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ABSTRACT. In this work we consider every individual of a population to be
a server whose state can be either busy (infected) or idle (susceptible). This
server approach allows to consider a general distribution for the duration of
the infectious state, instead of being restricted to exponential distributions.
In order to achieve this we first derive new approximations to quasistation-
ary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS
(Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We
give an expression that relates the basic reproductive number, Ry and the
server utilization, p.
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1. Introduction. Queuing theory deals with the analysis of serving customers
arriving to a facility with a fixed number of servers. Basic queuing models include
the inter-arrival distribution, the number of servers and the distribution of the
service time, once an individual reaches a server. The notation M/G/n is used to
indicate that customers arrive according to a Poisson process, that the service time
once in the server follows a general distribution and that there are n servers. Some
important questions in queuing theory relate to the average time of a customer in
the system, the average time to service, the distribution of the number of customers
in the system and so forth. One important parameter in queuing systems is the
server utilization, which is the long run proportion of time a server is busy. For an
introduction to queuing models see [1].

Epidemic models deal with the dynamics of a population where individuals can
be classified in one of several possible states, each describing some type or level of
illness. The main use of epidemic models is to find out how the different parameters
relate to the progression of the epidemics, and thus, they become a valuable tool
to control disease. One of the most important parameters in epidemic models is
the basic reproduction number or Ry, which is basically a measure of the infection
potential of the disease. If Ry < 1 then the disease will fade out eventually with
probability one, so, Ry becomes an important threhsold parameter.

There is relatively little work relating queuing theory with epidemiology. Kendall
[2] and [3] discusses the relationship between M/G/1 queues and birth- death pro-
cesses. Kitaev [4] works on the relation between birth and death processes and the
M/G/1 queues with processor sharing, and the SIR epidemic model constructions
used in [5] and [6] can be seen as M/G/1 queues with processor sharing. Ball and
Donnelly [7] use M/G/1 theory to find the total cost of the epidemic and most
recently Trapman et al [8] use M/G/1 queues with processor sharing to model an
SIR epidemic with detections. We are not aware of work in which the epidemic
process is considered an M/G/N queuing process implying that every individual is
a server that can be busy (infected) or idle (susceptible). In this work we use this
approach for the SIS model, an we extend the results to an SEIS model.

In closed population stochastic epidemic models, the process reaches an absorbing
state once the population is free of infected individuals. Absorption into this state
will occur eventually, with the time to reach this state depending strongly on
the infection potential p = A\/u, where A and p are the individual contact and
recovery rates respectively, therefore, the process is said to have a degenerate limiting
distribution.

The expected time to extinction generally increases with p (see [9],[10]); thus,
an interesting property of these process is its behavior before going to absorption.
Quasi-stationary distributions provide information on the limiting distribution of
the process conditioning on non-absorption (see [11] and [12]) that is, they allow
to analyze the behavior of the disease while it is in the endemic state. These
distributions are difficult to find, and instead, some approximations were suggested
like the “reflecting state 0” or the “one permanently infected” (see [13]). These
approximations will be explained later.

Although the current approximations to the quasi-stationary distribution of the
number of infectives seem not to have a closed “known” distribution, we show that
a good approximation to the quasi-stationary distribution for the susceptible is
Poisson distributed for a general distribution of the duration of the infectious state.
Since the next natural step is to add a latent period that allows for the latency of
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the infection, we have applied this approach to approximate the quasi-stationary
distribution (bivariate) of an SEIS epidemic model. Quasi-stationary distributions
assume in general that the distribution of the infectious time is exponential. In
this paper all approximations assume a general distribution of the duration of the
infectious period.

Here we derive the distribution of the approximation “one permanently infected”
for SIS and SEIS models [13]. We use the term “conditional endemic distribution”
for this type of distributions in stochastic epidemic models. The paper is organized
as follows: sections 2 and 3 deal with SIS and SEIS models respectively. Section 2.1
introduces the SIS model; Section 2.2 introduce the quasi-stationary distribution
while 2.3 deals with the quasi-stationary distribution for the SIS epidemic model. In
Section 2.4 the case of a general distribution of the duration of the infectious state
is analyzed using standard results from queuing theory. Numerical comparisons of
these results via simulations are presented in Section 2.5 Section 3.1 introduces
the SEIS model. In Section 3.2 it is shown that the quasi-stationary distribution of
the number of infected individuals (latent + infective) can be approximated with
that of an SIS model with appropriate parameters. In this section we also derive
an approximation to the joint quasi-stationary distribution of latent and infective,
and numerical comparisons for the SEIS are presented in Section 3.3.

