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Abstract. Antibiotic resistant organisms (ARO) pose an increasing serious
threat in hospitals. One of the most life threatening ARO is methicillin-
resistant staphylococcus aureus (MRSA). In this paper, we introduced a new
mathematical model which focuses on the evolution of two bacterial strains,
drug-resistant and non-drug resistant, residing within the population of pa-
tients and health care workers in a hospital. The model predicts that as soon
as drug is administered, the average load of the non-resistant bacteria will de-
crease and eventually (after 6 weeks of the model’s simulation) reach a very
low level. However, the average load of drug-resistant bacteria will initially de-
crease, after treatment, but will later bounce back and remain at a high level.
This level can be made lower if larger amount of drug is given or if the contact
between health care workers and patients is reduced.

1. Introduction. Antibiotic resistant organisms (ARO) pose an increasing serious
threat in hospitals. Factors which contribute to the spread of ARO in hospitals are
poor immune system of most patients, close living quarters, and the contact with
health care workers (HCWs) as, for example, in patients with intravenous drip or
catheter. One of the most life threatening ARO is the methicillin-resistant staphy-
lococcus aureus (MRSA). Indeed, MRSA is increasing in hospitals world wide to
alarming levels [3, 11, 12] and [14]. There have been a number of mathemati-
cal models that focused on the transmission dynamics of resistant bacteria, using
population-level approaches such as differential equation models or individual- based
models [1, 2, 5, 7, 9, 13, 16, 20, 21] and [22].
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Another series of papers [6, 8, 10, 22] and [23] addressed the major role played
by HCWs in the transmission of resistant bacteria from one patient to another. In
the study by D’Agata et al. (2007) an individual based model (IBM) was developed
to describe the transmission of the bacterial disease by means of HCWs. Each visit
of a patient by a HCW results in contamination of either the HCW by the patient
or the patient by the HCW. During each shift, the length of each visit by the HCW
and the sequence of the visited patients are stochastic events. Simulations of the
model suggest that early initiation of treatment reduces the non-resistant bacterial
load.

Another approach developed by D’Agata et al. (2007, 2008) and Webb et al.
(2005) is based on a dynamical equations model (DEM). The population of pa-
tients is divided into compartments: colonized, uncolonized, contaminated, uncon-
taminated, with the drug-resistant, or non-drug resistant bacteria. The proportion
of the population in each compartment is considered as a variable, xi. A system
of differential equations for the xi is then introduced to describe bacterial trans-
mission among the various compartments and to explore optimal strategies of drug
treatment.

In the present paper we develop a mathematical model for the evolution of the
bacterial strains within population of patients in a hospital. Our aim is to provide a
framework for a generic situation where non-drug resistance strain may mutate into
drug resistant strain as a result of drug treatment. As in some of the work cited
above the bacterial infection may spread by contact between patients and HCWs.
We assume that patients bacterial load can be monitored and, when it exceeds a
threshold TH , drug is administered at strength (or amount) σ for time duration T ∗.
We wish to determine the best dosing strategy, that is, the values of TH , σ and T ∗

under which the average increase of bacterial load of the drug-resistant strain is the
smallest.

Our model is based on the simplest possible assumptions. Thus, we assume
that during the six weeks of the simulations time of the model patients do not
enter or leave the hospital. We also make simple assumptions on the immune
response of the patients to the bacterial infection, on the rate of mutation from
non-resistant strain to drug-resistant strain, and on the HCWs-patients infection
rate. Subsequent work should include long term carriage of bacteria by HCWs, the
difference between various HCW sterilization methods, and the ratio of HCWs to
patients. Many of the parameters used in the model are not known experimentally
at this time. Nevertheless we believe that the present simple model can serve as
a starting point for deeper investigations of the various factors that are associated
with drug-resistant bacterial growth in a hospital.

