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Abstract. Relationships between local stability and synchronization in net-
works of identical dynamical systems are established through the Master Sta-
bility Function approach. First, it is shown that stable equilibria of the local
dynamics correspond to stable stationary synchronous regimes of the entire
network if the coupling among the systems is sufficiently weak or balanced (in
other words, stationary synchronous regimes can be unstable only if the cou-
pling is sufficiently large and unbalanced). Then, it is shown that [de]stabilizing
factors at local scale are [de]synchronizing at global scale again if the coupling is
sufficiently weak or balanced. These results allow one to transfer, with almost
no effort, what is known for simple prototypical models in biology and engi-
neering to complex networks composed of these models. This is shown through
a series of applications ranging from networks of electrical circuits to various
problems in ecology and sociology involving migrations of plants, animal and
human populations.

1. Introduction. We focus in this paper on the relationships between local stabil-
ity and synchronization in networks of identical dynamical systems. No constraints
are imposed on the topology of the networks and on the dimension and dynamics
of the systems. By contrast, the interactions among the systems are assumed to be
linear and symmetric not only because this simplifies the analysis but also because
this is the case of interest in many applications of population dynamics where the
interactions among the systems represent migration flows among various regions or
patches.

In such networks complete synchronization is always possible because if all sys-
tems are in the same initial state, then all natural interactions are fully balanced and
all systems remain synchronous forever since they are governed by the same equa-
tions. This implies that the network can remain forever in a synchronous regime
where all systems evolve on the same local attractor, repellor, or saddle, as if they
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were in isolation. However it is not guaranteed that these synchronous regimes are
stable. In fact even when all systems are evolving on the same attractor a small
perturbation of the state of one or more systems can give rise to a transient that
brings the network toward a completely different regime. For example, in-phase syn-
chronous mechanical or electrical oscillators can lose their synchrony after a small
perturbation and end up into a chaotic regime or into a periodic but out-of-phase
regime ([1], [2]).

Various methods exist for the analysis of the stability of the synchronous regimes,
but two of them are particularly effective. The first, known as Master Stability
Function (MSF) approach [3], is, for generic networks, a necessary and sufficient
condition for local stability, while the second, known as Connection Graph Method
[4], is based on Liapunov functions and is a sufficient condition for global stability.
Here we use the MSF approach that can be applied to all possible synchronous
regimes (stationary, periodic, quasi-periodic, and chaotic).

The aim of the paper is to establish a bridge between the local dynamics of
the systems and the rate of convergence toward synchronous regimes. This is con-
ceptually important but also very useful because the dynamics of many simple
prototypical models in biology and engineering are already well understood while
almost nothing is known on the synchrony of networks composed of these models.
More precisely, we show that the factors stabilizing [destabilizing] local attractors
accelerate [delay] the convergence to synchronous regimes. In other words, we show
that stabilizing [destabilizing] factors at the local scale have the property of enhanc-
ing [attenuating] synchrony at the global scale. This sort of principle, that can be
shortly stated by saying that “[de]stabilizing factors are [de]synchronizing”, is valid
for weak coupling but holds true also for large couplings provided all state variables
have roughly the same weight in forming the interactions among the systems. Most
likely the principle is valid for any type of attractor (equilibria, limit cycles, tori,
and strange attractors) but, in any case, its proof is rather different in each case be-
cause there is not a unique way of defining what is a stabilizing factor for each kind
of attractor. For this reason we consider in this paper only the case of stationary
synchronous regimes where all systems are exactly at (or close to) the same stable
equilibrium, while the extension of the principle for the other synchronous regimes
will be discussed elsewhere.

The paper is organized as follows. In the next section we define the class of net-
works we consider and recall the basic features of the MSF approach. Then, in the
third section we derive the principle “[de]stabilizing factors are [de]synchronizing”
and in the fourth one we prove its usefulness through the analysis of six problems
taken from biology, engineering, and sociology. The value and limitations of the
principle, as well as some open problems, are shortly discussed in the last section.