2. The SIS model.

2.1. Introduction. The susceptible-infected-susceptible (SIS) stochastic epidemic
model attempts to reproduce the behavior of epidemics running through a popula-
tion with no vital dynamics; that is, no births and deaths occur. In this model it is
assumed that no individuals are removed from circulation either by immunization or
isolation. The deterministic version of the SIS model was introduced in [14] and has
been fully analyzed since then. Its stochastic counterpart, also called the stochastic
logistic epidemic model (see [15] and [16]) was introduced early in [17], and has been
applied similarly to study the transmission of rumors (see [18]). However, most of
the relevant results concerning this model have been in the epidemics context.

In the SIS model, susceptible individuals may become infected by contact with
infective individuals, and hence, it is assumed that there is no incubation period
for the disease; that is, infected individuals become infectious immediately. After
some time, they become healthy and susceptible again. The process of contagion is
assumed to be driven by the homogeneous mixing of individuals in the population.

We let I(t) and S(t) be the number of infective and susceptible respectively at
time t, and note that since the population is closed, the state of the process at time
t can be fully described by either I(¢) or S(t). It is customary to follow I(t).

I(t) takes values on 2 = {0,1,2,..., N}, N being the population size. The SIS
stochastic epidemic model is a discrete space, continuous time Markov Chain. In
particular, it is a unidimensional continuous time birth- death process. One way to
dissect the SIS epidemic process by specifying the following two rules:

i) (Homogeneous mixing) Every individual comes into contact with another at
random intervals which are independent and identically distributed random vari-
ables. The distribution of these intervals is exponential with parameter 8. If a
contact involves a susceptible individual and an infectious one, the probability of
infection is 6. That is, 8 is the contact rate and A = 36 is the effective contact rate.

i1) The duration of the infectious state is an exponential random variable with
parameter u, that is, u is the recovery rate.
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From ), all k infective individuals come into close contact with others according
to a Poisson process with parameter 5 k. Since every one of these contacts would
be with a susceptible individual with probability (N — k)/N, and will result in an
infection with probability 6, by thinning the Poisson process, we conclude that for
fixed k, contacts between infective and susceptible individuals that will end up in
a infection of the susceptible occur according to a Poisson process with parameter
Ak(N — k)/N.

Upon defining

Pip(t,t+8)=PI(t+0)=k|I(t) =), J, ke,
the transition probabilities are
Prry1(t,t+3) = MNE(N —k)/N + 0(0)
Py p_1(t,t+9) = udk+o(9). (1)
Here, 0(0) is a function such that lims_,90(d)/d =0

2.2. The quasi-stationary distribution. We are interested in the future of the
SIS epidemic, which depends strongly on the ratio p = A/u, called the transmission
factor, basic reproduction ratio, basic reproduction number or infection potential.
The deterministic model has a threshold at p = 1, and results in an endemic infection
of size N(1 — 1/p) if this value is greater than 1. In the stochastic model, since
{0}, the disease free state is an absorbing state that can be reached with positive
probability from every state, the process will end up in this state for any value of
p given a sufficient amount of time, for any initial number of infected as long as
N is finite. The certainty of extinction imposes a problem if our interest is in the
long-time behavior of the epidemic, conditioning in the process not being in the
absorbing state.

Let

m; = lim w,
t—oo ¢
X;(t) being the time spent in state j up to time ¢, j € Q. Thus, 7; denotes the
proportion of time spent in state j as t — oo. Il is called the stationary distribution
of the process. If p;(t) denotes the probability that the process is in state j at time
t then it is possible to give an alternative representation for
mj = Jim p;(t).

The stationary distribution for the SIS epidemic model is also degenerate, that
is, will eventually be absorbed at state 0, which is true for any finite value of
p. However, when p > 1 it is reasonable to assume that the disease will be in
an endemic state for a while, and any information on the behavior of the process
previous to extinction would be useful in the understanding of the epidemic. This
interest led to the development of the concept of quasi-stationary distributions.