2. Method: The dynamics of bacteria. We consider two bacterial strains:
non-drug resistant bacteria b1 and drug-resistant bacteria b2. We assume that each
patient carries bacterial strains of some load (b1, b2). Denote by P (t, b1, b2) the
number density of patients with bacterial load (b1, b2), that is, number of patients at
time t with bacterial load between (b1, b2) and (b1+∆b1, b2+∆b2) is approximately
P (t, b1, b2)∆b1∆b2, provided ∆b1 and ∆b2 are small numbers. Similarly, the number
density of HCWs with bacterial load (b̄1, b̄2) is denoted byH(t, b̄1, b̄2). We introduce
the dynamics of the bacteria in a patient and in a HCW respectively, by

dbi
dt

= Ai(t, b1, b2, H) ,
db̄i
dt

= Bi(t, b̄1, b̄2, P ), (i = 1, 2). (1)
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The function Ai depends on the natural growth of bi, the bacterial transmission
from H which contributes to an increase of bi, the response of the immune system
of patients to bi, the effect of drug treatment, and the mutation rate from non-drug
resistant bacteria to the drug-resistant bacteria. The function Bi depends on the
growth of b̄i and on the bacterial transmission from P . We assume that HCWs
undergo sterilization by the end of each shift, and therefore we do not include
infection, drug treatment and immune response in the dynamics of the HCWs.

2.1. Dynamics of the bacteria within the patients. We make the following
assumptions:

(i) Patients initially in the hospital remain in the hospital during the period of
the simulations of the model, and no new patients are admitted.

(ii) The HCWs change every shift, where 1 shift = 8 hours.
(iii) A patient becomes infective if max(b1, b2) exceeds a threshold TH and, when

this occurs, a drug is administered for time duration T ∗.
(iv) During a visit, if the HCW has higher load of bacteria, the visited patient will

be contaminated by the bacteria carried by the HCW. More precisely, when
HCWs with bacterial load (a1, a2) visit patients with bacterial load (b1, b2)
and ai > bi for i=1 or i=2, then the patients bacterial load bi will increase
proportionally to ai − bi; hence the total increase rate resulting from such
visits is proportional to

∫

H(t, a)(ai − bi)
+dai.

Similarly, if the patient has higher bacterial load, then the HCW will be con-
taminated by the patient according to a similar formula.

(v) The non-resistant and the resistant bacteria grow at rates λ1 and λ2 respec-
tively, where λ1 > λ2 [8].

(vi) The immune system of the patients acts to reduce the bacterial population.
(vii) The drug kill rate for the non-resistant bacteria, σ1, is larger than the drug

kill rate, σ2, for drug-resistant bacteria [15].
(viii) As result of drug treatment, the non-resistant bacteria mutates into a drug-

resistant bacteria at constant rate θ; we neglect mutation in the reverse direc-
tion.

Based on the above assumptions, the dynamics of the bacteria in the patients is
described by equations (2) and (3):

db1
dt

= λ1b1
︸︷︷︸

growth

− νM1(t, b)b1
︸ ︷︷ ︸

immune response

− σ1(t)b1
︸ ︷︷ ︸

drug response

− µ(t)b1
︸ ︷︷ ︸

mutation

+ η1

∫

Ω

H(t, a)(a1 − b1)
+da

︸ ︷︷ ︸

infection of patients by HCWs

,

(2)

db2
dt

= λ2b2
︸︷︷︸

growth

− νM2(t, b)b2
︸ ︷︷ ︸

immune response

− σ2(t)b2
︸ ︷︷ ︸

drug response

+ µ(t)b1
︸ ︷︷ ︸

mutation

+ η2

∫

Ω

H(t, a)(a2 − b2)
+da

︸ ︷︷ ︸

infection of patients by HCWs

,

(3)

where b = (b1, b2) varies in a domain Ω.
The immune response, the drug response and the mutation, as well as the dy-

namic of the patients and of the HCWs will be described below.
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We introduce two important quantities: the threshold TH at which the drug is
administered, and the time duration T ∗ of drug treatment.