2. Network synchronization and master stability
function. The networks we consider in this paper are composed of N identical and
linearly interacting systems. Each system i (i = 1, 2, . . . , N) has n state variables
which are the components of a n-dimensional vector x(i). The network is described
by

ẋ(i)(t) = f(x(i)(t)) + d
∑

j∈Si

H
(

x(j)(t) − x(i)(t)
)

, i = 1, 2, . . . , N (1)
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where ẋ(i)(t) = f(x(i)(t)) is the local model, namely the equation governing the dy-
namics of an isolated system; Si is the set of systems directly connected to system i
(i.e. the neighborhood of i); d is the coupling strength; and H = diag [h1, h2, . . . , hn]
(with hl ≥ 0 for all l, and

∑n
l=1 hl = 1) is the coupling profile, i.e. a constant diag-

onal matrix specifying the relative weights of the state variables in the interaction
term. This form of the matrix H is the one which is most frequently used in pop-
ulation dynamics ([5], [6], [7], [8]). More complex H matrices could be considered
but the analysis would become more difficult.

Solutions of (1) characterized by

x(1)(t) = x(2)(t) = . . . = x(N)(t) ∀t (2)

are called synchronous solutions. As a matter of fact, when (2) holds at time t = 0,
all the interactions dH(x(j)(t)− x(i)(t)) in (1) vanish for all t, and the dynamics of
each system is simply governed by ẋ(t) = f(x(t)). Notice that this is possible thanks
to the assumption that all systems are identical. When (2) holds, the trajectory
of system (1) is confined to a n-dimensional linear manifold Ω called synchrony
manifold. It is of utmost importance to assess whether the synchronous solution
(2) is stable, i.e. whether system (1) converges to (2) from any nearby initial state
(local synchronization) or from any state (global synchronization).

Through straigthforward manipulations, equation (1) can be rewritten as

ẋ(i)(t) = f(x(i)(t)) − d

N
∑

j=1

gijHx(j)(t), i = 1, 2, . . . , N

where the N×Nconnectivity matrix G = [gij ] describes the topology of the network.
More precisely, for i 6= j, gij = gji = −1 if systems i, j are directly connected and
gij = gji = 0 otherwise, whereas gii = −

∑

j 6=i gij is the degree of system i, i.e.
the number of systems directly connected with i. To avoid degeneracies, we assume
that any pair of systems is connected either directly or through a chain of systems.
Thus G is a real, symmetric and irreducible matrix ([1], [9]). In addition, all off-
diagonal elements are non-positive, and each row has zero-sum. As a consequence,
the eigenvalues µi of G are real and

0 = µ1 < µ2 ≤ µ3 ≤ . . . ≤ µN .

Given a network, i.e. a connectivity matrix G, the local stability of the synchrony
manifold Ω can be ascertained by looking at the evolution of the differences (x(i)(t)−
x(1)(t)) , i = 2, 3, . . . , N , which are described, after negleting the higher-order terms
in the Taylor expansion, by a (n × (N − 1))-dimensional linear system with time
varying Jacobian matrix given by

J =







∂f
∂x − d(g22 − g12)H · · · −d(g2N − g1N )H

...
. . .

...

−d(gN2 − g12)H · · · ∂f
∂x − d(gNN − g1N )H







Through a suitable change of coordinates based on the eigenvectors of the matrix
G, it can be shown [3],[6] that this Jacobian matrix is equivalent to a block-diagonal
matrix with matrices [(∂f/∂x)− dµiH ], i = 2, 3, . . . , N , on the diagonal. Such ma-
trices describe the dynamics of the network close to the synchrony manifold. Thus,
if the largest Liapunov exponents of these matrices, denoted by L[(∂f/∂x)−dµiH], are
negative, i.e.

L[(∂f/∂x)−dµiH] < 0, i = 2, 3, . . . , N (3)



626 STEFANO FASANI AND SERGIO RINALDI

then the synchronous solution (2) is locally stable.
Conditions (3) can easily be checked by using any standard algorithm [10] for

the computation of the largest Liapunov exponent of each time varying matrix
[

∂f

∂x
− µidH

]

, i = 2, 3, . . . , N

where ∂f/∂x is evaluated along a solution of ẋ = f(x). These matrices depend
upon the local model f , the coupling profile H , and the product µid. Given f and
H , one can therefore consider the parameterized family of n × n matrices

A =

[

∂f

∂x
− εH

]

(4)

with ε > 0, and denote by L(ε) the largest Liapunov exponent of each element
of the family. The function L(ε) is known as Master Stability Function (MSF)
[3] and is very useful for discussing the impact of the local characteristics on the
synchronization of the network.