Quasi- stationary distributions (QSD) are limiting distributions conditioning on
the process not being in an absorbing state. If we let

Q = {q1a g2, .-+ qN}
denote the quasi-stationary distribution of the SIS epidemics, then
¢ = lmP(I()=j|1(t)>0}
= lim -2 ®)

t—sool — po(t) ’
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Observe that when p > 1, @ is a conditional endemic state distribution. No simple
expression exists to calculate @, although Nasell (see [19]) proposed a numerical
algorithm for its calculation. Most of the relevant work regarding the calculation
of analytical expressions for the QSD of the SIS model is based on approximation
methods. Two of these approximations were suggested by Kryscio and Lefevre (see
[13]) and analyzed in detail in [19], see also [16]. The common characteristic of
these approximations is that the process is modified in such a way that it lacks the
absorbing state {0} and thus the possibility of degenerate distributions is avoided.
In one approximation the number of infected in the population is at least one, and
it is called the SIS model with one permanently infected individual. In this process
every recovery rate p; = pj is replaced by (j — 1)u, while the infection rates are
unchanged. In the second approximation, the only rate that is changed is pq, which
is replaced by zero. This latter approximation is referred to as the SIS model with
the origin removed or reflecting state approximation model (see [20]).

Andersson et al [10] studied the SIR and SEIR epidemic models with demography
and obtained expressions for the time to extinction starting from the QSD. In their
work, the duration of the infectious state was not restricted to be an exponential
distribution but instead a gamma distribution. Ovaskainen [19] improved previous
approximations for the QSD and the time to extinction for two cases: when N — oo
and when the basic reproduction ratio Ry — co. Nasell [21] gave approximations
for the QSD and the time to extinction for the stochastic version of the Verhulst
epidemic model, depending on Ry being greater, smaller or in the transition region.
For the first two regions, the approximations yielded normal and geometric distri-
butions respectively. Nasell [22] derived approximations to the QSD for SI, SIS SIR
and SEIR epidemic models with demography for N large. For the region Ry > 1,
Nasell concluded that the normal distribution yielded reasonable approximations to
the QSD.

A different approach to obtain the reflecting state approximation model was
suggested in [23] to obtain the time to extinction starting from a general state k.
Stefanov and Wang [24] and Ball and Stefanov [25] derived higher moments for the
time to extinction for the SIS starting from a general state k.

Here we use q§1) to denote the approximation to ¢; when using one permanently
infected individual and q§0) for the reflecting state approximation model.

For the SIS, it has been shown in [13] that when p > 1 and N — oo

m m
STV~ m=1,23..N

j=1 j=1

that is, both approximations converge in distribution (see also [20]). Also, in [19]
it is proved that for p > 1, the distribution of the number of infectives under both
the reflecting state 0 approximation and the one with one permanently infected
individual are approximately normal with mean N(1—1/p) and variance N/p when
N — oo and p is fixed.

2.3. The approximation to the quasi-stationary distribution of the num-
ber of infectives. In the following calculations we derive an approximation for the
QSD of the susceptible individuals. We establish a new result: that the distribu-
tion of the QSD of the number of susceptible can be approximated with a Poisson
random variable when N is large and p is constant.
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Let Q = {qil),qél), ...,qj(\})} be the stationary distribution of the approximation
to the QSD when there is one permanently infected individual. Here p; = pu(j—1)
and \; = A\j(N —j)/N,j =1,2,...,N. It can be shown (see [16]) that the q,(LI)
follow the relationship:

k-1
a" = qﬁl)({;(,]\i) r -k
with p = A/ p.
Now define py = qj(\?)_  as the QSD approximation to the number of susceptible.
Thus
(p/N)N—+1

(V1)

1
o ="
since
N-1
Pk = 1.
k=0

Solving for q§0) yields

p(N/p)Ne N*
N! ’
For p > 1, which is the epidemiological relevant case, when N — oo we have
(N/p)re Nl

pr= g E=0,1,2.3,.. (2)

a Poisson random variable with parameter Np~!. Nasell [19] had already established
that the approximations to the QSD for the infective individuals yielded a normal
distribution with mean N(1 — p~!)and variance N/p for N — oo and p constant.
From (2) we can see that when N — oo using my_x = pg, the approximation to the
QSD for the number of susceptible is a Poisson random variable, which in turn can
be approximated with a normal distribution with mean and variance N/p; hence,
that of the number of infected is normal with mean N(1 —p~!) and variance N/p.