In our model, only the relative values of b1, b2 and TH are relevant since the

variables bi and TH can be rescaled by bi →
bi
ζ
, TH →

TH

ζ
for any parameter ζ. We

shall then assume, for simplicity, that Ω = {(b1, b2); 0 < b1 < 1, 0 < b2 < 1}, the
initial bacterial loads of (b1, b2) in patients and HCWs are in the region 5b1+10b2 <
1, and that the range of TH varies between 0.2 and 0.8. As will be shown, the bi
will remain smaller than 1 during the simulation period (6 weeks).

2.2. Immune response. The immune response is represented by dimensionless
quantities M1 (for b1) and M2 (for b2). The dynamics of the immune system re-
sponse is given by [15]:

dM1

dt
= γ1

b1M1

κ+ b1
(1−M1), (4)

dM2

dt
= γ2

b2M2

κ+ b2
(1−M2)−

αb2
κ+ b2

M2, (5)

with initial conditions:

Mi(0, b) = 0.1 in b ∈ Ω, (6)

for all i = 1, 2.
From (5)-(6) it follows that 0 6 Mi(t, b) 6 1 and Mi(t, b) = 0.1 if t > 0, bi = 0. The

term −
αb2M2

κ+ b2
represents a decrease of the immune response to the drug resistant

bacteria.

2.3. Drug treatment. The HCWs work in shifts of 8 hours. At the end of each
shift, the HCWs undergo sterilization and become uninfected. We divide the time
t into shifts of 8 hours, t0 = 0 < t1 < t2 < · · · < tm < · · · where tm = 8m hours.
Set

ρm =
1

tm − tm−1

∫ tm

tm−1

(|b| − TH)+dt,

where |b| = max(b1, b2). ρm represents the average of the difference between the
bacteria b in the patient and the threshold TH in the time interval between tm−1

and tm, that is the shift m.
Suppose ρm = 0 for m = 1, 2, · · · , n− 1 and ρn > 0.

Since TH is the bacterial threshold at which drug is administered, treatment should
start as soon as the average of the difference between the bacteria b in the patient
and the threshold TH is positive ρn > 0, that is drug treatment is administered
at time tn. However, since the measurement of TH is not precise, thereafter the
average of the difference between the bacteria b in the patient and the threshold
TH ; ρn, is not precise too, some doctors may decide not start the treatment if ρn is
quite small.

To model this fact, we assume that all doctors will prescribe medication to the
patient at time tn if the average of the difference between the bacteria b in the
patient and the threshold TH is bigger than 10% of the threshold TH in the shift

n; ρn > 0.1TH. But only a fraction
10

TH

ρn of the doctors will prescribe medication

to the patient at time tn if the average of the difference between the bacteria b in
the patient and the threshold TH is less than 10% of the threshold TH in the shift
n; ρn < 0.1TH .
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We represent the probability in which the doctor gives the drug treatment to the
patient by the quantity

h1(ρn) =







10

TH

ρn if ρn < 0.1TH ,

1 if ρn > 0.1TH ,

and we take the drug treatment administered to the patient by the doctor to be the
quantity

σi(t) = h1(ρn)1(tn,tn+T∗)σi, (i = 1, 2)

where 1(α,β) = 1 if α < t < β and = 0 otherwise.
If ρn > 0.1TH , then the total amount of drug (σ1, σ2) is delivered to the patient
during the period (tn, tn + T ∗), and no additional drug will be given.
If however ρn < 0.1TH, then with probability h1(ρn) the patient began to receive
drug at t = tn. Additional probability of beginning drug treatment will occur at a
later time tk if:

ρl = 0 if n < l < k,

ρk > 0.

Again, because the decision of the doctor on initiation the drug treatment at time
tk, depends on imprecise reading of TH , the probability of starting drug treatment
at time tk is

h2(ρk) =

{

h1(ρk) if h1(ρn) + h1(ρk) 6 1,

1− h1(ρn) if h1(ρn) + h1(ρk) > 1,

and the duration of the treatment is again T ∗. Hence, if h1(ρn) + h1(ρk) = 1, then
the total drug treatment is expressed by

σi(t) = [h1(ρn)1(tn,tn+T∗) + h2(ρk)1(tk,tk+T∗)]σi, (i = 1, 2).