In particular, if (ε, ε) is an interval where L(ε) < 0 and

µN

µ2
<

ε

ε
(5)

the synchronous solution is stable for

1

µ2
ε < d <

1

µN
ε

i.e. synchrony can be obtained for suitable values of the coupling strength. It is
worth noticing that (5) is always satisfied in fully connected networks, because in
that case all positive eigenvalues of G coincide.

The most interesting synchronous solutions one can study with the MSF approach
are those in which x(i)(t) in (2) is an attractor of the isolated system ẋ = f(x).
In such cases, the negativity of L(ε) reveals that after any small perturbation the
network returns to the synchronous solution at the exponential rate exp(L(ε)t).
Thus, lower (negative) values of L(ε) imply a faster convergence to the synchronous
regime.

3. Stabilizing factors enhance synchronization. From now on we limit the
discussion to networks in stationary synchronous regimes, namely to networks in
which all systems are at the same equilibrium x, satisfying f(x) = 0. The MSF
approach is particularly simple in this case because the matrix A in (4) is time-
invariant and L(ε) is nothing but the real part of the dominant eigenvalue of A.
Moreover, we restrict our attention to hyperbolic stable equilibria x, i.e. we assume
that the Jacobian matrix (∂f/∂x)x has eigenvalues with negative real part and
denote with λ the real part of the dominant eigenvalue.

Under these assumptions, for small values of ε the eigenvalues of A are close to the
eigenvalues of (∂f/∂x)x so that L(ε) is close to λ, and hence L(ε) < 0. By contrast,
for large values of ε, if hi 6= 0 ∀i, i.e. if all state variables appear in the interaction
term, the eigenvalues of A are close to −hiε so that L(ε) is approximately equal
to − (mini(hi)ε) and hence L(ε) < 0. Finally, if the coupling profile is sufficiently
balanced, i.e. if the weights hi of the state variables in the interaction term are
roughly equal to 1/n, then the eigenvalues of A are approximately equal to the
eigenvalues of (∂f/∂x)x shifted to the left of an amount ε/n, so that L(ε) ∼= λ−ε/n,



LOCAL STABILIZATION AND NETWORK SYNCHRONIZATION 627

Figure 1: Example of a non decreasing MSF for three different coupling profiles
(h = 0, 0.1 and 0.2). See text for details.

and hence L(ε) is negative for all ε (recall that λ < 0) and decays linearly with ε.
All we said is summarized by the following obvious result.

Theorem 3.1. If x is a stable hyperbolic equilibrium of ẋ = f(x) (i.e. the Jacobian
matrix (∂f/∂x)x has a dominant eigenvalue with negative real part (λ < 0)), then
the MSF L(ε) is

i) negative for small values of ε
ii) negative for large values of ε if all state variables influence the interaction

(hi 6= 0 ∀i)
iii) negative for all values of ε and decreasing linearly with ε if the weights of the

state variables in the interaction term are balanced (hi = 1/n ∀i).

Point i) of Theorem 3.1 says that any stable equilibrium x of the isolated system
ẋ = f(x) is associated to a stable synchronous stationary regime in the network if
the coupling strength is sufficiently small. Although point iii) suggests that L(ε)
decreases with ε, i.e. that coupling strength reinforces synchronization, this is not
always true as shown in Figure 1 which reports the MSF L(ε, h) for three small
values of h in the case

(

∂f

∂x

)

x

=

[

3 −4
4 −5

]

H =

[

h 0
0 1 − h

]

Figure 1 actually points out that the stationary synchronous regime can become
unstable when the coupling strength is sufficiently increased. This is a well known
phenomenon often called Turing instability ([11], [12], [13]) in the context of PDE
models, where the change of sign of the MSF is associated with the loss of stability
of the constant and uniform solution of the PDE and with the emergence of spatio-
temporal patterns including standing, traveling, and spiral waves [14].
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Figure 2: Example of a stabilizing factor which is desynchronizing at high coupling
strengths. The curves are plotted for p = 0.1, 0.6 and 1. See text for details.