1
4=

2.4. The approximation to the quasi-stationary distribution of the num-
ber of susceptible for non- exponential duration of the illness state: An
application of queuing theory. An SIS epidemic process can also be seen as
a queuing process with state dependent arrival rate. We can think of N servers,
where a busy server corresponds to an infected individual. Individuals are served
at a rate p, and the arrival rate is Aj(IN — j)/N when the number of busy servers is
7. We will use this analogy to derive an approximation to the QSD of the number
of susceptible individuals .

The constant hazard rate characteristic of the exponential distribution makes it
difficult to adapt for most diseases. The idea of assuming that the probability that
a person will be cured in the next s units of time given that she/he has been for ¢
units of time is independent of ¢ is not very realistic. In this section we derive an
approximation to the QSD of SIS models when the illness state is non-exponential.

From queuing theory, (see [26]) the limiting distribution of the number of busy
servers in a system M/G/N, with state dependent arrival rate is given by

k—1 k-1
WkZ%%H)\j, (3)
I
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FIGURE 1. The gamma distributions used for the duration of the
infectious state. « and ( are the shape and scale parameters re-
spectively. All distributions have the same expected value: 2.

where E[S] is the expected value of the service time. Hence, the approximation to
the QSD for the number of busy servers (infectives) depends on the duration of the
service (illness) state only through its first moment. The general expression for the
approximation to the QSD of the number of susceptible becomes

(N/AE[S])
Ph = R (eN/GES) — 1) )

Observe that, for N (AF [S])_1 moderately large, pi can be approximated by a Pois-
son distribution with parameter N(AE[S])~L.

In the equilibria, the rate of new infections equates the recovery rate, thus, in
the equilibria the proportion of the number of infected is (1 — p/A). This can also
be interpreted as the long-run proportion of time an individual is infected. In our
analogy with queuing models, this is the long-run proportion of time a server is
busy or server wutilization. From here, we arrive to an expression that relates the
basic reproductive number in epidemiology, Ry, with p, the server utilization of the
system:

(1-RyY)=p

2.5. Simulations. In this section, we simulate the approximation ‘one perma-
nently infected’ to the SIS epidemic model with N = 50 and p > 1. We assume
a gamma distribution for the duration of the infectious state with three sets of
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5 10 15 20 25 30 35 40 45
Susceptible

FIGURE 2. Simulations of an SIS stochastic model (histogram) and
its Poisson approximation (solid line) with mean N/p. Here N =
50, A =4,a = 10,8 = 20, that is, p = 2. Time = 2000 units. The
simulations for « = 1,8 = 2 and a = 2,8 = 4, yielded the same
plots as expected since they all had the same p.

parameters. Only the distribution of susceptibles is plotted against the approxima-
tion given in (4). Figure 1 shows the gamma distributions used for the duration of
the illness state for a shape parameter o and scale parameter 5. The goal was to
analyze the effect of different distributions for the duration of the infectious state
keeping the average time of the infectious state (and p) constant. As expected from
(4), the three gamma distributions yielded the same distribution and only one is
plotted. Figure 2 shows the time spent in every state in the SIS epidemic model
with a permanent infected individual (histogram) and the Poisson approximation
(solid line).

The simulations were performed in MATLAB. These were implemented as fol-
lows: for each parameter set, a stochastic SIS epidemic was simulated during 2000
units of time, and the time spent in each state during this interval was recorded. If
the epidemic went to extinction before reaching 2000 units of time, it was discarded,
although due to the p used this would not happen very often. The distribution of
the time spent in each state is plotted against the Poisson approximation given by
(4). Tt can be seen in Figure 2 that the approximation is good in every case except
in the right tails, which is due to the time at which the simulations stopped, and
will tend to be more precise when the simulation time is increased. As expected
from (4), the approximation to the QSD is insensitive to higher moments of the
duration of the infectious state.