If however h1(ρn)+h1(ρk) < 1, then additional probabilities of drug treatment may
occur at later times according to the same principle as above, but the total amount
of drug never exceeds (σ1, σ2) for the duration of T ∗.

2.4. Mutation of the bacteria. We assume that at the end of the first drug-
treatment, a mutation from b1 to b2 will occur at rate θh1(ρn)b1. This means that
b1 will decrease by θh1(ρn)b1 and b2 will increase by the same amount:

b1(tn + T ∗ + 0) = b1(tn + T ∗ − 0)(1− θh1(ρn)),

b2(tn + T ∗ + 0) = b2(tn + T ∗ − 0) + θh1(ρn)b1(tn + T ∗ − 0),

where θ is a parameter, 0 < θ < 1; for simplicity we assume that θ does not depend
on σ1.

Similar jumps will occur at the end of the second drug treatment, that is, at
t = tk + T ∗, etc. We can express these jumps by the functions −µ(t)b1 in (2) and
+µ(t)b1 in (3) where

µ(t) =δtn+T∗(t)θ[h1(ρn)1(tn,tn+T∗) + h2(ρk)1(tk,tk+T∗) + · · · ],

and δ is the Dirac function.
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2.5. The dynamic of the bacteria within HCWs. Denote by b̄1 and b̄2 the non-
resistant and the resistant bacteria, respectively, carried by the HCWs. Equations
(7) and (8) describe their dynamics:

db̄1
dt

= λ1b̄1
︸︷︷︸

growth

+ η1

∫

Ω

P (t, a)(a1 − b̄1)
+da

︸ ︷︷ ︸

contamination of HCWs by patients

,
(7)

db̄2
dt

= λ2b̄2
︸︷︷︸

growth

+ η2

∫

Ω

P (t, a)(a2 − b̄2)
+da

︸ ︷︷ ︸

contamination of HCWs by patients

,
(8)

Since HCWs undergo sterilization by the end of their shift, they do not become
infected.

2.6. Parameters values. The parameters values of the model are given in the
Table 1. Because of the lack of experimental results, most of the parameters in the
model equations are not known, and are arbitrarily chosen; we refer to them by TW
(“this work”).

We proceed to explain the choice of some of the parameters.
Since b2 is drug-resistant, the drug kill rate σ2 for the resistant bacteria is taken
to be smaller than the drug kill rate σ1 for the non-resistant bacteria. Similarly,
we take the immune response growth rate for drug-resistant bacteria, γ2, to be
smaller than the immune response growth rate,γ1, for non-resistant bacteria. We
also included additional deterioration rate of the immune response to b2 in the term

−
αb2M2

κ+ b2
. We assume that in the contact between patients and HCWs, the drug-

resistant bacteria is transmitted more easily than the non-resistant bacteria, that
is, η2 > η1. However, the simulation results will not change qualitatively if η1 is
chosen to be larger than η2.

The immune response plays an important role in fighting the bacteria, especially
the non-resistant strain. For example, if we ignore the contamination between
patients and HCWs, then even with full continuous administration of the drug, in
order to decrease the bacterial load b1, M1 must be such that

λ1 − σ1 − νM1(t, b) < 0,

that is

M1(t, b) >
λ1 − σ1

ν
=

2.77− σ1

3
.
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Symbol Interpretation Value Reference

growth rate 2.77 /shift
λ1

of non-resistant bacteria
[8]

growth rate 0.92 /shift
λ2

of resistant bacteria
[8]

