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Abstract. A classical epidemiological framework is used to provide a prelim-
inary cost analysis of the effects of quarantine and isolation on the dynamics

of infectious diseases for which no treatment or immediate diagnosis tools are

available. Within this framework we consider the cost incurred from the im-
plementation of three types of dynamic control strategies. Taking the context

of the 2003 SARS outbreak in Hong Kong as an example, we use a simple cost

function to compare the total cost of each mixed (quarantine and isolation)
control strategy from a public health resource allocation perspective. The goal

is to extend existing epi-economics methodology by developing a theoretical

framework of dynamic quarantine strategies aimed at emerging diseases, by
drawing upon the large body of literature on the dynamics of infectious dis-

eases. We find that the total cost decreases with increases in the quarantine

rates past a critical value, regardless of the resource allocation strategy. In
the case of a manageable outbreak resources must be used early to achieve the

best results whereas in case of an unmanageable outbreak, a constant-effort
strategy seems the best among our limited plausible sets.

1. Introduction. Emerging and re-emerging infectious diseases continue to im-
pose immense economic and social burdens; HIV [4], multidrug-resistant tubercu-
losis [12], influenza [43] and new influenza strains [5] provide but a few examples
of the tremendous cost that we must pay to minimize their impact. Public health
policy aims to decrease these burdens by reducing transmission or mitigating sever-
ity. Although vaccines and antibiotics have become primary tools in controlling the
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spread of many established diseases, outbreaks of bovine spongiform encephalopa-
thy (also known as mad cow disease), West Nile virus, Severe Acute Respiratory
Syndrome (SARS), avian and H1N1 influenza and the fear of bioterrorism [2] have
“resurrected” the possibility of a widespread use of quarantine and isolation as
viable control strategies.

The term quarantine is used to characterize the deliberate separation of individ-
uals exposed to a contagious agent, irrespective of their infectivity or symptomatic
status, from a population of susceptible individuals. Quarantined individuals are
monitored, and those who test positive (if the test is available) or show symptoms
over time become tracing nodes for clusters of exposed individuals. A fraction
of individuals in the contact “neighborhood” of an index patient are quarantined.
Progression to a symptomatic (infectious) stage results in isolation, that is, in the
strict “separation” of an individual from most, if not all, members of the popula-
tion at risk. Where there is a test, the isolation of diagnosed infectives is the first
step. Treatment, if available, is provided to individuals in isolation [11]. Preven-
tive treatment may be given to those in quarantine. The use of these measures as
primary control strategies presents significant logistical and economic strain on a
public health system’s resources, but these factors have rarely been considered in
modeling public health policy decisions [2, 3].

The 2002–2003 SARS outbreaks highlighted the challenges of using quarantine
and isolation on a large scale to control emerging diseases. Estimates on the number
of quarantined range from 80,000 to over 130,000 for Taiwan, during an outbreak
that caused 671 infected cases and 180 deaths [38] (Figure 1(a) shows daily preva-
lence). Estimates for Toronto run from 23,000 to 29,000 (with as many as 7,000
undergoing quarantine simultaneously), a number far greater than the 375 cases re-
ported [1] (Figure 1(d)). During this time Toronto Public Health investigated 2132
potential cases of SARS, identified 23,103 contacts of SARS patients that required
quarantine, and logged 316,615 calls on its SARS hotline [51]. The cumulative
number of traced contacts over time during the Hong Kong SARS outbreak, which
caused 1755 cases and 298 deaths [37],[46, Ch. 3] (Figure 1(b)), surpassed 26,000. In
Singapore (Figure 1(c)) 7863 individuals suspected of having contacts with SARS
cases were served orders for quarantining at home, and 4300 individuals were put
on daily telephone surveillance for 10 days, with 58 of the 206 probable SARS cases
falling in one of these two groups [44, 53]. Singapore’s quarantine measures have
been estimated to have cost as much as US$5.2 million [44]. However, Gupta et
al. (2005) showed that in some cities quarantining the contacts of probable SARS
cases not only saved lives (as predicted in [15]) but also saved money [27].

The efficiency of quarantine measures has proven highly variable. Toronto public
health authorities placed approximately 100 people in quarantine for each SARS
case while their counterparts in Beijing only 12. SARS was diagnosed in only 0.22%
of quarantined contacts in Taiwan and 2.7% in Hong Kong [6]. An analysis of the
efficiency of quarantine in the Beijing outbreak conducted by the American Centers
for Disease Control and Prevention (CDC) concluded that the same efficiency could
have been achieved by reducing the Beijing average by two-thirds. That is, placing
four people in quarantine per SARS case would have been enough. Toronto thus
placed in quarantine 25 times more individuals than required according to the CDC’s
Beijing estimates [48]. Trends in Figure 1 (shown by arrows) reflect that among the
four cities shown, the first phase of control measures seems to have been effective
only in Hong Kong. Designing, upon identification of an outbreak, an appropriate
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(a) Epidemic Curve for Taiwan
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(b) Epidemic Curve for Hong Kong
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(c) Epidemic Curve for Singapore
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(d) Epidemic Curve for Toronto

Figure 1. Epidemic curves of 2002-2003 SARS outbreaks with
control measure dates superimposed. Figure 1(a) is a modified
version of the one in [38]. Data in Figures 1(b), 1(c) and 1(d) are
from [37], [39] and [51], respectively.

control policy that reduces cases (and deaths) while managing costs remains a
challenging question for public health departments.

One fundamental indicator of a control policy’s efficiency is its ability to reduce
an infection’s reproductive number. The disease’s basic reproductive number, R0,
is a model-dependent measure of an infectious agent’s potential to start an outbreak
in the absence of control policies. R0 is interpreted as the average number of new
cases produced by a “typical” infected individual (while infective) in a completely
susceptible population, in the absence of any prevention and intervention [13, 56].
The control reproductive number (Rc), in contrast, applies in the presence of clearly
identified control measures such as vaccination, quarantine, isolation and treatment.
The impact of control measures is assessed via the relationship between R0 and Rc
[13, 43]. Controlling an outbreak usually involves changes in control parameters
reducing the value of Rc from R0 to below the critical value of 1. Estimates of
the average reproduction numbers for the SARS outbreaks in Taiwan, Hong Kong,
Singapore, and Toronto are 4.23 [29], 1.70, 1.83 and 0.86, respectively [14, 15],
which suggest a large outbreak (as was the case) at least in Taiwan, Hong Kong and
Singapore. In the case of Toronto an outbreak occurred despite the low reproductive
number because a large number of travelers entered the city.

Theoretical studies using dynamical mathematical models that include quaran-
tine and/or isolation have provided in-depth understanding of how these measures
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impact disease transmission [21, 23, 24, 28, 31, 43, 59]. For example, Hsieh et
al. (2007) used simulations of the SARS outbreak in Taiwan to show retrospec-
tively that Level A quarantine prevented around 461 cases and 62 deaths, whereas
Level B quarantine resulted in the reduction of nearly 5% of cases and deaths, with
an overall combined effect (of both levels) of a 50% reduction in these numbers
[30]. Klinkenberg et al. (2006) studied the effectiveness of contact tracing using
branching processes to compute an explicit expression for the reproductive number
comprising pre- and post-impact contact tracing measures [35]. However, most of
these studies have neglected the economic impacts of quarantine and isolation, de-
spite some researchers’ claim that dynamic models support better cost-effectiveness
analysis (CEA) than static models [20, 42, 57, 52]: While the force of infection in a
static model is a function of individual-based factors, it nevertheless remains con-
stant over time, whereas a dynamical model incorporates epidemiological quantities
like contact structure, transmission probabilities, prevalence and treatment regimes
that change over the course of an outbreak [34]. Quarantine in particular may have
complex economic effects since costs incurred in the present reduce future costs by
reducing the effective pool of susceptibles [20]. Dynamic mathematical models have
successfully been used to consider the cost-effectiveness of vaccination programs,
e.g., [22], but for the most part not quarantine and isolation. In a notable excep-
tion, Brandeau et al. (2003) used a simple SI-type dynamical compartmental model
and optimization techniques to evaluate general control programs that alter contact
rates under resource constraints, and identify some of the factors on which optimal
resource allocation problems can depend [8]. However, their model results depend
on having an explicit solution of the system, which for most nonlinear systems,
describing states of infectious disease, is difficult or impossible to obtain. Further,
their cost function depends only on the contact rates. In this manuscript we consider
cost as a function of demographic, epidemiological and control parameters because
epidemic outbreaks are the result of the nonlinear interactions between individuals
with different demographical and epidemiological status.

This paper therefore presents a preliminary study of the relationship between
cost, quarantine and isolation using dynamical models. The focus is on understand-
ing the potential economic impact of quarantine and isolation policies. Our primary
aim is to compare three different quarantine strategies implemented alongside a sin-
gle isolation strategy in the context of an emerging infectious disease outbreak, with
resource allocation modeled in terms of simple cost functions. In addition, we use
the concept of cost-effectiveness ratios to evaluate the relative value of each dynamic
quarantine strategy.

