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Abstract. In this paper, we formulate a three-species ecological community
model consisting of two aphid species (Acyrthosiphon pisum and Megoura vi-

ciae) and a specialist parasitoid (Aphidius ervi) that attacks only one of the
aphids (A pisum). The model incorporates both density-mediated and trait-
mediated host-parasitoid interactions. Our analysis shows that the model pos-
sesses much richer and more realistic dynamics than earlier models. Our theo-
retical results reveal a new mechanism for stable coexistence in a three-species
community in which any two species alone do not co-exist. More specifically,
it is known that, when a predator is introduced into a community of two com-
peting species, if the predator only predates on the strong competitor, it can
allow the weak competitor to survive, but may drive the strong competitor
to extinction through over-exploitation. We show that if the weak competi-
tor interferes the predation on the strong competitor through trait-mediated
indirect effects, then all three species can stably co-exist.

1. Introduction. Ecological communities are influenced by numerous direct and
indirect effects among species; these effects collectively determine community com-
position, structure and functions. Communities of herbivorous insects are complex
and their structures are influenced both by the competition for resources and by the
action of natural enemies [10], [18], [19]. Parasitoids are amongst the most abundant
of all animals; they make up about 1/10 or more of metazoan species and almost no
insect species can escape their attack [7]. Parasitoids have been intensively studied
because of their importance in the biological control of pests. The relatively simple
relationship between attack and recruitment to the next generation makes them
valuable model systems in ecology [8].

One way in which parasitoids can influence community structure is when they
attack more than one species of host, which then become dynamically linked even
if they feed on completely different resources, a phenomenon called apparent com-
petition [9]. Another way is the so-called selective parasitism, in which, parasitoids
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attack only a specific host. For instance, parasitoids only attack the superior com-
petitor of two competing hosts. This relieves the competition pressure experienced
by the inferior competitor and may change outcomes of the competition.

Historically, studies on the impacts of food web interactions to community com-
positions or structure often deal with density-mediated indirect interactions (DMIIs)
between predators and their prey. Research on this topic emphasizes the importance
of predator regulation of prey density via consumption. Some recent studies have
investigated the role played by the trait-mediated indirect interactions (TMIIs) in
shaping community structures and compositions [21], [26]. TMIIs is a new way of
considering food webs, and may have an equal or greater community-wide effect
than DMII [13], [15], [24], [23]. TMIIs are changes in the density of one species that
are caused by induced changes in one or more traits of an intervening species [20].
TMIIs occur when one species affects the dynamics of another through causing a
change in the behaviors (or other traits) of a third species [27]. Such TMIIs can
reinforce or oppose density-mediated effects and have been largely overlooked by
community ecologists.

There are many cases where a host is protected from parasitism by a third,
non-host species. The best-known example concerns aphids and also other insects
that have a mutualistic association with ants: the aphids provide honeydew for the
ants and receive protection from at least some natural enemies in return [16]. In
this paper, we investigate whether protection from natural enemies can also occur
when the third species is a competitor of the host, rather than a mutualist. Such
a situation occurs when the competition between two herbivores is asymmetrical,
and only the superior competitor is attacked by a parasitoid (this is a relatively
common occurrence, as many species of parasitoids have a very narrow host range)
[25]. Frank et al [25] discussed a three populations model including two species
of aphid (Acyrthosiphon pisum and Megoura viciae, referred to A pisum and M
viciae for simplicity) competing for the same food plant and a species of a specialist
parasitoid (Aphidius ervi, referred to A ervi) that attacks only one of the aphids (A
pisum). From laboratory and field experiments, they observed the following

• When the two aphid species compete for resources in the absence of parasitoid,
A pisum seems to be able to competitively exclude M viciae.

• The parasitoid is a solitary species that lays eggs in early-instar aphids. After
a period of arrested development, during which the aphid continues to feed
and grow, parasitoid larva consume and kill their host, and then spin a cocoon
inside the mummified skin of the aphid. A persistent interaction between the
host and parasitoid does not seem to be possible.

• When the aphid species and the parasitoid are all present, all three species
can coexist.