ν immune response rate 3 /shift TW

drug kill rate 1.7 6 σ1 6 2.2 / shift
σ1

of non-resistant bacteria
TW

drug kill rate 0.28 /shift
σ2

of resistant bacteria
TW

non-resistant bacteria 10−4 /shift [1], [8], TWη1
exchange rate

resistant bacteria 1.5× 10−4 /shift [1], [8], TWη2
exchange rate

γ1 immune response growth rate 0.7 /shift TW

γ2 immune response growth rate 0.5 /shift TW

immune response 1
κ

’pseudo carrying capacity’
TW

θ mutation rate 1/12 TW

degradation rate of the immune 0.1 /shift
α

response by the resistant bacteria
TW

Table 1. Parameters of the model

3. Method: The dynamics of patients and HCWs. Recall that patients do
not enter or leave the hospital during the time period considered in the model. The
dynamics of the patients is then described by the conservation law

∂P

∂t
+ div(P ~A) = 0, (9)

where ~A = (A1, A2) and the Ai =
dbi
dt

are given by the right hand sides of (2), (3).

Similarly, the HCW dynamics is described by the conservation law

∂H

∂t
+ div(H ~B) = 0, (10)

where ~B = (B1, B2) and the Bi =
db̄i
dt

are given by the right hand side of (7), (8).

We take the initial bacterial load of the patients to be a positive constant in the
region {b1 > 0, b2 > 0, 5b1 + 10b2 < 1} and zero elsewhere, and normalize it so
that

∫
P (0, b)db = 1. Hence

P (0, b) ≡ P0(b) =

{

100 if 5b1 + 10b2 < 1,

0 elsewhere in Ω.
(11)

Similarly, we take the initial bacterial load for the HCW to be a constant in the
smaller region {b̄1 > 0, b̄2 > 0, 20b̄1+20b̄2 < 1} and zero elsewhere, and normalize
it so that

∫
H(0, b̄)db̄ = 1

4 (assuming that there are 4 patients per one HCW [8]).
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Hence

H(0, b̄) ≡ H0(b̄) =

{

200 if 20b̄1 + 20b̄2 < 1,

0 elsewhere in Ω.
(12)

Furthermore, at the beginning of each shift t = tn we take

H(tn, b̄) = H0(b̄). (13)

Since Mi(0, b) = 0.1 if bi = 0 and (by Table 1)

λ1 − σ1 − 0.1ν > 0, λ2 − σ2 − 0.1ν > 0, (14)

we have

A1(t, 0, b2) > 0, A2(t, b1, 0) > 0. (15)

Also, as mentioned earlier, the bacterial load bi (under the initial condition (11)) will
not exceed 1 for the duration of the simulation. Consequently, the characteristic

curves
dbi
dt

= Ai initiating in Ω do not exit Ω. We therefore do not prescribe

boundary conditions for P . Then, for all t > 0, P (t, b) is also supported in Ω and,
by integrating (9) over Ω, we obtain

∫

Ω

P (t, b)db =

∫

Ω

P (0, b)db = 1, (16)

for any t > 0.

Similarly, the characteristic curves
db̄i
dt

= Bi initiating in Ω do not exit Ω, H(t, b̄)

is supported in Ω, and
∫

Ω

H(t, b̄)db̄ =

∫

Ω

H(0, b̄)db̄ =
1

4
, (17)

for all t > 0.

4. Results. We are interested to determine the effect of the drug treatment on the
growth of the bacteria, especially the drug-resistant bacteria. We measure the load
of the drug-resistant bacteria by the first b2-moment of P :

Q2(t) = Q2(t, σ, TH , T ∗) =

∫

b2P (t, b1, b2)db1db2, (18)

where σ = (σ1, σ2). In view of (16), Q2(t) is also the average value of b2 taken over
the entire patients population.
Similarly, we define

Q1(t) = Q1(t, σ, TH , T ∗) =

∫

b1P (t, b1, b2)db1db2, (19)

as average of b1 taken over the entire patients population. We wish to evaluate
Q1(t) and Q2(t) for different values of σ, TH and T ∗.
Since b2 is drug-resistance, we fix σ2, say at σ2 = 0.28, and vary σ1 from low level
σ1 = 1.7, to intermediate level σ1 = 2.0, to high level σ1 = 2.2. We choose, for TH ,
the values 0.2, 0.4, 0.6 and 0.8 and take T ∗ = 1 week or T ∗ = 2 weeks.