Let us now consider systems with dynamics depending continuously upon a pa-
rameter p, i.e. ẋ = f(x, p), so that the equilibrium x is a function of p and assume
that the equilibrium x(p) does not bifurcate in a given parameter range and there-
fore remains hyperbolic. Under this assumption, we can identify the subintervals
where p is a stabilizing factor, as those where ∂λ/∂p < 0, while in the remaining
subintervals the parameter is a destabilizing factor because ∂λ/∂p > 0. The sense
of this definition is that any small increase of a stabilizing[destabilizing] factor p,
accelerates[delays] the convergence toward the equilibrium x(p) in the isolated sys-
tem ẋ = f(x, p) (recall that in the vicinity of the equilibrium the convergence is
described by the exponential function exp(λt)). In order to avoid possible misun-
derstandings it is important to notice that when an isolated system has multiple
stable equilibria a parameter can be stabilizing for some of them and destabilizing
for the others.

Since the parameter p has also an influence on the MSF it is natural to define
as synchronizing[desynchronizing] factors those for which ∂L/∂p < 0 [∂L/∂p > 0].
Thus, a parameter p is a synchronizing[desynchronizing] factor if a small increase of
p accelerates[delays] the convergence of the network toward the synchronous station-
ary regime. In conclusion, stabilizing[destabilizing] factors accelerate[delay] the dy-
namics at local scale while synchronizing[desynchronizing] factors accelerate[delay]
the dynamics at global scale. Of course, one would expect that accelerations[delays]
of the local dynamics imply accelarations[delays] of the global dynamics and, in-
deed, this turns out to be the case under relatively weak assumptions specified in
the following theorem.

Theorem 3.2. ([de]stabilizing factors are [de]synchronizing)
If x(p) is a stable hyperbolic equilibrium of ẋ = f(x, p) (i.e. the Jacobian ma-
trix (∂f/∂x)x has a dominant eigenvalue with negative real part (λ(p) < 0)),
then if p is a stabilizing[destabilizing] factor (i.e. ∂λ/∂p < 0 [> 0]) then p is
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a synchronizing[desynchronizing] factor for ε sufficiently small (i.e. for low cou-
pling strength) and for any ε if the coupling profile is almost balanced (i.e. if
hi

∼= 1/n ∀i).

Proof. If p is increased of a small amount ∆p, then λ(p) varies of an amount approx-
imately equal to (∂λ/∂p)∆p. But for small ε, L(ε, p) is in a ε-neighborhood of λ(p),
while L(ε, p+∆p) ∼= L(ε, p)+(∂L/∂p)∆p is in a ε-neighborhood of λ(p+∆p). Since
for ε sufficiently small the two neighborhoods have no point in common, ∂L/∂p and
∂λ/∂p have the same sign. Moreover, if the coupling profile is perfectly balanced
(hi = 1/n ∀i), then the eigenvalues of A in (4) are the eigenvalues of (∂f/∂x)x

shifted to the left of an amount 1/n. Thus, the eigenvalues of A vary with re-
spect to p exactly as the eigenvalues of (∂f/∂x)x. By continuity, one can conclude
that (∂L/∂p) is approximately equal to (∂λ/∂p) if the coupling profile is almost
balanced.

Theorem 3.2 suggests that stabilizing factors might be desynchronizing for high
coupling strengths when some of the state variables are dominant in the interaction
term. Figure 2 shows this possibility for a system with

(

∂f

∂x

)

x

=

[

−2 + exp(−p) 0
0 −3 − exp(−p)

]

H =

[

1 0
0 0

]

in which p is stabilizing but not synchronizing for large values of ε.

4. Examples. We show in this section how Theorem 3.2 can be effectively applied
to detect the role that some parameters have on the dynamics of the entire network
when their influence on the local dynamics is known. One example is taken from
electrical engineering, while the others refer to plant, animal, and human popula-
tions migrating among various regions. In two examples out of six the coupling is
small, while in the remaining ones it is balanced. We anticipate that in most cases
the principle “[de]stabilizing factors are [de]synchronizing” holds true even when it
is not guaranteed by Theorem 3.2, i.e. when the coupling is large and unbalanced.

