, the date of illness onset for each confirmed case (i.e., secondary case) was
recorded, and the contact tracing practice (e.g., interviewing any potential contacts
within 1 week preceding the onset of illness through household visits) has indicated
some sources of infection in a backward fashion based on household sharing or
clearly identified contact in the community [31]. Originally, the contact tracing
practice was conducted to estimate the incubation period, because classically the
serial intervals were mistakenly regarded as equivalent to the incubation periods
[30]. Subsequently, the serial intervals were plotted as a function of the onset time
of secondary cases (Fig. 6), which reflects the period generation time if we apply
equation (30). The overall mean serial interval was estimated as 5.66 days (SD
= 3.65). The observed serial interval increased with calendar time t. A linear
predictor suggests that the mean serial interval at calendar time t is 0.135t+ 2.185
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days (coefficient of determinationR2 = 0.20). A density ellipsoid (showing p = 0.95)
suggests a positive correlation between serial interval and epidemic date (correlation
= 0.450, p < 0.01). Therefore, assuming that the historical data correctly recorded
serial intervals, and assuming further that the known samples of serial interval
represent the population estimate, the mean estimate of the serial interval as a
function of onset time of secondary cases is certainly increased with calendar time.
This supports our finding in the mean period generation time which is increased
with calendar time t.

Similarly, it should be noted that the serial interval as a function of the onset
time of the index case, which roughly captures the cohort generation time, was
previously studied in an epidemic of severe acute respiratory syndrome (SARS) in
Singapore (i.e., Fig. 1F in Lipsitch et al. [25]), showing a comparable qualitative
pattern to our Fig. 4B. The above mentioned two different examples (i.e., plague
and SARS) highlight the importance of emphasizing sampling method and its timing
in estimating the generation time.

8. Discussion. The present study examined two different generation times which
were time-inhomogeneous. Unlike the incubation period (i.e., the time from infec-
tion to symptom onset), the generation time is concerned with transmission process
(i.e., is an interval from infection of the primary case to infection of the secondary
cases generated by the primary case), and thus, the interval is not independent of
calendar time and is greatly influenced by underlying transmission dynamics. The
period generation time takes the calendar time t as the infection time of secondary
cases. As the incidence varies prior to calendar time t, and as the growth rate of an
epidemic accordingly changes (declines) with calendar time, the period generation
time is increased with calendar time. On the other hand, the cohort generation time
reflects the frequency of secondary transmissions caused by an infection cohort hav-
ing experienced infection at calendar time t, which was shown to be decreased as
the incidence increased. The reduction of the cohort generation time τ is caused by
greater difficulty in finding a susceptible individual at calendar time t + τ , among
the infection cohort, born at calendar time t. The practical consequence of the
sampling time of the generation times during the course of an epidemic was illus-
trated using the historical data of Asian influenza, where both period and cohort
generation times would yield a biased estimate of R0. In addition, our finding of the
period generation time was supported by empirical evidence of the serial interval
of pneumonic plague as a function of onset time of secondary cases. The increase
in the period generation time was also noted in a stochastic simulation [4], and the
contraction of the cohort generation time was indicated in an empirical observa-
tion of SARS [25] and survival analysis [21]. The present study contributed to an
explicit definition of these two different generation times and comprehensively dis-
cussed their properties, adopting an important assumption of homogeneous mixing.

Two important public health implications are drawn from our exercise, which
are relevant to the estimation of the basic and effective reproduction numbers from
real-time epidemic growth data. First, the generation time is shown to vary greatly
with calendar time which has to be taken into account to improve the sampling
scheme of generation time in epidemiologic observations. The distribution of the
serial interval can be extracted from contact tracing data, but, except for trans-
mission experiments, it is very rare that contact tracing takes place throughout the
duration of an epidemic. Rather, such data are extracted from the middle or late
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stage of the epidemic. If the period generation time is sampled in the late stage of
an epidemic (e.g., after observing the peak incidence), its application to the Lotka-
Euler equation (1) would result in overestimation of R0. Similarly, employing the
cohort generation time would always underestimate R0. Thus, to appropriately
estimate R0 using the Lotka-Euler equation, we have to (i) estimate the basic gen-
eration time (as the cohort generation time) during the initial growth phase or (ii)
make an adjustment of the growth rate of an epidemic, which varies with calen-
dar time t, for the period generation time. The latter adjustment of the period to
the basic generation times might be achieved by using equation (18) (e.g., linear
approximation of an epidemic curve during the period of sampling and an adjust-
ment of period generation time, using the approximate growth rate, might allow
estimation of the basic generation time). Another possible strategy is to estimate
the generation-time distribution without contact tracing data; if R0 is estimated
from the final size, the Lotka-Euler equation (1) with known intrinsic growth rate
can yield g0(σ).