When three populations are all present, host aphid (A pisum) suffers the pressure of
interspecific competition in addition to facing the parasitoid’s predation. One would
expect that it exterminates more quickly than in the absence of its competitor. The
field and laboratory observations, however, point to the opposite. To understand
possible mechanisms underlying in the third situation, Frank [25] proposed a new
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Table 1.1. Definition and value of state variable and parameters

Symbol Definition Value[25]

x(t) density of the host aphid A pisum at time t

y(t) density of the non-host aphid M viciae at time t

z(t) density of the parasitoid A ervi at time t

r1 the intrinsic growth rate of A pisum 3.22
r2 the intrinsic growth rate of M viciae 2.82
α11 the intraspecific competition coefficient of A pisum 3.84 × 10−4

α12 the interspecific competition coefficient of M viciae 3.70 × 10−4

α21 the interspecific competition coefficient of A pisum 3.97 × 10−4

α22 the intraspecific competition coefficient of M viciae 3.84 × 10−4

d natural death rate of the parasitoid A ervi 0.634
a maximum parasitism rate of parasitoid for host 0.281
s conversion rate of host biomass into that of parasitoid 0.5
α encounter rate between parasitoid and host 0.0233
β encounter rate between parasitoid and non-hose 0.0434
γ encounter rate between parasitoids 1.26

model that combines the Lotka-Volterra competition with predation

ẋ = r1x(1 − α11x − α12y) −
az

1 + αx
x,

ẏ = r2y(1 − α21x − α22y),

ż = −dz +
saz

1 + αx + γz
x.

(1.1)

The definitions of state variables and parameters in model (1.1) are given in Table
1.1. Model (1.1), however, fails to replicate the observed dynamics. The model
predicts that A pisum is driven to extinction by its parasitoid and this effect seems
to be accelerated by competition with M viciae [25]. They [25] argued that there
must be mechanisms more complicated than a simple combination of competition
and parasitism. Observations of parasitoid behaviors suggested that A ervi wastes
time when encountering clusters of M viciae. Although A ervi rarely attempts
to attack M viciae, when an encounter occurs, the aphid (M viciae) displays a
vigorous anti-predator response that often results in the parasitoid either being
kicked off the plant or abandoning the search for hosts in the area [25]. Selective
parasitoid attacks have been suggested to influence the outcome of competition.
Earlier experiments have demonstrated that the presence or absence of host-specific
parasitoid can determine the outcome of competition at bait stations, and that such
interactions may have a major role in structuring ant communities [5]. Werner and
Peacor give a series of aquatic examples [22]. After incorporating the effect of M
viciae into the functional response of the parasitoid, model (1.1) was modified to
the following form [25]

ẋ = r1x(1 − α11x − α12y) −
az

1 + αx + βy
x,

ẏ = r2y(1 − α21x − α22y),

ż = −dz +
saz

1 + αx + βy + γz
x.

(1.2)

Biological significance of the symbols in model (1.2) are given in Table 1.1. Pa-
rameter β can be interpreted as the time wasted when a parasitoid encounters an
unsuitable host [25].
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Model (1.2) succeeds in predicting coexistence of the three species, which is ob-
served in some cage experiments. This suggests that the stability of the community
may be due to a combination of DMII and TMII [25]. There are some shortcomings
in model (1.2): the functional response of the parasitoid in (1.2) is independent of
z and model outcomes do not fit the data set quantitatively [25]. The dynamics of
model (1.2) have not been studied theoretically.

The principal aim of the present paper is to investigate an improved version of the
three-species model (1.2), and systematically explore its rich dynamics. Through
both theoretical and numerical analysis, we are able to demonstrate that an com-
bination of DMII and TMII provides a new mechanism for stable coexistence in a
three-species community, in which any two species alone can not stably co-exist.
More specifically, it is known that, when a predator is introduced into a community
of two competing species, if the predator predates on the strong competitor, it will
allow the weak competitor to survive, but may drive the strong competitor to ex-
tinction through over-exploitation. We show that if the weak competitor interferes
the predation on the strong competitor through TMII, then all three species can
stably co-exist. This provides a theoretical basis for the field experiments on the
community of A pisum , M viciae, and A ervi in [25].

The content of the paper is organized as following. In Section 2, based on (1.2),
we develop a more reasonable host-nonhost competitor-parasitoid model and sum-
marize some basic properties of several submodels (competition, predator-prey, etc).
Section 3 is devoted to the rich dynamics of the model near the various trivial and
semi-trivial equilibria and the theoretical findings are listed as an appendix. Sec-
tion 4 studies 4 different situations in which the multiple species may or may not
coexist and reveal the mechanisms. The paper ends with some discussions and try
to place the main findings in the context of some other studies. Throughout this
paper, extensive computational results are presented to illustrate or complement
our mathematical observations and findings.