Research on the cost analysis of control measures for infectious diseases has
considered different types of cost measures including costs to society, costs to indi-
viduals [16], quality-of-life measures [42], etc. In general, costs can be divided into
direct (related to creation and implementation of control programs like fees and
salaries or facility construction), indirect (costs to individuals; losses in productiv-
ity due to the absence of sick individuals and family caretakers), and intangible
costs like those generated by stress and pain. Furthermore, although numerous
studies have carried out CEAs, there seems to be no consensus on appropriate
cost-effectiveness thresholds [34]. In this study we consider the problem of resource
allocation by public health authorities aimed at controlling an outbreak of a new
emerging disease for which no long-term side effects are known (except death); from
our narrow perspective, we measure only direct expenditures made by public health
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agencies with limited resources. We do not therefore include costs and benefits
to patients—including Quality-Adjusted Life Years (QALY) for measuring benefits
from strategies, as done in some CEA studies—except by tabulating the numbers
of infections and deaths (which can be converted, if desired, into time lost). As
a preliminary study on the CEA of quarantine and isolation measures, this paper
aims instead to provide qualitative trends in direct costs and benefits for controlled
and uncontrolled outbreaks of an emerging disease, in general, instead of quantify-
ing estimates for the two. We present our analysis in terms of incremental costs per
infection prevented, life saved, etc. [42, 57], and interpret our results in terms of
incremental cost-effectiveness ratios (ICERs) [42, 34] in order to compare strategies.
We fix total cost and compare results (number of infections, etc.) for each strategy
subject to the same budget constraint as in [8]. We use a dynamic compartmental
modeling framework to study this resource allocation problem as disease outbreaks
usually follow a nonlinear pattern and so do disease control programs, resulting in
non-constant effects on reduction in incidence.

This paper is organized as follows. In Section 2, we introduce a general contact
tracing model and discuss some of its variants. The analysis of the model (using
a general contact tracing function) is carried out in Section 3. In Section 4, key
model dependent quantities are defined, parameters are estimated and the impact
of changes in threshold (control reproduction numbers) are explored. Cost analyses
associated with various scenarios and comparisons are performed in Section 5. In
Section 6, we discuss the relevance of the results and possible future work.

2. Construction of the model. We consider a model for the transmission of an
emerging infectious disease like, but not necessarily limited to, SARS. The popula-
tion in the dynamic model is divided into seven classes: Susceptible (S), Exposed
(E), Infectious (I), Recovered (R), Quarantined (Q1, Q2), and Isolated (Q3) (Figure
2). Susceptibles may become infected when exposed to an infectious individual. Ex-
posed and infectious individuals are carriers of the disease. The disease in exposed
individuals is assumed to be latent. E-individuals may be infectious in general; the
infectiousness of the E-individuals is lesser than that of I-individuals by a factor
of q. For a disease like SARS, viral load is an order of magnitude lower during
incubation than in the clinical phase. Hence, it is likely that 0 ≤ q << 1; here we
take q = 0. It should be noted that the delay between the onset of infectivity and
clinical symptoms varies widely [25]. Since the focus is on cost, it is assumed that
both events take place simultaneously. It is assumed that there is no test capable
of diagnosing the disease before symptoms appear. Q1 and Q2 denote the classes
of non-infected and infected but non-infectious quarantine individuals, respectively.
There is no way of differentiating between each type. The use of separate classes is
for bookkeeping purposes.

New susceptible individuals enter the population at the constant rate Λ. Once
an infectious individual is identified, a certain number of individuals considered
to have been in contact with the infective are placed in quarantine regardless of
epidemiological status (susceptible or exposed). As a result, some uninfected (S)
individuals enter the Q1 class, at a rate Φ1, while some exposed (E) individuals
enter the Q2 class, at a rate Φ2. The status of individuals in the Q1 and Q2 classes
is monitored, and after an incubation period has passed, those individuals who do
not develop symptoms (Q1) are released (at the per capita rate θ). However, the
existence of this class (Q1) adds to the cost of public health intervention efforts.
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Figure 2. Model Compartments and Flow

Individuals in Q2 move into isolation (Q3) when they become symptomatic. Iden-
tified infectious (symptomatic) individuals are isolated (class Q3) at the constant
per-capita rate σ. Identified infectious (symptomatic) individuals are also isolated
(class Q3), at the constant per-capita rate σ. Susceptibles become infected at a
per-capita per-infective rate β moving to the exposed class (E). Individuals in
Q(= Q1 + Q2 + Q3) are assumed to have no contacts with the rest of the popu-
lation and thus the proportion of one’s contacts made with infectious individuals
is modeled as I

S+E+I+R = I
N−Q but there are other possibilities (see [23]). After

spending an average of 1
γ1

( 1
γ2

) units of time in the E (Q2) class, individuals who
develop symptoms are moved to the infectious (isolated) class. The disease is as-
sumed to cause mortality in symptomatic cases at the per-capita rates, δi (i = 1, 2
for I and Q3, respectively). For simplicity, it is assumed that γ1 = γ2 and that
δ1 = δ2. Individuals leave the population at the per capita rate µ from any class
due to “natural” causes. Recovery with permanent immunity takes place at the
per-capita rates α1 and α2 (from I and Q3, respectively).

With the above assumptions and terminology, our model is given by the following
system of nonlinear equations:



Ṡ = Λ−Φ1 − µS + θQ1 − β S(I+qE)
N−Q ,

Q̇1 = Φ1 − (µ+ θ)Q1,

Ė = β S(I+qE)
N−Q − (µ+ γ1)E −Φ2,

Q̇2 = Φ2 − (µ+ γ2)Q2,

İ = γ1E − (µ+ σ + δ1 + α1)I,
Q̇3 = σI + γ2Q2 − (µ+ δ2 + α2)Q3,

Ṙ = α1I + α2Q3 − µR,

Ṅ = Λ− µN − δ1I − δ2Q3,

(1)

where Q = Q1 +Q2 +Q3, N = S+Q1 +E+Q2 + I+Q3 +R, and ‘·’ represents the
derivative with respect to time. Definitions and values of various parameters used
here and after are presented in Table 2.
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Table 1. Different quarantine strategies that are analyzed in the article.

Rates \ Strategies I II III Ik̂
a

Φ1 ψ(I)S ψ(I)S ψ(I)S k̂ρ1E
Φ2 ψ(I)E ψ(I)E ψ(I)E ρ1E

where ψ(I) = ρ1 ρ2I
ρ3I
K+I

aStrategy I0̂ is a special case of Strategy Ik̂ with k̂ = 0 or Φ1 = 0.

We use the words quarantine and tracing interchangeably. Although we ‘talk’
about tracing the contacts of infectious individuals, the model does not provide an
explicit contact-tracing structure. The process of quarantine is modeled via the
removal of a proportion of unidentified people per unit of time from all classes (at
rate Φ1 and Φ2; Table 1). One effect of removal of individuals from the population
is that it reduces the number of susceptibles (S(t)) from the population, thereby
reducing the incidence (βS(t)I(t)/N(t)). In the model, contact tracing is effectively
carried out at random and, therefore, model outcomes will tend to underestimate
the efficacy achieved by “real” (potentially more costly) contact tracing policies.
We consider three primary resource allocation strategies for contact tracing. The
quarantine process may be carried out at a per-capita rate that is independent of
the number of infectives (Strategy I: (1) with (2)) or at a per-capita rate dependent
on I(t). If the per-capita contact tracing rate depends on I(t) then it could be
directly proportional to it (Strategy II: (1) with (3)) or, perhaps more realistically
given a finite resource scenario, saturate at some point with increasing number
of infectious individuals (Strategy III: (1) with (4)). The contact tracing rate in
Strategy I assumes a maximum effort independent of outbreak size while the contact
tracing effort in Strategy II is proportional to the outbreak size. Contact tracing in
Strategy III also depends on outbreak size but is constrained by resource limitations.
We use the same per capita rate ψ(I) for both S and E in Strategies I, II and
III because in our stratified setting we cannot differentiate or identify each type.
Hence, the proportion of quarantined individuals who are really exposed is the same
as the proportion in the general population. The quarantine rates are modeled as
Φ1 = ψ(I)S(t) and Φ2 = ψ(I)E(t) where ψ(I) is chosen as follows:

ψ(I) = ρ1 (for Strategy I) (2)
ψ(I) = ρ2I (for Strategy II) (3)

ψ(I) =
ρ3I

K + I
(for Strategy III) (4)

The units of ρ1 in Strategy I and ρ3 in Strategy III are time−1. Hence, their
reciprocals represent the average (minimum, for Strategy III) time required to trace
a single contact. The units of ρ2 in Strategy II are (time× people)−1. Hence, ρ2I
gives the reciprocal of the average time required per contact traced, that is, the
effort spent increases (tracing time decreases) as the number of infectious individuals
grows. Under Strategy III the contact rate rises when the numbers of infectives are
small before saturating. The constant K (called the half-saturation constant) in
Strategy III represents the number of infectious individuals, I, in the population
when the contact tracing effort is half its maximum value (ψ(K) = ρ3

2 ).
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As a departure from the assumption that “S and E individuals are traced at
the same per-capita rate,” in this random tracing context, we consider two extreme
cases, referred to as Strategy Ik̂ (fixed-efficiency tracing) and Strategy I0̂ (perfect
tracing). Fixed-efficiency tracing assumes that susceptibles are quarantined at a
rate k̂ times higher than the rate of quarantine for exposed. That is, susceptibles
are quarantined at the rate ρ1E(t)k̂ and exposed at the rate ρ1E(t). The tracing
efficiency for Strategy Ik̂ is defined as 1

k̂

(
= quarantine rate of exposed

quarantine rate of susceptible

)
, where k̂ ∈

[0,∞). Here, infinite tracing efficiency, k̂ = 0 corresponds to the perfect tracing
strategy. Fixed efficiency tracing provides bounds for efficiency of quarantine policy
because random tracing by itself is likely to underestimate the true efficiency. The
model that only uses isolation as a control measure (no quarantine, i.e., Φi =
0, for i=1,2) is the baseline strategy.