3. The SEIS model.

3.1. Introduction. A natural generalization of the SIS model is to consider ad-
ditional epidemiological states. Here we consider the possibility that an infective
individual undergoes a latent state before becoming infectious. Thus, individuals
who become infected are not able to transmit the disease for a period of time. Since
infected individuals in the latent state can not transmit the disease or acquire ad-
ditional infection, they play no role in the transmission of the epidemic but rather
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serve as buffers or reservoirs of infection. This model is referred as the SEIS model
or SLIS model.

Quasi-stationary distributions for SEIS models are two-dimensional arrays, m, »,
where ,, , denotes the limiting proportion of time in which there were m latent
and n infective individuals conditioning in the process not being in the absorbing
state. The first effort to analyze the joint QSD of an epidemic model is reported in
[20] with a stochastic version of the Ross malaria model.

It is possible to define a QSD for the total number of infective individuals
where k = m + n. In this section it is shown how the QSD for the total number
of infected in a population in an SEIS model can be derived from that of an SIS
model. From this last result the two-dimensional QSD follows directly.

The state space of the process can be stated in terms of the number of latent
and infective individuals, (E,I) as:

Q={(e,i);e+i<N;eicZ"}

The following diagram shows the transitions between the different epidemiological
states:
ASUN - oy izl S

S

3.2. The quasi-stationary distribution of the SEIS model. Define:
P ikm(t,t+0)=PE{E+0)=kIt+0)=m]|E({) =1I1(t)=7j)

where E(t) and I(t) are random variables that denote the number of latent and
infective individuals at time ¢, respectively. Clearly {k,m},{i,j} € Q. The instan-
taneous transition probabilities are

Pemkr1m(tt+6) = MNm(N —k—m)/N + o(d),
Pk:,m;k:—l,m-i—l (t, t+ 6) = Mlék + 0(5),
Pk,m;k,mfl(tyt“v‘ 6) = u25m+0(6),

while all other events are assumed to occur with probability o(d). In section 3.2.1
an approximation to the QSD of the total number of infected (latent + infective)
is derived. In section 3.2.2 the joint QSD distribution of the number of latent and
infective is analyzed.

3.2.1. The quasi-stationary distribution of the total number of infected in the SELS
model. We introduce the random variable I*(t) = E(t) + I(t) which denotes the
total number of infected individuals at time t. Define also:

bt 8) = i P(I*(4+6) = k| I°(0) = ), jkeQ, (5)

and call p; the k-th element of the QSD of this process. To derive the approxima-
tion to the quasi-stationary distribution, it suffices to start from the instantaneous
transition probabilities when ¢ — coin (5), and considering that j in this expression
isk,k—1ork+ 1.

Now choose an individual at random. From renewal theory (see Ref. [27], pp.
80-86) as t — 0o, the probability that this particular individual is in the infective
state given that he is infected (latent or infective) is

N (T T (6)

Observe that, if at some fixed time ¢ two individuals are not in state S, the proba-
bility that one of them is in state F (or I) is independent of the other being in state
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E (or I) then, conditioning in exactly k infected, the number of infective individuals
follows a Binomial distribution with parameters k and 6;, that is

B\ ,
tlim PI#)=j|I"(t) =k) = ( ,)9}(1 — )k, (7)
bde el ]
Using these results,the instantaneous transition probabilities are
lim P(I*"(t+6) =k+1|I"(t) =k) =
t—o0
k

lim P(infection in(t,t + 0)| E(t) =k —j, I(t) = jJ)P(E{t)=k—j, I(t) = j)

t—o0

7=0
k
; kY pi k=i 4
> AN~ /) ( j)efu 01" + o()
— AGKO(N — k)/N + o(6). (8)
Similarly,
lim P(I(t+0) =k — 1| I (£) = k) =
k

fli{?o P(recovery in(t,t +0)| E(t) =k —j4, I(t) = j)P(Et)=k—j, I(t) = j)
=0

k
= Z 207 (j) 07(1 = 01)" 7 + 0(5)
§=0
= u20k0; + 0(0). (9)

Equations (8) and (9) are formally equivalent to those given in (1) with A 6y and
po Oy replacing A and p respectively. Therefore, an approximation to the QSD of the
total number of susceptible individuals in an SEIS model can be obtained directly
from that of an SIS model (Sec. 2.3), which is given by a Poisson distribution with
parameter N ps/:

(Npz/A)*

k! (eNw2/X —1)
For SEIR (Susceptible- Latent-Infective- Recovered) models, Trapman et al [8] had
found that the sum of the number of infective and latent individuals was the same
as the number of infected individuals in an SIR (Susceptible- Infective- Recovered)
model up to a random time change.