2. The model. Based on (1.2), we assume that the functional response of the
parasitoid is dependent on the density of the parasitoid and the rate at which par-
asitized host is converted into new parasitoids is directly proportional to the killing
rate and yield the following model for the A pisum-M viciae- A ervi community

ẋ = r1x(1 − α11x − α12y) −
axz

1 + αx + βy + γz
,

ẏ = r2y(1 − α21x − α22y),

ż = −dz +
saxz

1 + αx + βy + γz
.

(2.1)

Here x and y represent two competing hosts or preys (A pisum and M viciae),
and z a specialist parasitoid or predator (A ervi) that attacks only the prey x (A
pisum). Such a scenario also includes certain plants and vertebrate herbivores. The
functional response of parasitoid, ax/(1+αx+βy+γz), is of Beddington-DeAngelis
type, and can be derived by the classical Holling time budget arguments or foraging
theory [4].

Based on the biological considerations we assume that x(0) > 0, y(0) > 0, z(0) >
0, and all the parameters in (2.1) are positive. It can be verified that the positive
quadrant of R

3 is invariant with respect to (2.1).
Model (2.1) includes as special cases several different population models. If there

is no parasitoid, then (2.1) is the classical two-species Lotka-Volterra competition
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system

ẋ = r1x(1 − α11x − α12y), ẏ = r2y(1 − α21x − α22y), (2.2)

whose dynamics are determined by the intensity of intraspecific competition and
interspecific competition of the two hosts, see Table 2.2.

Table 2.2. Dynamics of Lotka-Volterra competition system

Cases Biological significance Outcomes of competition

(1) α11 > α21,
α22 < α12

Intraspecific competition is more
intense than interspecific for A

pisum, the opposite for M viciae

M viciae precludes A pisum

and wins the competition

(2) α11 < α21,
α22 < α12

Interspecific competition is more in-
tense than intraspecific for both A

pisum and M viciae

either A pisum or M viciae

can possibly win the competi-
tion depending on initial pop-
ulation sizes

(3) α11 < α21,
α22 > α12

Interspecific competition is more
intense than intraspecific for A

pisum, the opposite for M viciae

A pisum precludes M viciae

and wins in competition

(4) α11 > α21,
α22 > α12

Intraspecific competition is more
intense than interspecific for both
A pisum and M viciae

A pisum and M viciae coexist

If there is no non-host aphid, then (2.1) reduces to the predator-prey model with
Beddington-DeAngelis type functional response

ẋ = r1x(1 − α11x) −
axz

1 + αx + γz
,

ż = −dz +
saxz

1 + αx + γz
,

(2.3)

which, together with its generalization, has been extensively studied in the literature
[3], [11], [12]. From [11], [12], we know that if

d ≥
sa

α + α11
,

then the boundary equilibrium (1/α11, 0) is globally asymptotically stable (GAS).
Otherwise, (2.3) has a positive equilibrium which is GAS or has exactly one stable
limit cycle when the positive equilibrium is unstable.

The Beddington-DeAngelis functional response in (2.1) includes the Hyperbolic
functional response (β = γ = 0), also known as Holling type II, and bilinear func-
tional response (α = β = γ = 0).

3. Dynamics of model (2.1). Model (2.1) admits much richer dynamics com-
pared with (2.2) and (2.3) and has several possible equilibria: the extinction equi-
librium E0(0, 0, 0), host aphid (A pisum) survival equilibrium Ex(1/α11, 0, 0), non-
host aphid (M viciae) survival equilibrium Ey(0, 1/α22, 0). More interesting scenar-
ios include the parasitoid disappearance equilibrium Exy(x∗

1, y
∗

1 , 0) and the non-host
disappearance equilibrium Exz(x

∗

2, 0, z∗2). There is also the coexistence of the com-
munity equilibrium Exyz(x

∗

3, y
∗

3 , z∗3).
After carrying out standard qualitative analysis of the dynamics of (2.1), we

establish sufficient explicit criteria for the existence and locally asymptotic stability
of boundary steady states (see Appendix A for details). The expressions of Exyz
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Figure 3.1. Stable coexistence of A pisum, M viciae, and A ervi.
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Figure 3.2. Possible dynamics of (2.1). (a) Ex is attractor: α12 = 3.7 ×