We compute the cumulative numbers of disease-related deaths, new cases of
infection, quarantined and isolated individuals using expressions

Y (t) =
∫ T

t0

[δ1I(t)dt+ δ2Q3(t)]dt, Z(t) =
∫ T

t0

β

[
S(t)I(t)

N(t)−Q(t)

]
dt,

L1(t) =
∫ T

t0

[Φ1(t) + Φ2(t)]dt, and L2(t) =
∫ T

t0

σI(t)dt,

respectively. These numbers are calculated at the end of an outbreak or at the time
when a fixed specified cost is used up by an implemented strategy. For example, if
the control measures are effective the disease will eventually die out (i.e., at time T ,
I(t) becomes effectively zero). We approximate this time numerically by considering
T to be the first time at which I(T ) < 1 but I(t) > 1 for t < T . These numbers
are computed with the initial time point (i.e., t0) equal to zero, the point at which
a strategy comes into effect. The functions L1 and L2 will also be used later to
define the cost function describing cost incurred to the public health department in
implementing specific quarantine and/or isolation control measures.

3. Analysis of the model. Analysis of model (1) is performed with a general
contact tracing function ψ(I) (given in Table 1), satisfying the following properties:

(i) ψ(I) is a continuously differentiable function for I ≥ 0;
(ii) ψ(I) is a monotone non-decreasing function of I with ψ(0) ≥ 0.

The control reproduction number (see [56] for method of computation) for Model
(1) is given by

Rc =
β

(µ+ δ1 + α1 + σ)
γ1

(µ+ ψ(0) + γ1)
,

where β
(µ+δ1+α1+σ) is the average number of secondary infections that one infected

individual generates during his/her infectious period in a population of suscepti-
bles, and γ1

(µ+ψ(0)+γ1)
is the proportion of those exposed that survive the latent

period and remain untraced (thus becoming actively infectious). Rc reduces to R0

when ψ(0) = 0 and σ = 0. The control reproduction number under Strategies II
and III is independent of ρ2 (or ρ3 and K) since its contact tracing rate depends
on the number of infectious individuals (I), and at the beginning of an outbreak
I ≈ 0. The control reproduction number can further be classified as Rci and Rcq
in the situations when isolation (i.e., ψ(0) = 0) or quarantine (i.e., σ = 0) is the
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Table 2. Parameter definitions and their estimated values from
2003 SARS outbreak in Hong Kong.

Parm. Definitions Values Sources

Λ net flow (or recruitment and birth) rate into the sus-
ceptible class

240.84 peo-
ple/day

Est.
from [32]

β number of effective contacts per unit time or trans-
mission rate

0.25 /day [14]

µ per-capita death rate 0.000035
/day

[32]

1/α1 mean infectious period 28.4 days [14]
1/α2 Mean infectious period with diagnosed SARS. Here

former value was used for all numerical results
23.5 days
or 26.5
days

[14]

1/δ1 mean infectious period of unidentified infectious in-
dividuals before they die due to disease

23.66 days [40]

1/δ2 mean infectious period of isolated individuals before
they die due to disease

35.9 days [14]

1/γ1 mean incubation period of infected individuals 6.37 days [19]
1/γ2 mean incubation period of quarantine individuals 6.37 days [19]
1/σ average time before infectious individuals isolated 4.85 days [14]
1/θ average time traced individuals are confined before

declared healthy (mandatory hospital quarantine)
10 days [26]

p1 the direct cost of one person to quarantine $160 ppqa Est.

p2 the direct cost of one person to isolate $1254 ppib Est.

appq: per person quarantined.
bppi: per person isolated.

‘only’ control measure, respectively. Obviously, Rci < R0 and Rcq < R0 as Rc ≤ R0.

Remark: If Rc < 1 the disease-free equilibrium of the general model is globally
asymptotically stable but it is unstable if Rc > 1, in which case the system supports a
unique endemic equilibrium (see Appendix for some details). Numerical simulations
suggest that this endemic equilibrium is locally asymptotically stable whenever it
exists.

4. Framework and parameter estimates for numerical cost analysis. The
quarantine and isolation rates are referred to hereinafter as the control rates.

4.1. Cost function and Cost-effectiveness concept. The total cost incurred
in implementing control measures by the public health department is modeled by
the function

C(T ) = p1L1(T ) + p2L2(T ) (5)
where p1 (p2) denotes the average cost incurred by a local public health department
to quarantine one person (to isolate one person). T represents the time at which
the total cost is to be analyzed. T is chosen under two scenarios: the time at
which disease elimination occurs (defined for numerical purposes as the point when
the number of individuals in the I compartment becomes less than one), in the
case of a manageable (or controlled) outbreak, and the time during which a pre-
chosen cost amount is spent under a pre-selected control strategy, in the case of
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an unmanageable (or uncontrolled) outbreak. The functions L1(T ) and L2(T ), as
described in Section 2, denote the cumulative number of individuals quarantined
and isolated, respectively, from the initial time (t0 = 0) to the final time T . It
should be noted that the cost function is linear in per-capita costs. The selection
of a linear function may be unrealistic, particularly if the outbreak is large. A
typical example could be the case of a “1918” flu type pandemic which would
generate so many infections that it would become impossible to isolate or quarantine
enough individuals with existing facilities or available personnel. However, a linear
cost function may be a useful model for outbreaks when a small percentage of the
susceptible population becomes ill. Typically, costs of control measures are likely
to increase in a nonlinear way for larger values of E, I and Q. Ideally, one would
be able to estimate the cost per case of increasing σ, that is, one would be able to
find the functions f1 and f2 where in general

C(T ) = f1(p1, L1(T )) + f2(p2, L2(T )).

We do not have such information and, consequently, we study cost in this manuscript
using formula (5). Our approaches are justified by the fact that our goal is just to
highlight the variations imposed by the use of different strategies.

A concept of cost-effectiveness is used to compare strategies in terms of cost per
health effect achieved (that is, cost per reduction in a case or death) in implementing
a particular strategy (Table 1) over the baseline strategy (applying only isolation).
The aim is to find which quarantine strategy is the most cost-effective when a health
department is willing to spend a certain amount per unit increase in effectiveness
(or unit increase in health effects). In general, finding the most cost-effective model
is a two step process. First, we need to check if each quarantine strategy (random
tracing strategies) is more cost effective than the baseline strategy and second, we try
to find the most cost-effective strategy among all cost-effective strategies. Although
an isolation-only strategy may prove more cost effective, it may not be possible
to implement it with the required effectiveness over a short span of time because
of logistic issues (need of new facilities) and hence it will be assumed that the
first criterion has been satisfied. Health effects or benefits under certain combined
(quarantine and isolation) strategies are measured here in terms of reductions in
cases or deaths when compared with the baseline strategy. The quality-adjusted
life year (QALY) is not considered here because we take only direct costs to public
health authorities, which affect resource constraints and do not take into account
indirect costs on individuals or society.

It is assumed that only one strategy can be implemented at a time. Cost per
health-effect is evaluated by calculating the incremental cost-effectiveness (ICE)
ratio, [58]:

ICE ratio :=
costrandom tracing strategy − costbaseline strategy

effectsrandom tracing strategy − effectsbaseline strategy
=

∆c
∆e

. (6)

When the focus is on the number of deaths prevented (by a strategy) the ICE ratio
gives the average additional cost spent for each death prevented when the outcomes
from the strategy are compared.

Let κ be the amount a health department is willing to spend for a unit increase in
effectiveness or health benefits. The constant κ is called the maximum acceptable
cost-effectiveness ratio. In order to identify which strategy is the most cost-effective,
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we calculate the quantity

d = ∆e
(

1− ICE ratio

κ

)
, (7)

for each strategy. The strategy with largest d value is considered to be the most
cost-effective [7]. This is because in cost-effectiveness analysis strategies are ranked
according to their effectiveness—on the basis of securing maximum effect rather
than considering cost. In Equation (7) effectiveness (i.e. ∆e) is multiplied by the
strength-factor. This factor is one minus the cost per effect of the strategy rescaled
by the given value of κ. When all strategies in comparison are cost-effective, the
most cost-effective strategy is the one which gives the largest effectiveness when the
differential cost in implementing it is the least (see [7] for details). The ranking of
strategies in terms of cost effectiveness greatly depends on the value of κ.