We solve the six ordinary differential equations, (2)-(5) and (7), (8), using the
fourth-order Runge-Kutta method and the partial differential equations (9), (10)
using the Lax-Friedrichs method [17] and [18].
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The integrals in (2), (3), (7), (8) and (18)-(19) are computed by the trapezoidal
rule. The algorithm of the simulations is given in the Appendix A.
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Figure 1. The first b1-moment (left column) and b2-moment
(right column) in the patients during 6 weeks of observations when
they undergo 1 week (21 shifts) treatment and when the drug killing
rate takes three values: small (first row), and intermediate (second
row) and large (third row).

In Figure 1 the time duration of the drug treatment is T ∗ = 1 week and Figure 2
the time duration of the drug is T ∗ = 2 weeks. The first row represents the values
of Q1(t) and Q2(t) for the low dose σ1 = 1.7, the second row represents the values
of Q1(t) and Q2(t) for the intermediate dose σ1 = 2.0 and the third row shows the
profiles of Q1(t) and Q2(t) for the high dose σ1 = 2.2. The four curves in each
frame correspond to the four levels of the threshold TH .

A common feature of the first column in Figure 1 is the following: The non-
resistant bacterial load Q1(t) first increases, as no drug is administered, and then,
after initiating treatment it decreases steadily during the rest of the 6 weeks period,
except for a small reversal. This reversal may be attributed to the fact that since
the measurement of the threshold level is not precise, the amount of drug first
administered to patients (when the doctor decides that the threshold level has been
reached) is not sufficient to reduce the average density of b1. When the drug is
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Figure 2. The first b1-moment (left column) and b2-moment
(right column) in the patients during 6 weeks of observations when
they undergo 2 weeks (42 shifts) treatment and when the drug
killing rate takes three values: small (first row), and intermediate
(second row) and large (third row).

administered for two weeks instead of one week (as in Figure 2), this reversal almost
disappears. As the drug treatment σ1 is increased, the bacterial load decreases,
but at the end of the sixth week the difference resulting from different doses are
negligible. We also see that decreasing the threshold results in smaller bacterial
load for the first two weeks, but very little difference is seen thereafter.

The simulation results for the drug-resistance bacteria are quite different. As seen
in the second column of Figure 1, after initiating drug treatment the bacterial load
decreases, but it remains low only for a short time. It then climbs up to a high level,
which depends on the dose σ1. For small or intermediate doses, Q2(t) continues to
grow, but with the adminstration of the high dose σ1 = 2.2 the average level of b2
eventually decreases and seems to reach an equilibrium, which is nonetheless larger
than the initial value Q2(0).

In Figure 2 (with T ∗ = 2 weeks instead of T ∗ = 1 week) we see the same features
as the Figure 1, with few differences with respect to Q1, but with significant lower
values of Q2. The simulations suggest that the optimal treatment is

T ∗ = 2 weeks , σ1 = 2.2 (largest dose of drug). (20)
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We note however that the strategy (20) does not take into account possible side-
effects of the high dose. We finally note that also in all the frames of Figure 2 there
is just a slight advantage in the first 2-3 weeks in choosing the lowest threshold
TH = 0.2.

If the contact between HCW and patients is increased then the bacterial load
in patients is expected to increase. The increase is more pronounced in the case of
b2, as shown in Figure 3 with TH = 0.2, T ∗ =2 weeks and exchange rates between
HCWs and patients (η1, η2), (10η1, 10η2), (100η1, 100η2): the first row corresponds
to (η1, η2), the second row corresponds to 10(η1, η2), and the third row corresponds
to 100(η1, η2).
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Figure 3. Q1 and Q2 when the threshold is fixed at TH = 0.2
and the drug treatment is given for 2 weeks for different amount
of drug σ1 (1.7 and 2.0 and 2.2) and different bacterial exchange
rates (η1, η2), (10η1, 10η2) and (100η1, 100η2).