10−4;α21 = 3.8 × 10−4; d = 0.634; s = 0.05.(b) Ey is attractor: α12 = 3.7 ×

10−4;α21 = 3.97 × 10−4; d = 0.634; s = 0.5.(c) Exy is attractor: α12 = 3.7 ×

10−4;α21 = 3.97 × 10−4; d = 0.634; s = 0.05.(d) Exzis attractor: α12 = 3.7 ×

10−4;α21 = 3.97 × 10−4; d = 0.05345; s = 0.5.

and its stability criteria are too complex to be explicitly expressed in term of the
parameters of (2.1). Our mathematical analysis provides some possible candidates
for Exyz. The deterministic nature of the model allows us to carry out systematic
numerical studies. Our numerical simulations show that A pisum, M viciae, and A
ervi can coexist at the equilibrium Exyz, see Fig. 3.1. Fig. 3.2 shows other possible
dynamics of (2.1). Our simulations are carried out using Matlab. Parameter values
used for simulations are given in Table 1.1.

Table 3.3 summarizes and depicts the rich dynamics of (2.1). In view of Table
3.3, the simultaneous extinction of all three populations will never occur since E0 is
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Table 3.3. Dynamics of (2.1)

Existence Locally asymptotic stability

E0 no condition unstable (i.e.,saddle-node)

Ex no condition α11 < α21, d >
sa

α + α11

Ey no condition α22 < α12

Exy δ(α11 − α21) > 0, δ := a11a22 − a12a21 > 0,

δ(α22 − α12) > 0 d >
sa(α22 − α12)

α(α22 − α12) + β(α11 − α21) + δ
:= d∗

Exz d <
sa

α + α11

sγ > α, d >
sa

α + α21

unstable. Such an extinction may occur in nature due to external perturbations that
are not considered in the model. If the interspecific competition is stronger than
the intraspecific competition (α21 > α11) for the host A pisum, and the parasitoid
A ervi has high death rate (d > sa/(α + α11)), then the A ervi can not effectively
suppress A pisum. As a result, A pisum preclude its competitor M viciae, and tends
to its carrying capacity; Ex is an attractor.

If the interspecific competition is stronger than the intraspecific competition
(α12 > α22) for the non-host M viciae, then M viciae precludes its competitor A
pisum even when there is no parasitoid. As a result, M viciae’s competition together
with A ervi’s predation on A pisum leads to the extinction of A pisum, and then A
ervi exterminates due to lack of prey/food. Therefore, Ey is an attractor.

The more interesting scenarios include the host-parasitoid equilibrium Exz and
the hosts-only equilibrium Exy. If the interspecific competition is stronger than the
intraspecific competition for both A pisum and M viciae (α11 > α21, α22 > α12)
and A ervi has a relatively high death rate (d > d∗), then both the host and the
non-host can coexist at Exy while A ervi exterminates due to high death rate.

If the A pisum’s interspecific competition is stronger than its intraspecific com-
petition (α21 > α11) and A ervi has moderate death rate, then A pisum and A ervi
can coexist and M viciae exterminates due to the strong competition from A pisum.
That is, Exz is an attractor.

4. Coexistence: Density-mediated and trait-mediated indirect effects. In
this section, we discuss mechanisms underlying the extinction and coexistence in the
community and impacts of parasitism on interspecific competition, with emphasis
on the roles played by density-mediated and trait-mediated indirect effects. In view
of the dynamics of the classical Lotka-Volterra two-species competition model (2.2),
we will divide our discussion into four cases (c.f. Table 2.2).

Case 1. M viciae is a dominant superior competitor in interspecific competition
when there is no parasitism.

If α11 > α21, α22 < α12, i.e., the intraspecific competition is more intense than
the interspecific competition for A pisum while the opposite for M viciae, then M
viciae wins and A pisum exterminates when there is no parasitoids (Table 2.2). If
the parasitoid A ervi is present, the situation for A pisum is worse since A pisum
suffers not only interspecific competition but also attacks from A ervi. As a result,
A pisum can not survive (Ey is attractive). In this case, the coexistence of these
three species is impossible (Table 3.3).