4.2. Parameter estimates (SARS in Hong Kong as an example) and sce-
narios. We use the data from the SARS outbreak in Hong Kong and related studies
to estimate the model parameters (see Table 2). Our resulting value of the basic
reproductive number, R0, for the Hong Kong SARS outbreak is 3.2. The census
data from 2001-2004 in Hong Kong city is used to estimate the value of N as 6.8
million and the value of Λ as 240 per day. The value of Λ was calculated using
the average net inflow and the average number of births per year. The value of the
contact tracing carrying capacity, K, in Strategy III is arbitrarily chosen to be 100.
That is, we assume the contact tracing effort is half of its maximum value when
there are 100 infectious individuals in the population.

Estimates of the cost of contact tracing per contact that we could find in the
literature range from $97 [49], which includes cost incurred per patient for disease
control investigators to prevent tuberculosis, to $223 [33], which was based on the
assumption that the time spent by a nurse was 1 hour per individual with adoles-
cent pertussis. The estimated cost of isolation per patient range from $911 [41], an
amount that include the costs of screening, medicines, cleaning, disposable mate-
rials for patients and health employees during an outbreak of methicillin-resistant
Staphylococcus aureus, to $1598 [17] (beside the costs mentioned by [41] it also
added the cost of using community nurses). Cost estimates are converted into per-
person values in US dollars and adjusted for inflation to 2005 dollars using the
Consumer Price Index. In numerical cost analysis experiments, we use average cost
values, that is, a cost of $160 for quarantine of one traced contact and $1254 for
the isolation of an infective (or p1 = $160 per contact and p2 = $1254 per patient).
These average values do not include indirect and opportunity costs, like losses in
productivity due to illness, quarantine or illness in the family, suffering of a patient,
etc. Gupta et al. (2005) also provide estimates of costs in Canada for hospitaliza-
tion of a SARS patient ($612 per day and $1836 in intensive care unit) and Ontario
province SARS related quarantine costs ($10 million during the outbreak) but does
not provide duration of hospitalization and details of the types of their direct costs
[27]. The range of our cost estimates lie within the range considered by Gupta et
al. (2005).

We consider two scenarios for comparison of control strategies. The first scenario
is a so-called controlled (manageable) outbreak (Sections 5.1 and 5.2) where the dis-
ease dynamics are governed by control parameters (quarantine and isolation rates)
that result in a control reproduction number below one. Since the reproduction
number for Strategies II and III does not contain the quarantine control parameter,
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it is sufficient to consider Rc as a function of σ alone. Note, the value of Rc(σ)
decreases as σ increases. Theoretically, we define the critical value of σ, σc, by
Rc(σc) = 1, that is,

Rc(σ) is


greater than 1 if σ < σc

equal to 1 if σ = σc

less than 1 if σ > σc.

In our numerical analysis we arbitrarily chose a value of σ, denoted σ0, for which
Rc = 0.99. In this way the isolation is close to minimal to obtain Rc < 1 (that is,
eventual “end” of an outbreak) but avoids any numerical issues due to the threshold
and sets a finite baseline for the number of individuals isolated over the course of the
outbreak. This value, σ0 = 0.173/day (that is, average time to isolation 5.7 days),
is slightly more than the critical value σc. The isolation rate of 0.206/day (value
greater than 0.173/day), found in the literature for SARS outbreak in Hong Kong,
was fixed in the numerical experiments for controlled outbreak. The second scenario
simulated an artificial uncontrolled (unmanageable) outbreak (Section 5.3), that is,
an outbreak where the strength of combined control measures is insufficient to
eliminate the disease from the population. The use of appropriate control measures
can keep the outbreak burden within bounds and may reduce total cost on public
health over time. In an uncontrolled outbreak, the value of the isolation rate (σ)
was fixed at 0.13 per day (i.e., time to isolation 7.5 days) so that Rc is significantly
greater than one.

In both scenarios, we started the simulation at t0 = 0 signifying the start of
implementation of control strategies. The results are stated for the three sets of
initial conditions (or three cases). The first set of initial conditions correspond
to the situation in which the simulations start with 10 infectious individuals (i.e.,
I(0) = 10) and twice the number of exposed individuals (i.e., E(0) = 20) and a
population of N − 30 susceptibles (i.e., S(0) = N − 30). Although Hong Kong’s
rigorous first stage of quarantine measures were implemented (on March 29, 2003)
only after a cumulative 806 cases [37] were known, we do not take this number as
our initial value of the I class. This is because SARS in Hong Kong started as a
nosocomial infection (transmitted mainly in hospitals for the month of March) but
it was not until the spread of infection in communities that quarantine measures
were implemented. Our model does not take into account this differentiation. Since
our aim is to compare quarantine strategies numerically we chose a smaller value
of I(t0 = 0) using Taiwan data, i.e., we take I(0) = 10. There were 10 known
SARS infected individuals in Taiwan when their Level A quarantine measures were
implemented (March 18, 2003) [38]. The second set of initial conditions that are
considered in the simulation include 100 infectious individuals (i.e., I(0) = 100)
while S(0) = N −100. This situation resembles the case during the SARS outbreak
in Toronto where the first stage of rigorous control measures was implemented in
the week of March 23 to 30, when almost 100 cases were known. The third set of
initial conditions included only one infectious individual in the whole population
(i.e., S(0) = N − 1) which was the case in many countries that got their first case
much later than the first SARS case in the world (like Germany first case on 9-Mar-
03, France on 21-Mar-03, India on 25-Apr-03, etc.; WHO online Global Alert and
Response Report, 21 April 2004). These countries were using quarantine measures
well before the arrival of their first case. The first two sets of initial conditions were
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only used in the controlled outbreak whereas all three sets (or cases) were taken in
the uncontrolled outbreak.

Control policies are implemented at the beginning of the simulations (at t0 = 0).
In reality, the timing of interventions, t0, is always greater than zero and delays in
implementation of interventions can have devastating effects [10, 14, 15]. Since our
aim here is to compare strategies that are applied for the same period of time, we
do not evaluate the effects of the delay in implementation of such policies. Disease
burden and total implementation costs (using Equation (5)) (that is, the cost of
quarantine and isolation) are evaluated at time T (defined earlier in Section 4.1).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

ρ
1

 σ  

R
c
<1

R
c
>1

 

 

β = 0.23
β = 0.25
β = 0.27

0.173
0.188

0.143

0.323
0.283

0.353

(a) Strategies I and I0̂: Curve Rc(ρ1, σ) = 1

on (ρ1, σ)-plane (ρ1 is quarantine and σ is iso-
lation parameter). Critical values of ρ1 and σ

are shown in the figure.

0 0.5 1 1.5 2 2.5

10
−1

10
0

σ

R
c

Threshold Line, R
c
=1

 

 

β = 0.23
β = 0.25
β = 0.27

0.152
0.173
0.192

(b) Strategies II and III: Rc curve versus σ with

critical rate of isolation indicated in the graph.

Figure 3. Effect of control-rates on control reproduction number
for three values of β.

4.3. Effects of quarantine and isolation on the control reproduction num-
ber. In this section we evaluate the impact of control rates on the control repro-
duction number (Rc). Rc depends on the quarantine rate and on the isolation rate
in case of Strategy I but for Strategies II and III it is independent of the quarantine
rate because the last two strategies are prevalent dependent and at the start of an
outbreak there are only a few infectious individuals thus, ψ(0) ≈ 0. Choosing the
critical values for the control-rates that make Rc less than one gives a threshold for
disease elimination.

We plot the curves Rc = 1 in the (ρ1, σ) plane using three different values for
the transmission coefficient β when contact tracing is independent of outbreak size
(Strategies I and I0̂, Figure 3(a)). The minimum effort needed to eliminate the
disease as a result of the implementation of both control measures can be estimated
from these plots. For example, if β = 0.25/day (β-estimate for SARS outbreak
in Hong Kong), the graph suggests that in the absence of contact tracing and
quarantine (ρ1 = 0), an isolation rate (σ) of at least 0.173 per day (i.e., time to
isolation 5.7 days or less) must be maintained to eliminate the disease from the
population. In the absence of isolation measures (σ = 0), a contact tracing rate
(ρ1) of at least 0.323 per day (i.e., quarantine traced contacts in 3 days or less) is
needed for the elimination of the disease. Stronger control efforts are required to
eliminate an infectious agent from the population when the strength of mixing (β)
goes up. When contact tracing depends on outbreak size (Strategies II and III)
and β = 0.25, an isolation rate of at least 0.173 per day (i.e., average isolation time
5.7 days or less) is required to eliminate the disease. Increases in the transmission
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coefficient, β, result in an increase in the minimal isolation rate needed for disease
elimination (see Figure 3(b)).