In Section 2.4 we found that the QSD for the number of infective individuals
(busy servers) in an SIS epidemic model depends on the duration of the infectious
period (service time) only through the first moment. Since an SEIS epidemic model
can be seen as a queuing system with two phases on each server, the average service
time is ufl + u;l while the arrival rate is A 6;. Thus, using (4), the parameter of
the Poisson distribution for the number of susceptible becomes

N/(N01E[S]) = N/(Mr[ui " + p3'])-
Using (6), the mean number of infected becomes Npus/A, as expected. Thus, the
joint QSD has its mean at

{E,I} = {N/J,Q(l — 6‘])/)\,N/L29[/)\}.
It is important to observe the resulting lack of dependence of the above result on
higher moments of the duration of the latent and infectious period.

Pk = (10)
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3.2.2. The marginal joint quasi-stationary distribution of the number of latent and
infective individuals in the SELS model. The QSD joint distribution for the num-
ber of latent and infective individuals can be derived from expression (10). When
Nug /A is large the number of susceptible is given approximately by a Poisson dis-
tribution with parameter Nus/A. Under the assumption that Nuo/A is large we
derive an approximation to py, n , the joint QSD for the number of latent and in-
fective individuals respectively.
The joint distribution is defined as
Pm.n = lim P{E(t) =m,I(t) =n},
t—o0

which can be rewritten as
P = tlilgloP{E(t) =m|EQX)+I{t)=m+n}P{ER)+I(t)=m+n}
= tli}rgoP{E(t) =m|I"(t) =m+n}P{I"(t) =m+n}
= Jm P{E(t) = m | I'(t) = m 4 n}px_pn
(

with p}_,,_, given in (10). Using (7) we conclude that

* m+n mpan
pm,n:pN_m_n< m )(1—91) 07 . (11)

The computation of the marginal QSD of the number of latent and infective is
straightforward. Define the marginal QSD’s for the number of latent and infective
by

Qo = tlim P(E(t) =m)

and o
B = Jim P(E(t) = n),
thus
N
e — tgrgo; PE{t)=m|I"(t)=k)P{I*(t)=k)

* Y k mpok—m
= PN-k Z m (1—6r)"07
k=m

and using a similar argument

Nk
so=ri Y (F)a-ontey
k=m

These results are evaluated through simulations in the next section.

3.3. Simulations. In this section, we simulate several SEIS epidemic models with
different values of A, g1 and pe, with N = 100, allowing for one permanently
infected individual. We use an exponential distribution for the duration of the
latent and infectious states. Both observed and theoretical distributions are plotted
for a) the number of susceptible and b) the joint number of infected and latent. A
contour diagram proves to be very useful for comparing the theoretical and observed
joint distributions. For every set of parameters, a simulation of an SEIS epidemic
model was run for 5000 units of time, and the proportion of time spent in each state
was recorded. Again, if the epidemic went to extinction before reaching 5000 units
of time, it was discarded. The approximation to the QSD for the total number
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FIGURE 3. Simulations of a stochastic SEIS epidemic model (his-
togram) and its Poisson approximation with mean N/p (solid line).
For this N = 100, A = 4,1 = 1/2,us = 1,p = 4.Time = 5000
units. Insert shows the contour diagram of the approximation to
the joint QSD (solid line) and its approximation (dotted line).

of susceptible is shown in a histogram with its Poisson approximation. An insert
shows the joint distribution of latent and infected using a contour diagram together
with the approximation (11).

The approximation to the QSD for the total number of susceptible and for the
joint distribution in Figures 3-5 seems very good. In Figure 3 the population size
is N = 100,with A =4, u; = 1/2 and ps = 1. Figure 4 was constructed using the
same population size but with A = 6, 3 = 1 and uy = 1/2, that is, the relationship
between the duration of the latent and infective states is reversed compared to the
previous case. Since the duration of the infected state has been increased as well as
the infection rate A, the joint distribution has moved towards a higher proportion of
infected individuals than in the previous case. Figure 5 uses N = 100, A =6, p1 = 3
and po = 1/2, that is, the duration of the latent state has been reduced compared
to the previous case, which increases the number of infective.