Case 2. Either A pisum or M viciae can possibly win in interspecific competition
depending on their initial population sizes when there is no parasitism.



610 MENG FAN, BINGBING ZHANG AND MICHAEL YI LI

If α11 < α21, α22 < α12, i.e., the interspecific competition is more intense than
intraspecific for both A pisum and M viciae, then either A pisum or M viciae can
possibly win in competition depending on initial population sizes (Table 2.2). When
there is A ervi, which attacks on A pisum and weaken the interspecific competition,
A pisum may possibly lose the dominance in the competition. When A ervi has
low death rate (0 < d < sa/(α + α11)), its parasitism can greatly weaken the
competition of A pisum. As a result, M viciae always wins in the competition and
precludes A pisum. This in turn leads to the extinction of A ervi due to a lack of
hosts. M viciae survives while A pisum and A ervi exterminates (Ey is an attractor
(Table 2.2). When A ervi has a high death rate ( d > sa/(α +α11)), the parasitism
of A ervi can not effectively weaken the competition of A pisum. As a result, both
A pisum and M viciae can win in the interspecific competition depending on initial
population levels. Both Ex and Ey are local attractors with different attractive
regions (Table 3.3).

Case 3. A pisum is a dominant superior competitor in interspecific competition
when there is no parasitism.

Now, we are at the right position to investigate the most interesting case when
α11 < α21, α22 > α12. This indicates that the interspecific competition is more
intense than intraspecific competition for A pisum while the opposite for M viciae.
When there is no parasitoid, A pisum will always preclude M viciae (Table 2.2).
In the three-species community, if A ervi has high death rate (d > sa/(α + α11)),
it can not effectively suppress A pisum. As a result, A pisum precludes M viciae.
A ervi exterminates due to high death rate. The three species can not coexist
(Fig. 4.1) and Ex is an attractor (Table 3.3). If A ervi has mediate death rate (
sa/(α + α21) < d < sa/(α + α11)), it can not effectively control A pisum and M
viciae is still precluded by A pisum. As a result, A pisum and A ervi can coexist
(Fig. 4.1) and Exz is an attractor (Table 3.3). If A ervi has low death rate (i.e.,
0 < d < sa/(α + α21)), A ervi can effectively suppress A pisum and weaken its
interspecific competition, then A pisum, M viciae and A ervi coexist (Fig. 4.1).

In this case, the parasitoid A ervi plays a key role in structuring the community
and its death rate d is a key parameter. From the bifurcation curves in Fig. 4.1, one
can see that the decrease of death rate can enhance the possibility of coexistence
of these three species. That is to say, selective parasitism on dominant competi-
tor enhances the possibility of coexistence. The reason is that the attack on the
susceptible host (A pisum) from parasitoid (A ervi) reduces the growth rate of the
superior competitor, and hence reduces the interspecific competition experienced by
the non-host (M viciae) such that the non-host competitor (M viciae) could persist,
this is the so-called density-mediated effect. This suggests that a modest decrease
in A pisum density may be sufficient to promote coexistence.

Can we conclude that the coexistence of A pisum, M viciae and A ervi is solely
determined by the density-mediate indirect effect? The answer is no. We proceed
with the discussion from a different point of view. We will investigate the impact
of the non-host aphid M viciae.

Recall that, in (2.1), β reflects the degree of interference which non-host brings
to parasitoid. From [11], [12], one knows that A pisum and A ervi coexist stably in
the absence of M viciae. In the three-species community, if β = 0 in (2.1), i.e., M
viciae is just a competitor of A pisum and has no effects on A ervi, then A pisum,
M viciae and A ervi coexist but the population sizes of A pisum and A ervi are very
small (see Fig. 4.2). A pisum is driven to very low density by parasitism, which
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Figure 4.1. Bifurcation curves against d (dynamics of saturated population
level changing with different d), which represents the impact of A ervi on the

community when A pisum precludes M viciae in the absence of A ervi: DMII.
The values of other parameters are defined in Table 1.1.

