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Abstract. We consider a delay equation that has been formulated from a
juvenile-adult population model. We give respective conditions on the vital
rates to ensure local stability of the positive equilibrium and global stability of
the trivial equilibrium. We also show that under certain conditions the equation
undergoes a Hopf bifurcation. We then study global asymptotic stability and
present bifurcation diagrams for two special cases of the model.

1. Introduction. In this paper, we consider the following delay equation arising
from a juvenile-adult population model that we developed in [2]:

ϕ′(t) = e−
∫

ā

0
ν(η)dηβ(ϕ(t− ā))ϕ(t − ā)− µ(ϕ(t))ϕ(t) for t > ā, (1.1)

where ν ∈ L∞(0, ā) is nonnegative, β is nonnegative and continuously differentiable
with β′ ≤ 0, and µ is nonnegative and continuously differentiable with µ′ ≥ 0. We
establish stability results for equation (1.1) and study the existence of local Hopf
bifurcation. We also investigate global asymptotic stability and present bifurcation
diagrams for two special cases of the model.

Over the past few years, the following delay equation has been extensively studied
in the literature:

y′(t) = σf(y(t− τ)) − γy(t), (1.2)

where σ and γ are positive constants. When f takes certain special forms, (1.2)
represents several biological models. For example, when f takes the forms

f =
δ

δ + yn(t− τ)
and f =

δy(t− τ)

δ + yn(t− τ)
(1.3)

equation (1.2) was proposed by Mackey and Glass [5, 18] to describe a physiological
control system, where y(t) denotes the density of mature cells in blood circulation
at time t, and τ is the time delay between the production of immature cells in the
bone marrow and their maturation for release in circulating bloodstreams. When
f takes the form

f = e−δy(t−τ) (1.4)

equation (1.2) was proposed by Wazewska-Czyzewska and Lasota [24] to describe
the survival of red blood cells in animals, where y(t) denotes the number of red
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blood cells at time t, and τ is the time required to produce a red blood cell. When
f takes the form

f = y(t− τ)e−δy(t−τ) (1.5)

equation (1.2) was proposed by Gurney et al. [10] to describe the dynamics of
Nicholson’s blowflies, where y(t) is the population of sexually mature adults, and
τ is the time for all eggs to develop into sexually mature adults. Moreover, many
results have been established on the global attractivity of the positive equilibrium
and on the oscillatory behavior of the solution for (1.2) with f of the forms (1.3)
and (1.4) [6, 7, 11, 12, 16, 17, 25]. On the other hand, when f satisfies conditions
such as ξf(ξ) < 0 for ξ 6= 0, f is bounded from above or below, and f ′(ξ) < 0 for all
ξ, a Poincaré-Bendixson theorem was established by Walther [22] and the stability
analysis for periodic solutions was conducted by Skubachevskii and Walther [20, 21].
For details, the reader is referred to [15, 23] and the references cited therein.

It is also worth mentioning that in [13] a system of delay equations was derived
from the McKendrick age-structured population model and stability results were
established. Moreover, when the competition parameter is zero, the system reduces
to (1.2) with f = β(y(t− τ))y(t− τ). Meanwhile, a special case of (1.1) was studied
in [4] with ν, µ being positive constants and β(ϕ) = be−cϕ, where b and c are
positive constants.

There are two main differences between equations (1.1) and (1.2). First, in

equation (1.1) the first term on the right-hand side contains e−
∫

ā

0
ν(η)dη which results

in the dependence of the positive equilibrium on the delay parameter ā. Second, in
equation (1.1) the second term on the right-hand side contains a function µ(ϕ(t)),
while it is a positive constant γ in equation (1.2). Due to the different structure
of equation (1.1), the situation becomes more complicated, and certain techniques
used in the above mentioned papers seem not applicable to (1.1).

The paper is organized as follows. In Section 2 we formulate equation (1.1) from
a juvenile-adult population model. In Section 3 we give respective conditions on
the vital rates in the model to ensure local stability of the positive equilibrium
and global stability of the trivial equilibrium. We also show that under certain
conditions the equation undergoes a Hopf bifurcation. In Section 4 we establish
global asymptotic stability results and present bifurcation diagrams for two special
cases of the model. Finally in Section 5 we make some concluding remarks.