4. Discussion. Here we derived the exact distribution of the approximation “one
permanently infected individual” to the QSD of the number of susceptible in an SIS
model for N — oo keeping N/p constant. We showed the QSD is a Poisson random
variable with parameter N/p. The QSD had a similar distribution than that of the
number of busy servers in an M/G/N queuing process, and thus we showed that
the QSD holds for a general distribution for the duration of the latent state with
finite mean. This is important since while the assumption of Markovian contacts
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units. Insert shows the contour diagram of the approximation to
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may be feasible, assuming that the duration of the infectious or latent states is
exponential may be questionable, due to the memoryless assumption implicit. The
results borrowed from queuing theory allowed for an easy generalization to the SIS
and SEIS models.

It is interesting to notice that while the asymptotic distribution of the QSD
for the number of infected had been found to be Normal distribution, we can see
now that this results as an approximation to the distribution of susceptible, which
is a Poisson distribution. Since Poisson distributions with a large mean can be
approximated with a normal distribution, we can approximate the QSD of the
number of susceptible with a normal distribution, and from here the approximation
for the QSD of the number of infective is also normal.

In approximations to the SIS model that lack of absorbing states, like the one
used here, in which there is always one permanently infected, every individual goes
through susceptible and infected states forever. This implies that even if A < p
the disease will not vanish, thus, (1 — Ry 1) is the proportion of time an individual
spends infected.

Regarding the SEIS epidemic model, suitable good approximations were derived
for both the total number of infected and the joint distribution of the latent and
infected. It was shown that the approximation to the QSD of the SEIS epidemic
model with infection rate A and mean time ;' and p; ! respectively for the number
of individuals in the latent and infected states is the same than that of an SIS
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epidemic model with infection rate A and mean recovery rate f5 L The simulations
show that the approximation is accurate in both SIS and SEIS epidemic models,
as expected from (10) for the number of individuals in the latent or infected state
and from (11) for the joint distribution. Since these are limit distributions, it is
important to run the simulations for a long time in order to obtain an appropriate
sample from the targeted distributions. This can be easily seen in Figures 4 and 5,
that differ only in the parameter 11, but are almost identical. It is a matter of further
study to analyze if epidemic models of the form S— F; — Fy —E3—...— E,—1—S
behave similarly, that is, if they only depend on the infection and recovery rate.

Acknowledgments. This project has been partially supported by grants from the
National Science Foundation (NSF - Grant DMS - 0502349), the National Security
Agency (NSA - Grant H98230- 06-1-0097), the Alfred T. Sloan Foundation and the
Office of the Provost of Arizona State University. We also thank two anonymous
referees for their helpful comments.

REFERENCES

[1] S. Ross, “Introduction to Probability Models,” Academic Press, 2007.
[2] D. Kendall, Some problems in the theory of queues, Journal of the Royal Statistical Society
Series B (Methodological), 13 (1951) 151-185.



QUEUING THEORY AND EPIDEMIC MODELS 823

[3] D. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the
method of the imbedded markov chain, The Annals of Mathematical Statistics, 24 (1953),
338-354.

[4] M. Kitaev, The M/G/1 processor-sharing model: Transient behavior, Queueing Systems, 14
(1993), 239-273.

[5] H. Andersson and T. Britton, “Stochastic Epidemic Models and Their Statistical Analysis,”
Springer Verlag, 2000.

[6] T. Sellke, On the asymptotic distribution of the size of a stochastic epidemic, J. Appl. Probab.,
20 (1983), 390-394.

[7] F. Ball and P. Donnelly, Strong approzimations for epidemic models, Stochastic Processes
and Their Applications, 55 (1995), 1-21.

[8] P. Trapman and M. Bootsma, A useful relationship between epidemiology and queueing the-
ory: The distribution of the number of infectives at the moment of the first detection, Math-
ematical Biosciences, 219 (2009), 15-22.

[9] H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic,
J. Appl. Probab. 35 (1998), 662—-670, http://projecteuclid.org/getRecord?id=euclid.
jap/1032265214.

[10] H. Andersson and T. Britton, Stochastic epidemics in dynamic populations: Quasi-
stationarity and extinction, J. Math. Biol., 41 (2000), 559-580, doi:10.1007/s002850000060.