seems to be accelerated by competition with M viciae. However, these findings are
not consistent with the cage experiments in [25]. There must be relationships in
addition to DMIIs occurring in the three-species community. A pisum and M viciae
are frequently found feeding on the same host plant. Observations of parasitoid
behaviors suggested that M viciae interferes the parasitism of A ervi although A
ervi rarely attempts to attack M viciae. When an encounter occurs, M viciae
displays a vigorous anti-predator response that often results in the parasitoid either
being kicked off the plant or abandoning the search for A pisum in the area [25].
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Figure 4.2. Bifurcation curves against β (dynamics of saturated popula-
tion level changing with different β), which indicates the impact of β on the
coexistence: TMII. The values of other parameters are defined in Table 1.1.
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Figure 4.3. Bifurcation surfaces against a and β (dynamics of saturated
population level changing with different a and β), which represent the impact
of A ervi on the community when A pisum precludes M viciae in the absence
of A ervi. The values of other parameters are defined in Table 1.1 except the
bifurcation parameters.

When β > 0, the three populations stably coexist at relatively high population
levels (Fig. 4.2). For example, when β = 0.5 (Fig. 4.2), the effective interference
of M viciae with A ervi reduces the searching efficiency of A ervi, weakens the
parasitism of A ervi on A pisum and prevents A ervi from over-exploiting A pisum,
and hence A pisum increases quickly. Then A pisum asserts severe competition on
M viciae and leads to the decrease of M viciae and hence weakens the interference
of M viciae with A ervi. When M viciae is sufficiently suppressed by the superior
competition A pisum, A ervi is released from the interference of M viciae and
increases. As a result, the three populations coexist at the positive equilibrium
Exyz.

From Fig. 4.3 (e.g., β = 0.5), one can see that A ervi can over-parasitize A pisum
at very low parasitism rate when M viciae has no interference with A ervi, while,
when M viciae interferes with A ervi, it is not easy for A ervi to over-parasitize its
host since M viciae’s interference with A ervi can effectively prevent A ervi from
over-parasitizing its host A pisum. The bifurcation curves or surfaces (Fig. 4.2 and
Fig. 4.3) show that DMIIs alone is not sufficient to produce the coexistence of A
pisum, M viciae and A ervi and the stable coexistence of the full community is due
to a combination of density-mediated indirect effect: attacks on A pisum from A ervi
reduces the interspecific competition experienced by M viciae, and trait-mediated
indirect effect: the presence of M viciae alters the environmental conditions and its
interference with A ervi reduces the searching efficiency of A ervi and prevents A
ervi from over-parasitizing its host.

From Fig. 4.3, we find that, when A ervi has low maximum parasitism rate
(0 < a < d(α + α11)/s), A ervi can not effectively parasitize A pisum, and hence
eventually exterminates and A pisum precludes M viciae. When A ervi has a me-
diate maximum parasitism rate (d(α + α11)/s < a < d(α + α21)/s, A ervi can
successfully parasitize A pisum, but can not effectively suppress A pisum. As a
result, A pisum can still precludes M viciae. When A ervi has a high maximum
parasitism rate (a > d(α+α21)/s), it can successfully parasitize A pisum and effec-
tively suppress A pisum. Then the species can coexist at some positive equilibrium.
A necessary condition for the coexistence of these species is a > d(α + α21)/s (see
Table 3.3). When a > d(α + α21)/s, the interference of M viciae with A ervi is
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Figure 4.4. Bifurcation surfaces against a and β (dynamics of saturated
population level changing with different a and β), which indicate the impact of
A ervi on the community when A pisum and M viciae coexist in the absence of
A ervi. Here α11 = α22 = 3.82×10−4, α12 = 3.7×10−4, α21 = 3.8×10−4, s =
0.05 and the values of other parameters are defined in Table 1.1

positive to the coexistence of the community (see Fig. 4.3) and enhances the co-
existence. Fig. 4.3 show that the increase of maximum parasitism rate of A ervi
is positive to M viciae since the parasitism of A ervi weakens the competition of A
pisum. The increase of maximum parasitism rate of A ervi is negative to A pisum
and hence is also negative to itself due to lacking host to parasitize. The increase
of interference of M viciae with A ervi is negative to A ervi by reducing its search
efficiency, which leads to somewhat release of A pisum from A ervi’s predation.
Whence A pisum competes with M viciae more intensively. It is interesting to note
that the interference of M viciae with A ervi is positive to A pisum although M
viciae competes with A pisum for some common resources.

Case 4. Both A pisum and M viciae coexist in interspecific competition when
there is no parasitism.