Single policies of either quarantine or isolation can be sufficient, if they are high
enough to bring Rc below one. However, the implementation of single intervention
at high rates is expensive or not feasible. For example, high isolation rates may
be impossible to implement unless new facilities are created “instantly”. However,
the joint implementation of quarantine and isolation policies may provide a better
alternative at a reasonable cost. The selection of the “best” weighted quarantine
and isolation approach depends on the ability to identify (in a timely fashion)
key epidemiological factors such as infectiousness or susceptibility and, of course,
resource availability.
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5. Impact of strategies. In this section, we explore disease burden in terms of the
cost associated with the implementation of mixed control strategies of quarantine
and isolation in a simplistic setting. The goal is to develop a framework that allows
us to explore epi-economics issues. The model variants described in Section 2 are
random tracing strategies (i.e., Strategies I, II and III), where E and S individuals
are quarantined at the same per-capita rate and a fixed-efficiency tracing strategy
(i.e., Strategy Ik̂), where S and E are quarantined at different but related per-
captita rates (with tracing efficiency of 1

k̂
). k̂ = 0 corresponds to the case of perfect

tracing (i.e., Strategy I0̂). The strategy with only isolation as a control measure is
the baseline strategy. We evaluate the use of strategies from the above pool when
put into effect over controlled and uncontrolled outbreak scenarios.
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5.1. Effect of each of the control strategies, controlled outbreak. The total
numbers of new cases produced, number of disease deaths, total number put in
quarantine and number of patients isolated are calculated using various quarantine
and isolation rates that are put in place at t0 = 0 and that remain in place until
t = T . The first set of the initial conditions are taken in this section.

Table 3. Disease burden from the control policies defined by var-
ious strategies. The disproportionate cost of quarantine is a conse-
quence of our decision to use a linear cost function.

Strategy ρi Time to Number of Number of Quarantining Isolation
Extinction New Cases Deaths Cost in US$ Cost in US$
(T days) (Z(T)) (Y(T)) (p1L1(T )) (p2L2(T ))

I 0.02 100 101 53 1.824×109 10.63×104

I 0.20 23 25 14 2.129×109 2.607×104

I 0.30 17 19 10 2.075×109 2.055×104

II 0.002 137 131 66 1.055×109 13.58×104

II 0.020 49 39 25 2.114×109 4.015×104

II 0.030 36 28 19 2.086×109 2.993×104

III 0.2 117 104 55 1.472×109 10.79×104

III 2.0 31 26 17 2.061×109 2.655×104

III 3.0 22 19 12 1.980×109 2.031×104

Table 4. Disease burden from the control policies defined by
Strategy Ik̂.

Strategy ρ1 Time to Number of Number of Quarantined Isolation
Ik̂ Extinction New Cases Deaths Cost in US$ Cost in US$

(T days) (Z(T)) (Y(T)) (p1L1(T )) (p2L2(T ))

k̂=0 0.02 98 102 54 2242 10.5×104

k̂=0 0.20 30 34 20 4056 2.58×104

k̂=0 0.30 22 25 14 4209 2.04×104

k̂=49 0.02 98 102 54 1.12×105 10.5×104

k̂=49 0.20 29 34 19 2.03×105 2.58×104

k̂=49 0.30 23 26 14 2.10×105 2.04×104

The baseline strategy (isolation only) shows that an isolation rate of greater
than σc is needed for eventual extinction of a disease. Note, when σ ≤ σc, the
total number of individuals isolated is theoretically infinite since the outbreak does
not die out (Rc ≥ 1). Increases in σ from σ0 to, for example, 0.35/day (average
isolation time 1/σ = 2.9 days) reduce the total number of individuals isolated from
990 to 52 before the disease dies out (Figure 4). In other words, a 50% reduction
in the average time of diagnosis (potentially very difficult or expensive to achieve)
reduces the number of isolated by a factor of 19. The total number of isolated cases
(and hence cost) decreases monotonically with σ (Figure 4). The cost (Equation
(5)) associated with the exclusive use of isolation when σ = σ0 (that is, when the
average time before the isolation of infectious individual is 5.7 days on the average)
is $1.24M, while the exclusive cost of isolation when σ = 0.35/day is only $0.07M.
That is, cost reduces by a factor of 17. Of course, this example shows the assumption
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that the cost is proportional to the number of isolated cases is unrealistic, since the
cost of doubling σ to about 2σ0 is missed by the cost functions. Doubling such rate
may require a tremendous increase in the number of medical personnel or facilities
needed. If such facilities did not exist or were unavailable then there would be
no way of doubling the effective σ even with an effective logistic plan. Delays, of
course, can be catastrophic.

Typically, the isolation of all latent and infectious individuals may be impossible
with the total costs likely to increase in a nonlinear way. Hence, policies that look
at the joint effect of quarantine and isolation may be more cost effective. Here, we
explore the impact of increasing the rate of quarantine for fixed σ-values (given in
Table 2).
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Figure 5. Variation in total cost as a function of ρi (for i=1,2,3)
and σ. Even though total cost appears to approach 0 at ρi = 0, it
is actually bounded away from 0 with minimum total cost of order
105 for any σ value. The minimum value of σ taken in this graph
is 0.173 (i.e., σ0 and Rc < 1 for σ ≥ σ0). Strategies I, II and III all
show similar trends.

We found that increases in the quarantine rates have the same qualitative effect
(but different quantitative effects) on each random tracing strategy, and that the
total numbers of new cases, deaths and time to extinction decrease monotonically
with respect to ρi. This decrease in ρi is fast at first and then gradual. The total cost
of control measures is initially dominated by the costs associated with quarantine.
We see that as ρi increases, total cost rises to a peak (critical value) and then
decreases (Figure 5). Table 3 summarizes the above results obtained by simulating
the models. For a fixed average isolation time of 4.85 days, the peak in total cost
occurs at ρ1 = 0.073/day (cost=2.28B), ρ2 = 0.021/(person × day) (cost=2.12B),
and ρ3 = 1.09/day (cost=3.24B) for Models I, II, and III, respectively. When σ is
larger, the cost peak shifts to higher values of ρi (see Figure 5). That is, the faster
we isolate infectious patients, the less important quarantine is as a control.
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On the other hand, simulations of Strategy Ik̂ show that total cost (Equation (5))
is dominated by quarantine costs for low contact tracing efficiency and by isolation
at high contact tracing efficiency. The breaking point, threshold efficiency, lies at
approximately k̂ = 45. That is, tracing efficiencies that satisfy 1

k̂
> 1

45 or k̂ < 45
(better than 1 to 45) result in monotonic decreases in cost as ρ1 increases. (Figure
6). That is, increasing the quarantine rate (effort) always results in a lower total
cost over the entire outbreak. The above analysis also applies to the case of perfect
tracing (k̂ = 0). On the other hand, for tracing efficiency 1

k̂
< 1

45 or k̂ > 45
(worse than 1 to 45), total cost initially experiences fast increases in ρ1 but the
rate of growth decreases significantly for larger values of ρ1 (Figure 6). Increases in
the isolation rate σ result in decreases in the breaking point (threshold efficiency)
value of k̂. In other words, faster isolation rates result in reduced cost benefits
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from increases in the quarantine effort for a fixed contact-tracing efficiency. Table 4
collects representative results (low and high tracing efficiencies) for Model Ik̂. Since
the same number of exposed individuals is being quarantined in each case, k̂ is seen
to have no effect on the number of cases and deaths and just a minor effect on
outbreak duration. The total costs incurred following fixed efficiency strategies are
comparable to those given for Strategy I in Table 3, i.e., the impact felt on the
total cost was of the order of US$104 for perfect tracing (k̂ = 0), about US$105 for
inefficient tracing (k̂ = 49, tracing efficiency 2%) and US$109 for random tracing
(Model I).

Table 5. Comparison of models based on values of contact tracing
parameters for which the total cost is $1 billion. The total cost
of the baseline, isolation-only intervention is $0.21M (i.e. when
σ = 0.206). The value of the contact tracing carrying capacity, K,
in Strategy III is chosen as 100.

Controlled outbreak: E(0)=20, I(0)=10, S(0)=N-30 and parameter estimates from Table 2
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I, II, III 0 392 6.75 3.68 0 0
no isolation ×106 ×106

I, II, III 0 193 202 98 0 166 ... (baseline) ...
I 0.0066 145 152 76 6.10 125 -25.12 -24.89 -22.74 $19.4M
II 0.0019 140 132 68 6.22 109 -27.06 -34.36 -30.21 $14.3M
III 0.2009 139 131 67 6.30 108 -27.83 -34.59 -31.44 $14.4M

5.2. Cost comparison, controlled outbreak. We normalize the total cost of
control measures for each model variant to compare the extent to which each strat-
egy reduces the severity of the outbreak. Normalization is carried out by setting
a total cost on control measures that is higher than the total cost (US$1.24M)
obtained using the baseline strategy and a linear cost function that results from iso-
lation rate of σ0. Here, we set the total cost of US$1 billion (109) so that substantial
and noticeable comparisons can be made from the selection of distinct quarantine
and contact tracing strategies. Using parameter values from the Table 2, a $1 bil-
lion cost is achieved using the parameters ρ1 ≈ 0.0066 per day, ρ2 ≈ 0.0019 per day
per person and ρ3 ≈ 0.2009 per day in Strategy I, II and III, respectively (Figure
7(a)). The relative effectiveness of random tracing (Strategies I, II, and III) is com-
pared only for these values of ρi, i=1,2,3. Using the above values of ρi, i=1,2,3,
the comparisons are carried out in two ways: by evaluating percentage improvement
in health effects (reduction in cases, deaths and time to extinction) [42] and by
performing cost-effectivenss analysis on the models, in relationship to the baseline
strategy.