2. Derivation of the delay equation. Motivated by an amphibian population of
Green Treefrogs (Hyla cinerea), we recently developed a juvenile-adult population
model (see [2]). We assumed that juveniles live in an environment with abundant
resources and thus do not compete, while adults live in an environment with limiting
resource and thus competition between them takes place. We then obtained the
following system of partial differential equations:

Jt(a, t) + Ja(a, t) + ν(a)J(a, t) = 0, 0 < a < ā, 0 < t < T,

At(x, t) + (g(x, t)A(x, t))x + µ(ϕ(t))A(x, t) = 0, x < x < x̄, 0 < t < T,

J(0, t) = β(ϕ(t))ϕ(t), 0 < t < T,

g(x, t)A(x, t) = J(ā, t), 0 < t < T,

J(a, 0) = J0(a), 0 ≤ a ≤ ā,

A(x, 0) = A0(x), x ≤ x ≤ x̄,

(2.1)
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where J(a, t) and A(x, t) denote the density of juveniles of age a and adults of size
x at time t, respectively, ā denotes the age at which juveniles metamorphose into
adults of minimum size x, and x̄ denotes the maximum size of adults. The function

ϕ(t) =
∫ x̄

x
A(x, t)dx is the total population of adults. The parameters ν and µ are

mortality rates for juveniles and adults, respectively. The functions g and β are the
growth and reproduction rates for adults, respectively.

Throughout the discussion we assumed that the parameters in (2.1) satisfy the
following assumptions:

(A1) g ∈ C1([x, x̄]× [0, T ]). Furthermore, g(x, t) > 0 for (x, t) ∈ [x, x̄)× [0, T ] and
g(x̄, t) = 0 for t ∈ [0, T ].

(A2) ν ∈ L∞(0, ā) is nonnegative.
(A3) µ is nonnegative and continuously differentiable with µ′ ≥ 0.
(A4) β is nonnegative and continuously differentiable with β′ ≤ 0.
(A5) J0 ∈ L∞(0, ā) is nonnegative.
(A6) A0 ∈ L∞(x, x̄) is nonnegative.

In [2], we established the global existence and uniqueness results for model (2.1).
Actually, J(a, t) can be represented as follows:

J(a, t) = J0(a− t)e−
∫

t

0
ν(a−t+τ)dτ if t ≤ a, (2.2)

J(a, t) = β(ϕ(t− a))ϕ(t − a)e−
∫

t

t−a
ν(a−t+τ)dτ if t > a. (2.3)

Integrating the second equation of (2.1) in x from x to x̄ and making use of (2.3),
we have

ϕ′(t) = J(ā, t)− µ(ϕ(t))ϕ(t)

= e−
∫

t

t−ā
ν(ā−t+τ)dτβ(ϕ(t− ā))ϕ(t − ā)− µ(ϕ(t))ϕ(t) for t > ā,

(2.4)

which, by a variable change, gives (1.1).

3. Stability and Hopf bifurcation. In this section we study the stability of the
positive and trivial equilibria and the existence of local Hopf bifurcation for equation
(1.1). We first discuss the local stability of the positive equilibrium. To this end,
we impose the following additional assumption on the parameters.

(A7) There exists a unique positive constant ϕ∗ such that

e−
∫

ā

0
ν(η)dηβ(ϕ∗)− µ(ϕ∗) = 0.

Clearly, ϕ∗ is the positive equilibrium of equation (1.1), and the linearization of
(1.1) about ϕ∗ is given by

ϕ′(t) = e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)]ϕ(t − ā)− [µ′(ϕ∗)ϕ∗ + µ(ϕ∗)]ϕ(t). (3.1)

Then the characteristic equation of (3.1) is as follows:

λ+ µ′(ϕ∗)ϕ∗ + µ(ϕ∗)− e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)]e−āλ = 0. (3.2)

As is well known, equation (3.2) has infinitely many characteristic roots λ [3], and
the local stability of ϕ∗ is determined by the sign of the real parts of λ: If all the
roots have negative real parts, then ϕ∗ is locally stable. For this purpose, we first
introduce a result due to Hayes (cf. p. 444 of [3]).