Second, our exercise indicates that the statistical framework of real-time estima-
tion of R(t) or Rc(t) has to be carefully re-assessed, if it is assumed that there is a
known (basic) generation time [32]. For instance, if the distribution of generation-
time is employed to reconstruct the transmission network as performed in SARS
[46], the estimation of the Rc(t) has to account for time-variations in Tc(t) in the
estimator which was successfully addressed using the hazard-based approach in a
recent study [21]. That is, if the estimator of R(t) or Rc(t) (equations (8) and (9))
is based on appropriate understanding of the explicitly structured system (which
captures the reality), the effect of time-variation will be readily included in the es-
timator and, thus, the time-inhomogeneous generation time may not be an issue.
However, if the distribution of the basic generation-time is assumed to be known
(and independent of time), and if the estimation procedure is developed without
reference to the explicitly structured model, the present issue would be of critical
importance. In addition, as an important assumption in the present study, it should
be emphasized that we normalized the rate of infection A(t+ τ, τ) or A(t, τ)j(t− τ)
to yield the probability density function of the time-inhomogeneous generation time.
The normalization may yield the density function, as long as the infection process
has a Markov property. If not, the dependency of the generation time on R0 has to
be explicitly modeled [48], and the correct density function for the time-to-infection
calls for a truncated distribution. The resulting qualitative patterns with respect
to the time-inhomogeneity using a conditional generation-time distribution (given
R0) may not be too different from what were discussed in the present study, but the
need to account for dependency between R0 and the generation time distribution
indicates critical importance to reconsider the relevant estimation frameworks for
R0, R(t) and Rc(t). That is, naive statistical inference of the basic generation-time
distribution may well be unsuccessful based only on a sample distribution of the
serial intervals, as indicated by both the present study on the time-inhomogeneity
and Yan’s study [48] indicating that the generation-time distribution is not inde-
pendently and identically distributed.

A realistic issue that we did not address in this paper is concerned with the ex-
trinsic dynamics (e.g., public health interventions). Since our illustrations and esti-
mations were solely based on an assumption of Kermack and McKendrick (equation
(6)), our exercise of the time-inhomogeneity highlighted the depletion of susceptible
individuals alone (i.e., only the intrinsic dynamics). If the effective contact tracing,
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quarantine and isolation are implemented during the course of an epidemic, the
equation (6) may better read

A(t, τ) = S(t)β(t, τ)Γ(t, τ) (31)

where the reduction in contact frequency with calendar time t, β(t, τ), and early
removal of infectious individuals at calendar time t, Γ(t, τ), may be caused by these
interventions. Earlier secondary transmissions of a primary case as a result of very
stringent contact tracing and isolation may well transiently shorten the period gen-
eration time at calendar time t. Similarly, the cohort generation time may become
much shorter than those we showed in Fig. 4B (especially during the late stage of
epidemic), which is intuitively seen from SARS data at the very end of an outbreak
(i.e., cohort serial intervals in April in Fig. 1F in Lipsitch et al. [25]). The impact
of the extrinsic dynamics on the generation-time distribution could be partly ad-
dressed as more detailed data become available (e.g., for this purpose, we have to
analyze not only the incidence but also the number of susceptible individuals with
calendar time).

Since the clarification of the generation time of infectious diseases is intended to
improve the quantification of the transmission potential and objective interpreta-
tion of the time course of an epidemic, we should accentuate future implications for
improving the relevant estimation frameworks. To appropriately understand the
secondary transmission phenomena, the generation time has to account for vari-
ous heterogeneous patterns in transmission. To allow analytical interpretation, all
the arguments in the present study relied on a homogeneously mixing assumption.
Although we focused only on the time-inhomogeneity of the generation time in a
homogeneously mixing population, the generation time which addresses the hetero-
geneity with respect to age, space and social structure would be useful to offer more
appropriate estimates of R0, R(t) and Rc(t) using similar (but type-structured)
real-time growth data. In particular, the generation time in a multi-layered popu-
lation (e.g., separating household transmissions from those in the community) has
yet to be formally defined. Also, an age-effect on the length of the serial interval
of tuberculosis was previously discussed as a practical matter for making statisti-
cal inference [43] (i.e., tuberculosis infection among children leads to longer serial
intervals than those in adulthood). Although the theory to support the relevant
estimation framework has progressed greatly, we should note that the sampling
scheme of the generation time (e.g., using equation (30)) has not yet been fully
developed. Thus, sampling methods as well as estimation procedures, which can
account for not only time-inhomogeneity, but also heterogeneous mixing, are war-
ranted. Despite these proposed tasks, our study offers some technical measures for
sampling the generation times, and should enhance discussion on the estimation of
the transmission potential from real-time growth data.

During the final stages of revision, it came to our attention that a statistical study
on generation time with similar scopes, using a stochastic modeling approach, has
been published online [39].
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