[11] J. N. Darroch and E. Seneta, On quasi-stationary distributions in absorbing continuous-time
finite Markov chains, J. Appl. Probability, 4 (1967), 192-196.

[12] J. Cavender, Quasi-stationary distributions of birth-and-death processes, Advances in Applied
Probability, 10 (1978), 570-586.

[13] R. J. Kryscio and C. Lefevre, On the extinction of the S-I-S stochastic logistic epidemic, J.
Appl. Probab., 26 (1989), 685-694.

[14] W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemics—iii.
Further studies of the problem of endemicity, Bulletin of Mathematical Biology, 53 (1991),
89-118.

[15] R. H. Norden, On the distribution of the time to extinction in the stochastic logistic population
model, Adv. in Appl. Probab., 14 (1982), 687-708, doi:10.2307/1427019.

[16] I. Nasell, On the quasi-stationary distribution of the stochastic logistic epidemic, Math.
Biosci., 156 (1999), 21-40, epidemiology, cellular automata and evolution (Sofia, 1997),
doi:10.1016/S0025-5564(98) 10059-7.

[17] G. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic
models of an epidemic, Math. Biosci., 11 (1971), 261-265.

(18] D. J. Bartholomew, Continuous time diffusion models with random duration of interest, J.
Mathematical Sociology, 4 (1976), 187-199.

[19] O. Ovaskainen, The quasistationary distribution of the stochastic logistic model, J. Appl.
Probab., 38 (2001), 898-907.

[20] I. Nasell, On the quasi-stationary distribution of the Ross malaria model, Mathematical Bio-
sciences, 107 (1991), 187.

[21] I. Nasell, Eztinction and quasi-stationarity in the Verhulst logistic model, Journal of Theo-
retical Biology, 211 (2001), 11-27.

[22] I. Nasell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19,
doi:10.1016/50025-5564(02)00098-6.

[23] C. Hernandez-Suérez and C. Castillo-Chavez, A basic result on the integral for birth—death
Markov processes, Mathematical Biosciences, 161 (1999), 95-104.

[24] V. T. Stefanov and S. Wang, A note on integrals for birth-death processes, Math. Biosci., 168
(2000), 161-165, doi:10.1016/S0025-5564(00)00046-8.

[25] F. Ball and V. T. Stefanov, Further approaches to computing fundamental characteristics of
birth-death processes, J. Appl. Probab., 38 (2001), 995-1005.

[26] M. VanHoorn, Algorithms and approzimations for queueing systems, CWI Tract No. 8, CWI,
Amsterdam, 1984.

[27] D. Cox, “Renewal Theory,” Monographs on Applied Probability and Statistics, Methuen and
Co., 1962.

Received February 11, 2010; Accepted May 13, 2010.

E-mail address: carlosmh@mac.com


http://www.ams.org/mathscinet-getitem?mr=MR698541&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1659540&return=pdf
http://projecteuclid.org/getRecord?id=euclid.jap/1032265214
http://projecteuclid.org/getRecord?id=euclid.jap/1032265214
http://dx.doi.org/10.1007/s002850000060
http://www.ams.org/mathscinet-getitem?mr=MR0212866&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1025386&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR677552&return=pdf
http://dx.doi.org/10.2307/1427019
http://www.ams.org/mathscinet-getitem?mr=MR1686454&return=pdf
http://dx.doi.org/10.1016/S0025-5564(98)10059-7
http://www.ams.org/mathscinet-getitem?mr=MR0682612&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1876547&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1908734&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00098-6
http://dx.doi.org/10.1016/S0025-5564(00)00046-8
http://www.ams.org/mathscinet-getitem?mr=MR1876554&return=pdf

	1. Introduction
	2. The SIS model
	2.1. Introduction
	2.2. The quasi-stationary distribution
	2.3. The approximation to the quasi-stationary distribution of the number of infectives.
	2.4. The approximation to the quasi-stationary distribution of the number of susceptible for non- exponential duration of the illness state: An application of queuing theory.
	2.5. Simulations.

	3. The SEIS model
	3.1. Introduction.
	3.2. The quasi-stationary distribution of the SEIS model
	3.3. Simulations.

	4. Discussion
	Acknowledgments
	REFERENCES