Percentage improvements in health-effects (or health benefits) of random tracing
(Strategies I, II and III) over the baseline are presented in Table 5. Strategy III
seems to be the best strategy in this scenario as percentages of reduction in number
of cases, and in deaths and also improvement in time to extinction is the best for it.
However, in general, which strategy makes the best use of resources depends upon
the goal of the control policy, i.e., whether the aim is to reduce cases, deaths or



COST ANALYSIS OF QUARANTINE STRATEGIES 705

time to extinction. For example, if we keep everything the same but change initial
conditions to second set then the best strategy depends on the goal. In this last case,
if the goal is to reduce the time to extinction then Strategy I turns out to be the
winner (greatest improvement in time to extinction 17.16%). Furthermore, if the
aim is to reduce deaths or cases then Strategy II (% improv. of 26% for cases and
23% for deaths) provides the best strategy followed by Strategy III (% improv. of
25% for cases and 22% for deaths). Strategy II incorporates substantial early health
benefits because of additional early tracing. Moreover, the delay in implementing
control strategies (as can seen by the increased change in initial conditions) can
reduce percentage improvement. Strategy I leads to more cases, deaths and isolated
patients but quarantines fewer people. This effect is observed because with Rc < 1,
I(t) is a decreasing function, and as a result prevalence-dependent Strategies II and
III quarantine more people early and fewer people late (Figure 7(b)).
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Figure 8. Plots of the ICE ratio when success is each additional
case (left panel) or death (right panel), prevented. Intersection
points represent the critical values of ρi where respective Strategies
have the same ICE ratios.

Using the ρi values from the arbitrary and artificial $1 billion scenario, the dif-
ferential cost of averting each additional death, is computed for each model (see last
column of Table 5, calculated using Equation (6)). These values are high because
random tracing strategies overestimate the cost and because we have chosen to use
an artificial scenario and a highly simplified cost function. The mere purpose of
using such high values is to compare control strategies and not to quantify total
cost. If κ = $14.35M (as defined in Equation (7)) then Strategy II is the only cost
effective model as incremental cost-effectiveness (ICE) ratio of Strategy II is less
than κ (see last column of Table 5). In our example with a $1 billion scenario all the
three random tracing models are cost-effective if κ ≥ $19.4M. Strategy II has the
largest d value for κ ≥ $14.3M among all cost-effective strategies and hence is the
‘most’ cost-effective. ICE ratios based on reducing total deaths ($43.5M, $32.4M,
and $32.5M per death averted for Strategies I, II and III, respectively with respect
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to the baseline strategy) give similar results. In the case when second set of initial
conditions are used, the ICE ratios are $20.0M (Strategy I), $12.0M (Strategy II),
and $12.3M (Strategy III) to avoid each additional death and $8.92M (Strategy I),
$5.29M (Strategy II), and $5.43M (Strategy III) per case averted. This suggests
that the ICE ratio per additional death will be much higher than the corresponding
ratio for cases, which seems to be obvious. We also varied ρi, i=1,2,3 to see their
effects on the ICE ratio for random tracing strategies (Figure 8). Once the value
of κ is known, comparison of strategies using the ICE ratio from the graphs can be
done when effectiveness is measured by reduction in a case or a death.
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Figure 9. Percentage reduction in number of cases when the ran-
dom tracing models are evaluated from the baseline strategy in
uncontrolled outbreak.

5.3. Cost comparison, uncontrolled outbreak. In this scenario, we consider a
slower rate of isolation, i.e., σ = 1/7.5 per day (instead of 1/4.85 which was used
in the controlled outbreak scenarios). In general, it takes time to create new health
facilities and hence it may be difficult to change the isolation rate in a short span
of time. The policies captured by three random tracing strategies may be helpful
in such circumstances as tracing and quarantining can be applied more or less
instantaneously. Therefore we compare the random tracing strategies for a given
total cost on control measures (US $500 million) for a fixed time frame and isolation
rate. This cost although high was chosen because of the reason discussed earlier,
that is, artificial scenario, parameter estimates from various unrelated sources and a
use of highly simplified cost function. For each model and a pre-chosen time (T ), the
contact tracing parameter that resulted in a total cost of 500 million dollars was
computed. This estimate of contact tracing parameter was used to compute the
total number of cases, deaths, isolated and quarantined individuals. This process
was repeated 17 times for T varying from 30 through 510 days with increments of 30
days. Results from the baseline strategy (isolation-only policy) with an isolation rate
of 1/7.5 per day were also noted. Percentages of reduction in total number of cases,
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disease deaths and isolated individuals from the baseline model were computed for
each of the three random tracing models at fixed T and total cost. Variations in
percentages of improvement of total cases, disease deaths and isolated individuals
showed similar trends (see Figure 9 for trends in improvement in cases for the first
(and third) set of initial conditions). We also tried the second set of initial conditions
and found qualitative behavior similar to the results obtained using third set of
initial conditions. We found that benefits from the quarantine strategies decrease
with increases in initial number of the exposed individuals.

Results suggest that the greatest reduction in cases, deaths and isolated indi-
viduals can be obtained by the use of the control policy captured by Strategy I
(Figure 9). This is because, for a given cost, as prevalence increases initially during
an uncontrolled outbreak, early quarantining does not provide benefit, contrary to
the analogous situation under a controlled outbreak. The disease burden is highest
during the initial stage of an epidemic outbreak and so in order to obtain opti-
mal control benefits (in such kinds of outbreak), resources are needed the most
in the starting phase. This is well captured by Strategies II and III, since these
are prevalence-dependent. However, in an outbreak where a selected control policy
is insufficient to contain the disease quickly, the best benefits are obtained from
control mechanisms that are independent of prevalence size, as is the case under
Strategy I. For uncontrolled outbreaks the disease becomes endemic after some time
or the prevalence stabilizes at a fixed range in spite of control policies. Resources in
this last situation must spread out equally over time rather than the policy of more
early than later. This situation is well captured by the control policies via Strategy
I.

6. Discussion. Isolation and quarantine may be the only large scale tools available
to epidemiologists and public health officials during the early spread of an emerging
disease. By examining SARS data from Hong Kong, Riley et al. [45] concluded that
public health measures carried out during the 2003 outbreak were effective (obvi-
ous, for example, from the Toronto analyses in [14, 15]). Riley et al. noted that
the Hong Kong epidemic was already under “control” in early April (2003), that is,
each case was failing to replace itself. These authors argued that the main reason
for the success of these policies came from significant reductions in the contact rates
between infectious individuals and the rest of the population. Of course, reductions
of contacts are a function of improved control measures in hospitals, effective quar-
antine of those exposed to infection, and from voluntary reductions in population
contacts from the population as a whole. Increases in the hospitalization rates of
patients played a role, but it was not the main control mechanism. It is thought
that SARS’s control measures were successful because of the implementation of
rigorous (sometimes extreme) and widespread contact tracing/quarantine policies.
The economic impact associated with the implementation of such control measures
including hospitalization, on the other hand, was huge.

Our goal here is to understand the economic implications associated with the
joint implementation of quarantine and isolation strategies. We use a “general”
model to quantify the impact of reducing the severity of an outbreak, as a func-
tion of the relative cost incurred in the implementation of these strategies, in the
context of a disease like SARS. In particular, we asked, what levels of quaran-
tine and isolation can eliminate an outbreak, and how are they linked to cost?
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We have carried out a cost analysis via a simple compartmental model using vari-
ous contact tracing/quarantine functions but fixed isolation strategies. Quarantine
strategies are studied broadly using three variants in the model, different contact
tracing/quarantine functions. The impact of the prevalence-dependent contact trac-
ing efforts of Strategies II and III are contrasted with the constant-effort quarantine
measures in Strategy I. The effects of resource limitations incorporated in Strategy
III are compared with the results from an unlimited resource scenario in Strategy
II. Since random contact tracing (incorporated in Strategies I, II and III) tends to
underestimate the efficiency of contact tracing and overestimate the cost then in
order to address cost scale we considered a fixed-efficiency tracing or proportionate
random tracing scenario (Strategy Ik̂). In Strategy Ik̂, susceptibles are quarantined
at a rate k̂ times higher than the rate at which exposed are quarantined, thus mak-
ing 1/k̂ the efficiency of the contact tracing. We also study a special case of Strategy
Ik̂, “perfect tracing” (Strategy I0̂), in which no susceptibles are placed in quarantine
(that is, k̂ = 0).