Lemma 3.1. All the roots of pez+q−zez = 0, where p and q are real, have negative
real parts if and only if

(a) p < 1, and
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(b) p < −q <
√

θ20 + p2,

where θ0 is the root of θ = p tan θ for 0 < θ < π.

We are then in a position to establish the following result.

Theorem 3.2. The positive equilibrium ϕ∗ of equation (1.1) is locally stable if and
only if

e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)] > [µ′(ϕ∗)ϕ∗ + µ(ϕ∗)]

(

1

cos θ0

)

, (3.3)

where θ0 is the root of θ = −ā[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)] tan θ for π/2 < θ < π.

Proof. We first rewrite (3.2) as

− ā[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)]eāλ + āe−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)]− āλeāλ = 0. (3.4)

We then set z = āλ to find that

p = −ā[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)] and q = āe−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)]. (3.5)

In view of assumption (A3), part (a) of Lemma 3.1 is satisfied, and the first in-
equality in part (b) requires that

µ′(ϕ∗)ϕ∗ + µ(ϕ∗) > e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)],

which is valid by (A3), (A4), and (A7). The second inequality in (b) of Lemma 3.1
requires that

− āe−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)] <

√

θ20 + ā2[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)]2, (3.6)

where θ0 = −ā[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)] tan θ0. Since −ā[µ′(ϕ∗)ϕ∗ + µ(ϕ∗)] < 0, π/2 <
θ0 < π, and hence (3.6) yields (3.3).

Note that taking (A4) into account, (A7) implies that e−
∫

ā

0
ν(η)dηβ(0) > µ(0).

If this relation is reversed, one can naturally expect that the trivial equilibrium of
equation (1.1) is stable.

Theorem 3.3. Suppose that e−
∫

ā

0
ν(η)dηβ(0) < µ(0). Then the trivial equilibrium

of equation (1.1) is globally stable.

Proof. Introduce a Lyapunov function

V (t, v) = v2(t) + µ(0)

∫ t

t−ā

v2(τ)dτ, t ≥ ā. (3.7)

If ϕ(t) is the solution of (1.1), then

d
dt
V (t, ϕ) = 2ϕ(t)

[

e−
∫

ā

0
ν(η)dηβ(ϕ(t − ā))ϕ(t− ā)− µ(ϕ(t))ϕ(t)

]

+µ(0)ϕ2(t)− µ(0)ϕ2(t− ā)

≤ 2e−
∫

ā

0
ν(η)dηβ(0)ϕ(t)ϕ(t − ā)− µ(0)ϕ2(t)− µ(0)ϕ2(t− ā)

≤
[

e−
∫

ā

0
ν(η)dηβ(0)− µ(0)

]

[ϕ2(t) + ϕ2(t− ā)].

(3.8)
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We now show that under certain conditions equation (1.1) undergoes a Hopf
bifurcation. For simplicity, we introduce the following notations.

σ = µ′(ϕ∗)ϕ∗ + µ(ϕ∗), γ = e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)], (3.9)

and

Λ = −(1 + āσ)
dσ

dā
+

(

σ

γ
+ aγ

)

dγ

dā
+ γ2 − σ2. (3.10)

Theorem 3.4. Suppose that

e−
∫

ā

0
ν(η)dη[β′(ϕ∗)ϕ∗ + β(ϕ∗)] ≤ [µ′(ϕ∗)ϕ∗ + µ(ϕ∗)]

(

1

cos θ0

)

, (3.11)

where θ0 is the root of θ = −ā[µ′(ϕ∗)ϕ∗+µ(ϕ∗)] tan θ for π/2 < θ < π. If i
√

γ2 − σ2

is a purely imaginary root of the characteristic equation (3.2) and if Λ 6= 0, then
equation (1.1) undergoes a Hopf bifurcation.