4.1. Example 1 (antagonism and fanaticism). Increased human migratory
flows among various regions in the world have stressed the interest in the role played
by migration on the evolution of antagonistic cultures. Particularly considerable,
in this context, is the case of cultures characterized by some degree of fanaticism,
that in extreme cases can give rise to religious wars and terrorism. Some of these
cultures are supported by groups of fanatics that would smoothly go extinct if they
would not have opportunities to fight against each other. Actually, stronger are
the opponents of group i and higher is the recruitment of new members in the i-th
group. A näıve model that captures this perverse mechanism of interaction among
two groups of dimension x1 and x2 in a given country is the following

ẋ1 = −α1x1 + β2x2 (6)

ẋ2 = β1x1 − α2x2

where exp(−αit) is the rate at which the i-th group decays in the absence of op-
ponents and βi is a measure of the fear for group i. Model (6) is linear, and has a
unique equilibrium x, namely the origin (absence of fanaticism). The corresponding
Jacobian matrix

(

∂f

∂x

)

x

=

[

−α1 β2

β1 −α2

]
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is stable if and only if α1α2 > β1β2 : thus the product of the fears β = β1β2 is
a destabilizing factor. Under the assumption that the migration rates of the two
groups are the same, we can immediately deduce from Theorem 3.2 that β is a
desynchronizing factor, i.e. the convergence to the state of no fanaticism in any
network of connected countries is slower if the fears are higher.

It is interesting to note that the same result holds true even if the coupling profile
is not balanced. In fact the matrix A given by (4), namely

A =

[

∂f

∂x
− εH

]

=

[

−α1 − εh β2

β1 −α2 − ε(1 − h)

]

is a Metzler matrix and has two real eigenvalues, say L and l. Moreover, L, being
an eigenvalue of A, must satisfy the equation

L2 − (trA)L + (detA) = 0

from which it follows that

2L
∂L

∂β
−

∂(trA)

∂β
L − (trA)

∂L

∂β
+

∂(detA)

∂β
= 0

But the trace of A does not depend on β, while ∂(detA)/∂β = −1 so that (notice
that 2L − trA = L − l)

(L − l)
∂L

∂β
= 1

Since L > l it follows that L is always increasing with β, i.e. β is always a desyn-
chronizing factor.

4.2. Example 2 (competition). The most common model in competition theory
is the Lotka-Volterra bilinear model

ẋ1 = x1(K1 − x1 − q1x2) (7)

ẋ2 = x2(K2 − x2 − q2x1)

where x1 and x2 are the densities of two competing populations, K1 and K2 are
their carrying capacities (i.e. their equilibria in the absence of competitors), and
q1 and q2 are the so-called competition coefficients. Since model (7) can not have
limit cycles (this follows immediately from Bendixson-Dulac Theorem ([15], [16]))
its attractors are only equilibria. In particular, for qi < 1, i = 1, 2, and

q1K2 < K1 <
K2

q2
(8)

the model has a unique and globally stable equilibrium x in the positive quadrant
[17]. Under condition (8) the non-trivial isoclines of the model intersect at the
positive equilibrium x while the two trivial equilibria (K1, 0) and (0, K2) are saddles,
as shown in Figure 3. Thus for K1 approaching q1K2 (left extreme of the range (8))
the stable equilibrium x tends toward the trivial equilibrium on the x2 axis, while
for K1 approaching K2/q2 (right extreme of the range (8)) the stable equilibrium x
tends toward the saddle point on the x1 axis. Thus, the two extremes of the range
(8) correspond to two transcritical bifurcations, so that K1 first stabilizes and then
destabilizes the equilibrium x. If we assume that the two competing populations
have the same tendency to migrate (h = 1/2 in the H matrix), then we can conclude
from Theorem 3.2 that K1 is first a synchronizing and then a desynchronizing
factor. This means that in any network of connected regions a small increase of K1
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Figure 3: Non-trivial isoclines of model (7): x is the unique globally stable equilib-
rium while the three other equilibria (open circles) are unstable.

accelerates[delays] the convergence of the entire network toward the synchronous
stationary regime if K1 is close to the left[right] extreme of the range (8).