Our model exhibits classical threshold behavior in terms of the control reproduc-
tion number Rc and the basic reproduction number, R0. The value of R0 for the
Hong Kong SARS outbreak was estimated as 3.22. That is, the SARS coronavirus,
if uncontrolled, would have infected a large segment of the population [14, 15, 27].
Analysis shows that while single policies (quarantine or isolation alone) can be suf-
ficient to control an outbreak, the high single-policy control rates necessary to do
so may be too expensive (and resource-intensive) to implement. Contact tracing
and quarantine reduce the number of patients isolated but increases the levels of
inconvenience to the general population. Since isolation costs more, by an order of
magnitude, than the cost of quarantine and since it takes time to construct isolat-
ing facilities, the use of a joint quarantine-isolation policy may be more beneficial.
The selection of the “best” weighted quarantine and isolation integrated approach
depends on the availability of resources and the ability to identify key epidemio-
logical factors in a timely way during an outbreak. In this study, we consider the
joint implementation of quarantine and isolation policies when quarantine strategy
varies across model variants with isolation strategy kept fixed.

We have observed that in random tracing, for low isolation rates the total cost
initially increases as contact tracing/quarantine efforts are increased. But after
the contact tracing/quarantine rate passes a critical value, the total cost decreases
with further increases in the rates and regardless of the resource-allocation strategy.
Hence, past its critical value, we can maximize the quarantine rate needed to reduce
the disease burden quickly when the constraint for public health authorities is total
cost rather than cost (or effort) per time. Under fixed-efficiency tracing, however,
we found that for a sufficiently effective contact tracing program (here higher than 1
in 45, but these are rough estimates) the total costs always decrease monotonically
with increases in contact tracing/quarantine rate, even at low levels.

A concept of cost-effectiveness have been introduced to quantify and compare
the cost of achieving a unit of health-benefit (for example, reduction of a case or
a death) under various quarantine strategies (Strategies I, II and III) in a con-
trolled outbreak scenario. It was found that for our set of data Strategy II is the
most cost-effective, followed (somewhat closely) by Strategy III. These results are
sensitive to changes in the amount that the health department is willing to spend
for each unit of increase in benefits. Our results suggest only a modest reduction
in control effectiveness from Strategy II to III. It should be noted, however, that
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the principal advantage of the use of prevalence-dependent effort strategies over
Strategy I’s constant-effort strategy is their increased effort at the beginning of an
outbreak. When the control reproduction number is less than one, the number of
infectives decreases steadily over time, effectively “front-loading” contact-tracing
efforts (see Strategy I’s relatively muted response, Figure 7(b)). This result should
not be misinterpreted through the suggestion that a limited response at the begin-
ning of an outbreak, when prevalence is still growing is best. Rather, the lesson
learned is that the greatest need for resources is early in the outbreak (assuming the
control measures are effective enough to contain the outbreak) when the number of
susceptibles is large and the disease transmission process is most effective.

We also simulated an uncontrolled outbreak where control measures only pro-
vided marginal relief to the general population. This outbreak is studied by fixing
total cost on control measures across strategies. Since the isolation rate cannot be
improved significantly over a short period of time, the aim was to understand which
contact tracing strategies (Model variants I, II or III) can give the best health
benefits. Results suggest that for a given cost the best control policy is defined
by Strategy I as the resources are equally distributed throughout the outbreak in
this model. However, Strategies II and III require distribution of resources based on
prevalence which becomes less variable after some time in an uncontrolled outbreak.

Finally, we identify some limitations of this study. Our cost analysis provides
rough cost estimates based primarily on random tracing, which grossly overesti-
mates the likely real cost of implementing control measures. A more realistic per-
spective could have been achieved through the use of a nonlinear cost function.
Our model captures the average characteristics of control measures and so do not
provide an explicit contact-tracing structure. One way to consider such a structure
would be to take into account an individual-based model but then analytical work
on such models will be difficult to establish. Fears caused by widely-publicized word
of an outbreak may result in significant behavioral changes in the general popula-
tion, such as those seen during the SARS outbreak, but behavioral changes have
not yet been incorporated into these models (but see [18]). However, it is worth
stressing that the main goal of this work was to provide theoretical frameworks
where financial problems in the field of epidemiology can be addressed using dy-
namical models. We focused on costs and benefits associated with implementation
of various control strategies. We identified some critical trends, and it is our hope
that the theoretical results obtained from the simple models of control strategies in
this study will stimulate further interest in developing an epi-economics theory.
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Appendix. The initial value problem modeled by System (1) is well defined when
supplemented with non-negative initial conditions. In the absence of the disease, the
population size N approaches the carrying capacity. Since Ṅ = Λ−µN−δ1I−δ2Q1
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can be written as Ṅ ≤ Λ − µN , solutions starting in the positive orthant R7
+

eventually enters the subset of R7
+ defined by:

D := {V = (S,Q1, E,Q2, I, Q3, R) ∈ R7
+ : V ≥ 0, N ≤ Λ

µ
}. (8)

Thus, it suffices to consider solutions in the region D. Hence, the solution of our
initial value problem starting in D exists and is unique on a maximal interval [0, b)
for some b > 0. Since solutions remain bounded in the positively invariant region
D, the maximal interval is [0,∞). Thus the initial value problem is well posed both
mathematically and epidemiologically (using Proposition A.1 and Theorem A.4 in
[55]). Strategy Ik̂ for k̂ > 0 is not well posed and hence model analysis will exclude
the analysis of Strategy Ik̂ when k̂ > 0. This strategy is used to show the differences
in the results.

We find that the disease-free equilibrium (DFE) is

(S∗, Q∗1, E
∗, Q∗2, I, Q

∗
3, R

∗) =
(

Λ
µ

(µ+ θ)
(ψ(0) + µ+ θ)

,
Λ
µ

ψ(0)
(ψ(0) + µ+ θ)

, 0, 0, 0, 0, 0
)
.

Note that the component corresponding to Q1 in the DFE will be zero for Strate-
gies II and III, as ψ(0) = 0 for the two strategies. The DFE for Strategy I0̂ is

(S∗, E∗, Q∗2, I, Q
∗
3, R

∗) =
(

Λ
µ , 0, 0, 0, 0, 0

)
which lies in R6

+ whereas DFE of Strategy

I lie in R7
+. The control reproduction number for Strategy I0̂ matches corresponding

expression of Strategy I. If Rc < 1 then DFE for the Strategies I, II, III and I0̂ are
globally asymptotically stable and if Rc > 1 then as the DFE becomes unstable a
unique stable endemic equilibrium appears in all strategies. Proof is given below.

Lemma 6.1. The DFE of Strategies I, II and III are locally asymptotically stable
if Rc < 1 and unstable if Rc > 1.

Proof. The Jacobian of the general system (includes Strategies I, II and III) at the
disease-free equilibrium is

J |DFE =



−d1 θ 0 0 −(β + ψ′(0)S∗) 0 0
ψ(0) −d2 0 0 ψ′(0)S∗ 0 0

0 0 −d3 0 β 0 0
0 0 ψ(0) −d4 0 0 0
0 0 γ1 0 −d5 0 0
0 0 0 γ2 σ −d6 0
0 0 0 0 α1 α2 −d7


, (9)

where d1 = µ+ψ(0), d2 = µ+θ, d3 = µ+γ1+ψ(0), d4 = µ+γ2, d5 = µ+δ1+α1+σ,
d6 = µ+ δ2 + α2, and d7 = µ.

Since the above Jacobian matrix is sparse, by inspection the matrix has the
following eigenvalues:

−d7, −d6, −d4.

Hence we can reduce the matrix to

J̃ |DFE =


−d1 θ 0 −(β + ψ′(0)S∗)
ψ(0) −d2 0 ψ′(0)S∗

0 0 −d3 β
0 0 γ1 −d5

 .
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Note that J̃ |DFE splits into two 2× 2 sub matrices. They are as follows:

J̃1 =
[
−d1 θ
ψ(0) −d2

]
, (10)

J̃2 =
[
−d3 β
γ1 −d5

]
. (11)

Matrix (10) has negative trace and positive determinant and therefore its eigen-
values will have negative real parts. Matrix (11) has negative trace, so when
Rc = βγ1

d3∗d5 < 1, its determinant will be positive, and hence all eigenvalues of J̃2

will have negative real part. Therefore if Rc = βγ1
d3∗d5 < 1 all eigenvalues of matrix

(9) have negative real parts. This implies that the disease-free equilibrium is locally
asymptotically stable. If Rc > 1 then matrix (11) has a positive real eigenvalue and
this means that the disease free equilibrium is unstable.

Remark: Similarly it can shown that the all eigenvalues of the jacobian of the
Strategy I0̂ at DFE will have negative real parts if Rc = βγ1

d3∗d5 < 1. This implies
that the DFE is locally asymptotically stable if Rc < 1. If Rc > 1 then jacobian
has at least one positive real eigenvalue and this means that the DFE is unstable.

Theorem 6.2. For any positive solution of (1) the DFE is globally asymptotically
stable, if Rc < 1.

Before we prove Theorem 6.2, we need the following definitions and propositions
(the proof of the propositions can be found [55]).