Proof. With the notations in (3.9), the characteristic equation (3.2) takes the form:

λ+ σ − γe−āλ = 0. (3.12)

Clearly, i
√

γ2 − σ2 is a purely imaginary root of (3.12) if and only if

i
√

γ2 − σ2 + σ − γ cos
(

ā
√

γ2 − σ2
)

+ iγ sin
(

ā
√

γ2 − σ2
)

= 0,

that is,
√

γ2 − σ2 = −γ sin
(

ā
√

γ2 − σ2
)

and σ = γ cos
(

ā
√

γ2 − σ2
)

. (3.13)

We then differentiate (3.12) with respect to ā to find

dλ

dā
+

dσ

dā
− dγ

dā
e−āλ + γλe−āλ + āγe−āλ dλ

dā
= 0,

which, together with (3.12) gives

dλ

dā
=

1

1 + ā(λ+ σ)

[

−dσ

dā
+

dγ

dā
e−āλ − (λ+ σ)λ

]

. (3.14)

Thus, at i
√

γ2 − σ2 we have

Re
dλ

dā
=

1

1 + 2āσ + ā2γ2

[

(1 + āσ)

(

−dσ

dā
+

dγ

dā
cos

(

ā
√

γ2 − σ2
)

+ γ2 − σ2

)

+ ā
√

γ2 − σ2

(

dγ

dā
sin

(

ā
√

γ2 − σ2
)

− σ
√

γ2 − σ2

)]

=
1

1 + 2āσ + ā2γ2
Λ 6= 0.

(3.15)

Remark 1. The condition Λ 6= 0 cannot be improved. For example, if we choose
ν(η) = 0.1202

√
η, β(ϕ) = 68/(1 + ϕ4), and µ(ϕ) = 0.1, we find that when ā =

16.6072, the condition (3.11) is satisfied and Λ = −0.0372. On the other hand,

if we select ν(η) = 32.4004η, β(ϕ) = 100e−0.51ϕ2

, and µ(ϕ) = ϕ, we find that at
ā = 0.1424, (3.11) holds and Λ = 118.405.
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4. Global stability and bifurcation diagram. In this section, we establish
global asymptotic stability results and present bifurcation diagrams for two spe-
cial cases of the model (1.1). We first consider the following case:

ϕ′(t) = σe−
∫

ā

0
ν(η)dη ϕ(t− ā)

1 + ϕn(t− ā)
− γϕ(t), (4.1)

where σ, γ are positive constants and n > 1. Such an equation is closely related to
the model (1.2) with f taking the form

f =
y(t− τ)

1 + yn(t− τ)
. (4.2)

In [14] Kuang showed that if

σ > γ and
σ

4n
(n− 1)2 < γ, (4.3)

then the unique positive equilibrium y∗ of (1.2) with f given by (4.2) is globally
asymptotically stable. Consequently, one can see that if

σe−
∫

ā

0
ν(η)dη > γ and

σ

4n
(n− 1)2e−

∫
ā

0
ν(η)dη < γ, (4.4)

then the positive equilibrium ϕ∗ of (4.1) is globally asymptotically stable.
To draw a bifurcation diagram for (4.1), we choose ν(η) = 0.1202

√
η, σ = 68,

n = 4, and γ = 0.1. The diagram is given in Figure 1. This figure shows that
for ā < 6.8031 and ā > 16.6072, the population converges to a steady state. This
steady state is the extinction one if ā > 18.8510. For 6.8031 < ā < 16.6072, the
population converges to a periodic orbit. Therefore, the values ā = 6.8031 and
ā = 16.6072 are bifurcation points.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

ā

ϕ
∗

Figure 1. Bifurcation diagram for equation (4.1)

We then consider the following case:

ϕ′(t) = βe−
∫

ā

0
ν(η)dηe−δϕn(t−ā)ϕ(t− ā)− µϕ2(t), (4.5)

where β, δ, µ are positive constants and n ≥ 1.
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Theorem 4.1. Assume the condition

1

4
βn2δ2

(

2n− 1

nδ

)

2n−1

n

e−
2n−1

n e−
∫

ā

0
ν(η)dη < µ. (4.6)

Then the positive equilibrium ϕ∗ of (4.5) is globally asymptotically stable.