4.3. Example 3 (harvesting). One of the basic questions in the context of nat-
ural resources management is to identify the impact of harvesting on the dynamics
of exploited ecosystems. Perhaps the most interesting case is that of resource-
consumer-predator systems in which the consumer and the top predator popula-
tions are harvested at costant effort. One example of this kind, is that of hares and
lynx fur production in Northern Canada where the lynx is the main top predator
of a complex three level food chain composed of plants, herbivores and carnivores
([18]). But many are also the examples of aquatic ecosystems like sardines-tuna and
plankton-whales. The simpliest model in this context is the ditrophic food chain
model proposed long ago by Rosenzweig and McArthur

ẋ1 = x1

(

r(1 −
x1

K
) −

ax2

b + x1

)

(9)

ẋ2 = x2

(

e
ax2

b + x1
− (mo + mh)

)

where x1 and x2 are prey and predator densities, r and K are net growth rate
and carrying capacity of the prey, a and b are maximum predation rate and half
saturation constant of a Holling-type II predator, e is predator efficiency, namely
the number of predator new-born for each unit of predation flow, and (mo + mh) is
total predator mortality, i.e. the sum of basic mortality mo and mortality due to
harvesting mh. Both prey and predator can migrate among neighboorhing patches
and even if the migration rates of the two populations are not the same, they are
both important so that the coupling profile can be assumed to be relatively balanced.
Under these assumptions we can apply Theorem 3.2 and immediately conclude that,
no matter how the structure of the network is, harvesting is [de]synchronizing if it
is [de]stabilizing the equilibrium of model (9).
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Figure 4: Non-trivial isoclines of model (9): x is the unique globally stable equilib-
rium while the two other equilibria (open circles) are saddles.

But the stability properties of model (9) and the role played by harvesting can
easily be established (see, for example, [19]). In fact, as shown in Figure 4, the
non-trivial prey isocline ẋ1 = 0 is a parabola intersecting the x1-axis at points −b
and K, while the predator isocline ẋ2 = 0 is a vertical straight line shifting to
the right when the harvesting mh is increased and intersecting the x1-axis at point
b(mo + mh)/(ea − mo − mh). Thus, there is a unique positive equilibrium x if the
vertical isocline intersects the parabola in the positive quadrant and the analysis
of its Jacobian matrix shows that x is unstable if the predator isocline is on the
left of the vertex of the parabola and stable otherwise. Moreover, a more detailed
analysis ([20]) allows one to check that the transition of x through the vertex of the
parabola is a supercritical Hopf bifutcation, while the collision of the equilibrium
x with the saddle (K, 0) is a transcritical bifurcation. Thus, the harvesting effort
mh has first a stabilizing and then a destabilizing effect on the equilibrium x in the
range

K − b

K + b
ea − mo < mh <

K

K + b
ea − mo

and the conclusion is that in the same range harvesting is first synchronizing and
then desynchronizing.

4.4. Example 4 (mutualism). Mutually beneficial interactions between members
of different species play a central role in ecology ([21]). Here we consider the case of
a spatially extended two-species obligate mutualism where both species can migrate
through corridors connecting various patches. Each species has a phenotypic trait
u that measures the rate at which commodities (i.e. a reward like nectar or a
service like pollination) are provided to the partner and provision of commodities
is assumed to be costly in terms of reproduction or survival. Since commodities
provided by either species represent a limited resource for the partner species, there
is intraspecific competition for commodities [22]. Thus, the model of each isolated
patch is the following (see [23] and [24] for more details)
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(a) (b)

(c)

Figure 5: MSF’s of model (10) in the range [u1, u1] of the mutualistic trait of the
first species for three different coupling profiles: (A) only species 1 migrates; (B)
both species migrate at the same rate; (C) only species 2 migrates. Functions and
parameters are fixed at the values used in [23], namely ri(ui) = 0.1(ui+u2

i ), i = 1, 2;
u2 = 40; c1 = 1; c2 = 2; α1 = α2 = 0.035 and the curves are plotted respectively for
ε equal to 0, 200, 400. Note that all curves are first decreasing and then increasing
with respect to u1, i.e. u1 is first synchronizing and then desynchronizing.

ẋ1 = x1 (−r1(u1) − c1x1 + u2x2(1 − α1x1)) (10)

ẋ2 = x2 (−r2(u2) − c2x2 + u1x1(1 − α2x2))

where uixi is the probability per unit time that an individual of species j 6= i
receives a benefit from the mutualistic interaction, while the terms (1 − αixi) and
−cixi measure the detrimental effect of intraspecific competition for commodities
provided by the partner species and for other resources. The mutualism being
obligate, the intrinsic rate of increase −r(u) is negative and r(u) is increasing with
u to reflect the cost of producing commodities. A standard analysis of model (10)
shows that the extinction state x1 = x2 = 0 is always a locally stable equilibrium.
Depending on the trait values u1 and u2, there may also exist two positive equilibria,
one being stable (node) and the other being unstable (saddle). The transition
between the two cases (zero or two equilibria apart from the extinction state) is
caused by a saddle-node bifurcation. Thus, both u1 and u2 are first stabilizing and
then destabilizing the stable equilibrium x corresponding to persistent mutualistic
interactions. This implies through Theorem 3.2 that u1 and u2 are first accelerating
and then delaying the convergence to the synchronous permanent regime of the
entire network of patches if the coupling is small and/or balanced.