Definition 6.3. Let f : D ⊆ < → <. Define,

f∞ = lim sup
x→∞

f(x) and

f∞ = lim inf
x→∞

f(x).

Proposition 1. Let f : D ⊆ < → <, where D contains ∞
1. If f∞ = f∞ then limx→∞ f(x) exists and

lim
x→∞

f(x) = f∞ = f∞.

2. For any sequence sn →∞ we have,

f∞ ≤ lim inf
n

f(sn) ≤ lim sup
n

f(sn) ≤ f∞.

Proposition 2. (Fluctuating lemma) Let f : [b,∞) → < be bounded and differen-
tiable. Then there exist sequences sk, tk →∞, such that:

f(sk) → f∞, f
′
(sk) → 0, as k →∞

f(tk) → f∞, f
′
(tk) → 0, as k →∞

Proof of Theorem 6.2: Note that

Ṅ = Λ− µN − δ1I − δ2Q3 ≤ Λ− µN

⇒N ≤ N(0)e−µt +
Λ
µ

(1− e−µt)

⇒ lim sup
t→∞

N ≤ Λ
µ

(12)
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Thus the global attractor of the system is contained in the feasible region D.
Since S(t) +Q1(t) +E(t) +Q2(t) + I(t) +Q3(t) +R(t) = N(t) and all of S, Q1,

E, Q2, I, Q3 and R are non-negative, it follows that they are all bounded functions
for t ε <. In addition, we have assumed that S(t), Q1(t), E(t), Q2(t), I(t), Q3(t) and
R(t) are differentiable functions.

The equation for Ė in (1) implies,

Ė ≤ βI − (µ+ γ1 + ψ(0))E (13)

as S
(S+E+I+R) < 1 and by monotonicity of ψ i.e. ψ(0) ≤ ψ(I) for all I ≥ 0. Now by

Proposition 2, we can choose a sequence en such that Ė(en) → 0 and E(en) → E∞,
also by Proposition 1 we know, lim supn I(en) ≤ I∞. Therefore

0 ≤ βI∞ − (µ+ γ1 + ψ(0))E∞ as n→∞ (14)

⇒ E∞ ≤ β

(µ+ γ1 + ψ(0))
I∞ (15)

Again by Proposition 2, we can choose a sequence in such that İ(in) → 0 and
I(in) → I∞. In addition, by Proposition 1 we know, lim supnE(in) ≤ E∞. There-
fore the equation of İ becomes,

0 ≤ γ1E
∞ − (µ+ δ1 + α1 + σ)I∞ as n→∞. (16)

⇒ I∞ ≤ γ1

(µ+ δ1 + α1 + σ)
E∞. (17)

Using (15) in (17) we get,

I∞ ≤ βγ1

(µ+ γ1 + ψ(0))(µ+ δ1 + α1 + σ)
I∞. (18)

Now since Rc < 1, i.e. βγ1
(µ+γ1+ψ(0))(µ+δ1+α1+σ) < 1, therefore I∞ = 0 and hence

lim
t→∞

I(t) = 0 (by Proposition 1). (19)

Hence, by inequality (15), we have E∞ ≤ 0, which implies that

E∞ = 0 as E(t) ≥ 0, ∀t.

⇒ lim
t→∞

E(t) = 0 (20)

Since I, and E tends to 0 as t → ∞ therefore by inspection of System (1) and
using Theorem 1.5 in [54] (the dynamics of the reduced system by substituting E
and I zero will be same as the original system for large time [36]), Q2 → 0, Q3 → 0
and R → 0. Also depending on the strategy S and Q1 will tend to appropriate
expressions as n→∞. �

Theorem 6.4. Consider the system (1). If Rc > 1, then there exists a unique
positive endemic equilibrium with values,
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S∗ = (Λ−m1a(I∗)bI∗)M(I∗) (21)

Q∗1 = (Λ−m1a(I∗)bI∗)
(
ψ(I∗)
d

)
M(I∗) (22)

E∗ = (m1 b)I∗ (23)
Q∗2 = [m3 η b ψ(I∗)] I∗ (24)
Q∗3 = m2 [σ + η b ψ(I∗)] I∗ (25)
R∗ = (ξ1 + ξ2 m2 [σ + η b ψ(I∗)]) I∗ (26)

and I∗ is given by the solution of the equation

[β−m1ba(I
∗)][Λ−m1ba(I

∗)I∗]M(I∗) = m1ba(I
∗){m1b+1+ξ1+ξ2 m2 [σ + η b ψ(I∗)]}I∗

(27)

where a(I∗) = µ + γ1 + ψ(I∗), b = µ + σ + δ1 + α1, c = µ + δ2 + α2, d = µ + θ,
M(I∗) = d

µ(d+ψ(I∗)) , h = µ + γ2, η = γ2
γ1h

, m1 = 1
γ1

, m2 = 1
c , m3 = 1

γ2
, ξ1 = α1

µ ,
ξ2 = α2

µ .

Proof. Equilibria can be found by equating the right hand side of the system (1) to
zero.

0 = Λ− ψ(I)S − µS + θQ1 − β
SI

(S + E + I +R)
(28)

0 = ψ(I)S − (µ+ θ)Q1 (29)

0 = β
SI

(S + E + I +R)
− (µ+ γ1)E − ψ(I)E (30)

0 = ψ(I)E − (µ+ γ2)Q2 (31)

0 = γ1E − (µ+ σ + δ1 + α1)I (32)

0 = σI + γ2Q2 − (µ+ δ2 + α2)Q3 (33)

0 = α1I + α2Q3 − µR (34)

If we assume I∗ 6= 0 then we obtain endemic equilibria. From equation (32) we get

E∗ = m1bI
∗ (35)

where m1 = 1
γ1

and b = µ+ σ + δ1 + α1.

Substituting (35) in (31) we get,

Q∗2 = m3ηbψ(I∗)I∗ (36)

where h = µ+ γ2, η = γ2
γ1h

and m3 = 1
γ2

.
Using (33) and (36) we get,

Q∗3 = m2 [σ + η b ψ(I)] I∗ (37)

where m2 = 1
c .

Substituting (37) in (34) we get

R∗ = (ξ1 + ξ2 m2 [σ + η b ψ(I∗)]) I∗ (38)
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where ξ1 = α1
µ and ξ2 = α2

µ .

Equation (29) results in,

Q∗1 =
ψ(I∗)S∗

d
(39)

where d = µ+ θ.
Adding equations (28) and (30) we get,

Λ− ψ(I)S − µS + θQ1 − (µ+ γ1)E − ψ(I)E = 0 (40)

Substituting (35) and (39) in (40) yields,

S∗ = M(I∗)[Λ− a(I∗)bm1I
∗] (41)

where M(I∗) = d
µ(d+ψ(I∗)) and a(I∗) = µ + γ1 + ψ(I∗). Hence, equation (39) be-

comes,

Q∗1 =
ψ(I∗)M(I∗)[Λ− a(I∗)bm1I

∗]
d

(42)

On substituting (35) in (30) results,

βS∗ = m1ba(I∗)[S∗ + E∗ + I∗ +R∗] (43)

Using values of S∗, E∗ and R∗ from equations (41) (35) and (38) in (43) we get
following equation in I∗,

[β−m1ba(I
∗)][Λ−m1ba(I

∗)I∗]M(I∗) = m1ba(I
∗){m1b+1+ξ1+ξ2 m2 [σ + η b ψ(I∗)]}I∗

(44)

Since ψ(I∗) is an increasing function of I∗, the right hand side of equation (44) is
an increasing function of I∗ ≥ 0 which is zero for I∗ = 0 and goes to ∞ as I∗ →∞.

On the other hand, M(I∗), [Λ − m1ba(I∗)I∗] and [β − m1ba(I∗)] are decreas-
ing functions of I∗ ≥ 0. Since Rc > 1 i.e. [β − m1ba(0)] > 0, therefore as
a function of I∗ ≥ 0 the left hand side of (44) is strictly decreasing with value
(Rc − 1)m1a(0)bM(0)Λ at I∗ = 0 and becoming zero at some I∗. This happens
when either the first or second factor of left hand side of (44) becomes zero.

If from Equation (44),

β −m1b(µ+ γ1 + ψ(I)) = 0

⇒β −m1b(µ+ γ1)
m1b

= ψ(I).
(45)

Since ψ is monotonically increasing function, it follows that it’s inverse exists. We
set Î = ψ−1(β−m1b(µ+γ1)

m1b
). Note β−m1b(µ+γ1)

m1b
> 0.

If supI ψ(I) = ψ̂ <∞ for all I (that is ψ is bounded) and if β−m1b(µ+γ1+ψ̂) > 0
then β −m1b(µ+ γ1 + ψ(I)) = 0 has no solution. In this case we set Î = ∞.

If from Equation (44), Λ−m1b(µ+γ1 +ψ(I))I = 0 ⇒ Λ
m1b

= (µ+γ1 +ψ(I))I =:
f(I). We set Ĩ = f−1( Λ

m1b
). So I∗∗ = min (Î , Ĩ). It follows that Equation (44) has

only one solution for I in the interval (0, I∗∗). �
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