5. Discussion. In the present paper we developed a mathematical model that
describes the spread of drug-resistant bacteria in a hospital. The model includes two
bacterial strains: non-drug resistant, b1, and drug resistant, b2. The model assumes
that each patient has a bacterial load (b1, b2), and it quantifies the total bacterial
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load of each strain bi within the population of patients by the first moments, or the
average, of bi

Qi(t) =

∫∫

Ω

biP (t, b1, b2)db1db2 (i = 1, 2),

where P (t, b1, b2) is the number density of patients with bacterial load (b1, b2) with∫∫

Ω

P (0, b1, b2)db1db2 = 1. The bacteria evolve according to a dynamical system

which includes the effects of patients immune response, drug treatment, mutation
from b1 to b2, and spread of infection by contact of health care workers with patients.

The model predicts that as soon as drug is administered, the average non-
resistant load Q1(t) will decrease and eventually (i.e., after 6 weeks) will reach
a very low level. However, the average load Q2(t) of the drug-resistant bacteria will
initially decrease, after treatment, but then it will bounce back and remain at a
high level, dropping off eventually if the drug σ1 administered to kill b1 is given in
a strong enough dose. The model also predicts that better results for Q2(t) are ob-
tained if the drug is administered for two weeks instead of one week. It is well known
(see for example, Burgess (1999) [4] and a review article by Peter (2005) [19]) that
underdosing increases the drug-resistant bacteria. In that sense, our model predic-
tions agree qualitatively with experimental results. However the specific details of
how the drug-resistant bacteria evolves under underdosing may depend on the type
of bacteria. Since most of our model parameters are not experimentally known,
the time evolution of Q2(t) in our model simulation should not be taken as being
universally valid for all types of bacterial infections.

The model also shows (Figure 3) that the bacterial load of patients will increase if
the contact (exchange rate) between HCWs and patients is increased; this increase
is especially significant for the drug-resistant bacteria.

The model makes a number of simplifying assumptions. For example, it is as-
sumed that a mutation from b1 to b2 is given by a constant parameter and that it
occurs precisely at the end of the drug treatment. A more serious limitation of the
model is due the fact that many of the parameters are not known experimentally.
Nevertheless, simulations (not given here) show that the profiles of Q1(t) and Q2(t)
do not change qualitatively if we modify some of the parameters.

The model is quite flexible and can be refined to include different species of
pathogens and hospital conditions. For example:

(i) Suppose each week new patients are admitted and “recovered” patients (those
whose bacterial load has remained low for several days) exit the hospital. We
can incorporate these conditions into the equation for P by adding two terms
on the right-hand side of equation (9), to account for entering and exiting
patients.

(ii) Suppose the HCWs are subject to long term carriage of bacteria. We can
incorporate this assumption by modifying the right-hand side of equation (13).

(iii) The ratio of HCWs to patients,
∫

H(0, b̄)db̄/

∫

P (0, b)db,

can also be introduced as a given parameter, specified for each bacterial disease
in each hospital.

The model developed in this paper is for two strains of bacteria. The extension of
the model to three strains (b1, b2, b3), or even more strains, is straightforward. But
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one would need to have experimental data on the rates of mutations among the
various strains.

In summary, we view the present model as a first step to be further developed
and refined as more experimental data become available.

Acknowledgments. This is supported by the National Science Foundations upon
Agreement No. 0112050 and NSF African Biomathematics Initiative Grant Award
6RT00014792.

Appendix A. The algorithm

Algorithm 1 During the 6 weeks of observation

1: Setting the parameters.
2: Setting the initial conditions.
3: Runge Kutta method of order 4 scheme for ODEs.
4: Lax-Friedrichs scheme for PDEs.
5: First time tn where max(b1, b2) > TH

6: if Yes: then
7: give drug for T ∗ days
8: execute jump at t = tn + T ∗

9: else

10: Continue.
11: Display Q1(t) and Q2(t).
12: end if
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