634 STEFANO FASANI AND SERGIO RINALDI

In some important cases of mutualistic interactions, like those among insects and
plants, the coupling can be quite large and mainly due to one of the two partner
species. In such cases the conditions of Theorem 3.2 are not satisfied and some
extra-work is needed to check if [de]stabilization implies [de]synchronization also
for high and unbalanced couplings. Figure 5 shows a typical result obtained in this
case for the particular system analyzed in [23]. In this figure u1 and u1 are the
extremes of the range of existence of the stable permanent regime and the curves
corresponding to ε = 0 show the dependence of the dominant eigenvalue of the
Jacobian matrix (∂f/∂x)x upon the parameter. Since all curves are first decreasing
and then increasing, the figure clearly points out that in this case “[de]stabilization
implies [de]synchronization” even if the coupling is large and unbalanced.

4.5. Example 5 (pest control). Pest control is a considerable problem not only
in agriculture but also in forest management and conservation where insect pest
outbreaks can have devastating consequences. In this context, the systematic use
of insecticides is the most easily conceivable control action. A natural question
concerning spatially extended forests, where insect can disperse at small rate, is
to know if the use of insecticides has a synchronizing effect on the entire forest.
This question can be easily answered through Theorem 3.2 by imagining that the
forest is composed of many identical sites with insects migrating among neighboring
sites. Many are the models that have been proposed for single sites ([25], [19], [26],
[27], [28], [29], [30]) but spatially extended forests have never been studied through
mathematical models although insect pest outbreaks have been remarked to be
synchronous in many forests around the world ([31], [32]). Here we present a first
simple study of the problem by assuming (see [19]) that each single isolated site is

Figure 6: Qualitative sketch of non-trivial isoclinesof model (11) and correspond-
ing four equilibria (open circles are unstable): x = (K, 0) is the stable pest free
equilibrium.
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described by

ẋ1 = x1

(

r(1 −
x1

K
) − a

x2

b + x1

)

(11)

ẋ2 = x2

(

c
x1

b + x1
− d − ex2 −

z

f + x2

)

where x1 and x2 are trees and insects, r and K are net growth rate and carrying
capacity of the trees, a is maximum insect consumption rate, b is half-saturation
constant of insect functional response, c is the tree/insect conversion factor, d is
basic insect mortality, e is insect intraspecific competition, z is predation pressure
of insect enemies (assumed constant) and f is the half-saturation constant of their
functional response, i.e. the density of the insects at which the damages produced
by their enemies is half maximum. For suitable parameter values, system (11) has
four equilibria, as qualitatively sketched in Figure 6. One of these equilibria, namely
the pest free equilibrium x = (K, 0) is stable in the case shown in Figure 6, namely
when xo > K, where xo is the intersection of the non-trivial isocline ẋ2 = 0 with
the x1 axis. Trivial computations show that

xo = b
df + z

cf − df − z

so that we can immediately conclude that all factors increasing[decreasing] xo are
stabilizing[destabilizing] the pest free equilibrium at the local scale. Thus, increasing
insectivores z (biological control) or increasing insect mortality d through the use
of insecticides stabilizes the pest free equilibrium. Since, in general insect disperse
at a small rate [33], we can conclude from Theorem 3.2 that the use of insecticides
accelerates the convergence of any spatially extended forest toward the pest free
stationary regime. Obviously, this simple but remarkable result might change if
the model is modified in order to include some strategic phenomenon that is not
considered in (11).