Proof. Let f(ϕ) = βe−
∫

ā

0
ν(η)dηe−δϕn

ϕ and g(ϕ) = µϕ2. We find that f is strictly

increasing in [0, ϕM ) and strictly decreasing in (ϕM ,∞), where ϕM = (1/nδ)
1

n , and
limϕ→+∞ f(ϕ) = 0. If ϕ∗ < ϕM , in view of Theorem 4.3 of [14], it suffices to show
that

− f ′(ϕ1) < g′(ϕ2), (4.7)

where ϕ1 ∈ (ϕM ,∞), ϕ2 ∈ (0, ϕM ), and f(ϕ1) = g(ϕ2).
Clearly, inequality (4.7) is satisfied if we require

nβδe−δϕn

1 ϕn
1 e

−

∫
ā

0
ν(η)dη < 2µϕ2. (4.8)

On the other hand, from the equation f(ϕ1) = g(ϕ2) we have

βδe−δϕn

1 ϕ1e
−

∫
ā

0
ν(η)dη = µϕ2

2,

or equivalently,

ϕ2 =

√

β

µ
ϕ1e

−
1

2
δϕn

1 e−
1

2

∫
ā

0
ν(η)dη. (4.9)

Substituting (4.9) into (4.8) yields

βn2δ2e−δϕn

1 ϕ2n−1
1 e−

∫
ā

0
ν(η)dη < 4µ. (4.10)

The left-hand side of (4.10) attains its maximum at ϕ̄ = [(2n− 1)/nδ]
1

n , and thus
the condition (4.6) follows.

If ϕ∗ ≥ ϕM , the result can be established in a similar manner.

To draw a bifurcation diagram for (4.5), we choose ν(η) = 32.4004η, β = 100,
δ = 0.51, n = 2, and µ = 1. The diagram is given in Figure 2. This figure shows that
the points ā = 0.1424 and ā = 0.2980 are bifurcation points. If ā is between these
points, then the population converges to a periodic orbit; otherwise the population
converges to a steady state, and this steady steady is the trivial one if ā > 0.7610.

Remark 2. From the two diagrams, one can see that due to the presence of

e−
∫

ā

0
ν(η)dη, the global asymptotic stability results are not optimal in the sense

that the conditions (4.4) and (4.6) do not seem to cover all the values of ā for which
the numerical results indicate global asymptotic stability.

5. Concluding remarks. In this paper, we studied the dynamical behavior of a
delay differential equation arising from a juvenile-adult population model that was
developed to describe the dynamics of an amphibian population of Green Treefrogs
(Hyla cinerea) [2]. With the exception of some information about the reproduction
rate of an adult Green Treefrog, little is known about the survivorship rates of
tadpoles and frogs for this population [1, 19]. Experimental studies indicate that
tadpole survivorship can be highly variable depending on both the predator com-
munity and the type of available refugia [8, 9]. Furthermore, the age of tadpoles at
which metamorphosis occurs also varies and can range from around 5 to 8 weeks
depending on several environmental factors.
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ϕ
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ā

Figure 2. Bifurcation diagram for equation (4.5)

Density dependence in adult mortality or birth rates is also unknown for these
populations. Therefore, in our above analysis, we used special cases which in-
clude the well-known forms of Beverton-Holt and Ricker to represent the density
dependence in the birth rate and used constant or linear (logistic type) density de-
pendence in the mortality rate. In [1], the authors developed a discrete model and
used Beverton-Holt density dependence in the survivorship rates to describe this
population. Such a model was fitted to a two year data set (2004 and 2005).

The biological interpretation of the above analysis and the bifurcation diagrams
in particular is that the time when the metamorphosis process occurs affects the
dynamical behavior of the population. Especially, if metamorphosis occurs very
quickly or very slowly, then one may expect the population to converge to a steady
state, which can be the extinction one as shown in Figures 1-2; while if metamor-
phosis is in an intermediate range, then oscillatory behavior of the population can
be observed.
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