4.6. Example 6 (electrical circuit). Consider the electrical circuit in Figure 7
where x1 is the current in the inductor and x2 is the voltage on the non-linear resistor
NL described by an istantaneous input-output characteristic function i = ϕ(x2).
This and similar circuits are known as Van der Pol circuits when the characteristic

Figure 7: Electrical circuit known as Van der Pol circuit when the nonlinear resistor
NL has a cubic characteristic.
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function ϕ is a cubic polynomial of the kind

i = −Ax2 + Bx3
2

In such a case, the system is described by

ẋ1 = −
R

L
x1 +

1

L
x2 (12)

ẋ2 = −
1

C
x1 +

A

C
x2 −

B

C
x3

2

and it is very easy to show that the circuit oscillates on a stable limit cycle if
R < AL/C, (in such conditions the circuit is called Van der Pol oscillator) while for

A
L

C
< R <

1

A
(13)

the circuit has a unique attractor, namely the equilibrium x = (0, 0). More precisely,
for R = AL/C system (12) has a supercritical Hopf bifurcation. Thus, the resistance
R is first a stabilizing and then a destabilizing factor in the range (13).

The synchrony of networks composed of identical Van der Pol oscillators has
been studied extensively in the past (see, for example, [34] and [35] for early con-
tributions), in particular in the case of weak coupling. The results in that context
are rather complex, but if we limit the analysis to the range (13) they become very
simple. In fact, under the assumption of weak coupling, from Theorem 3.2 we can
immediately derive that the resistance R is a synchronizing[desynchronizing] factor
for any network of identical Van der Pol circuits close to the left[right] extreme of
range (13).

Figure 8: If the coupling profile is unbalanced, the resistance R of the Van der Pol
circuit is not a synchronizing factor at high coupling strengths. The graph represent
the MSF of model (12) for L = 100, C = 10, A = 0.04, B = 0.18, h = 1, and for
R = 0.4, 0.7 and 1.
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By constrast, for sufficiently high coupling strengths the result is not guaranteed
if the coupling profile is unbalanced as shown in Figure 8.

5. Concluding remarks. A general class of networks composed of identical dy-
namical systems has been considered in this paper with the aim of establishing
relationships between local dynamics and network synchronization. The first result
(Theorem 3.1) is that stable equilibria of the local dynamics correspond to stable
stationary synchronous regimes of the entire network if the coupling is balanced,
i.e. if all state variables participate with the same strength in forming the inter-
actions among the systems. By contrast, the stationary synchronous regime can
be unstable (Turing instability [11]) if the coupling is sufficiently large and unbal-
anced. The second result (Theorem 3.2) is that [de]stabilizing factors at local scale
are [de]synchronizing at global scale for weak and/or balanced couplings, while for
sufficiently high and unbalanced couplings stabilizing[destabilizing] factors can be
desynchronizing[synchronizing]. Although these or similar results are valid for any
kind of synchronous regime, they have been discussed only with reference to station-
ary synchronous regimes, because the cases of periodic, quasi-periodic, and chaotic
regimes are technically quite different and will be described elsewhere.

Besides being conceptually important, our results can also be very useful, as
shown in the section devoted to a series of examples, because many simple proto-
typical models in biology and engineering are already well understood, while almost
nothing is known on the synchrony of networks composed of these models. But the
same results can also be used to establish, with almost no effort, conclusions that
would be difficult to derive through experimental studies. For example, in a recent
paper [36] Trzcinski at al. describe a rather complex experimental set-up conerning
a small protist, Bodo, that inhabites pitcher plant leaves, and occupies a central
place in the food web (feeding on bacteria and being predated by mosquito larvae).
Two are the conclusions of that study, namely i) Bodo populations with higher max-
imum rate of increase are less stable and ii) they give rise to metapopulations which
are less synchronous. Obviously, in view of Theorem 3.2, the second conclusion is
just a consequence of the first one.

The results presented in this paper can certainly be extended in various direc-
tions. In particular, networks of identical discrete-time dynamical systems, as well
as distributed parameter systems described by PDE models, should enjoy the same
properties pointed out in Theorem 3.1 and 3.2. Less obvious should be the ex-
tensions to networks in which the interactions among the systems are asymmetric
and/or time-varying (periodic or aperiodic) like in ecological systems where mi-
gration of various species can occur only in specific seasons or during rare and
random enviromental events. Finally, extensions to cases in which migration is an
active process associated to various kinds of risk (including death) are worth to be
considered but certainly not easy.

Acknowledgments. Thanks are due to F.Dercole and C.Piccardi for constructive
criticisms on a first draft of the paper.
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