If α11 > α21, α22 > α12, i.e., the intraspecific competition is more intense than
the interspecific competition for both A pisum and M viciae, then A pisum and M
viciae coexist (Table 2.2). Now assume that A ervi is in the community. When A
ervi has a high death rate (d > d∗), it can not assert effective attacks on A pisum
and can not survive. So, A pisum and M viciae coexist at Exy; Exy is an attractor
(Table 3.3). When A ervi has a low death rate, it can effectively invade A pisum
and then the three species can stably coexist (Fig. 4.4).

From Fig. 4.4 with β = 0, we find that if M viciae has no interference effect on
A ervi (β = 0), then, when A ervi has high maximum parasitism rate, A ervi can
over-parasitize A pisum and drive A pisum to very low level (almost extinction). In
this case, sufficient parasitism weakens the intensity of competition of A pisum and
leads to a quick increase of M viciae, but it can not turn M viciae from an inferior
competitor to a superior competitor to precludes A pisum, although A pisum and A
ervi’ population levels are very low (one should note that the saturated population
size is not zero). From Fig. 4.4 (e.g., β = 0.5 and β = 1), we find that, when
M viciae interferes with A ervi and assert negative impact on A ervi’s searching
efficiency (β > 0), in order to parasitize successfully and to coexist with A pisum
and M viciae, A ervi must have sufficiently high maximum parasitism rate, i.e.,
a > d[α(α22 −α12)+β(α11 −α21)+ δ]/[s(α22 −α12)], which depends on β (see Exy

in Table 3.3). Otherwise, A ervi can not successfully parasitize and A pisum and M
viciae coexist (Exy is attractive, see Table 3.3). In this case, when other parameters
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are fixed, the relationship between a and β determines whether these three species
can coexist. When A ervi has a small maximum parasitism rate a, for example, a
is greater than but close to d[α(α22 − α12) + δ]/[s(α22 − α12)], the interference of
A ervi is negative to the coexistence of three species (see Fig. 4.4 with a being a
little bit smaller than 0.2) while, when A ervi has a high maximum parasitism rate
a, the interference of A ervi is positive to the coexistence (see Fig. 4.4).

From the bifurcation surfaces in Fig. 4.4, we find that the maximum parasitism
rate a of A ervi and the interference β of M viciae with A ervi, have the same effects
on the dynamics of as those in Case 3, namely, greater a is negative to A pisum
and A ervi and is positive to M viciae, while greater β is negative to M viciae and
is positive to A pisum and A ervi.

The preceding analysis indicates that the impact of parasitism on interspecific
competition is very complicated and both density-mediated and trait-mediated in-
direct interactions between species play an important role in structuring ecological
communities.

5. Discussions.

5.1. Main findings. In this paper, based on existing models, we have developed
a plausible model (2.1) to describe the dynamics of a three-species host-nonhost-
parasitoid community, in which only the superior competitor is attacked by a natural
enemy, and to understand possible mechanisms underlying extinction and coexis-
tence of the community. Our model overcomes several model formulation problems
in earlier models. We show that (2.1) admits richer and more realistic dynamics.
Although our model is a simplified representation of real ecological communities,
neglecting, for example, spatial processes, age-structure effects, and competition
from additional host and parasitoid species, we believe that it provides a useful first
step in explaining the observed dynamics in laboratory and field experiments.

Our theoretical analysis of model (2.1) shows that a combination of density-
mediated and trait-mediated indirect effects contributes to the stability of the com-
munity although any two of three species are unable to persist. In the three-species
community considered in our model, there are two competing species in which the
superior competitor will drive the inferior competitor to extinction. When a nat-
ural predator of the superior competitor is introduced, the predation reduces the
growth rate of the superior competitor and hence reduces the interspecific competi-
tion for the inferior competitor so that the inferior competitor could survive and all
three species can co-exist (DMIIs). This is commonly known as predator mediated
co-existence [2], [17]. However, predation and competition will normally drive the
density of both competitors to very low levels, as shown in Figure 4.2 for β small.
Our new finding is the following: if the presence and behaviors of the inferior com-
petitor interfere the predation on the superior competitor (TMIIs), then all three
species can stably co-exist at relatively high population densities, as shown in Fig-
ure 4.2 for β large. Our finding provides a theoretical basis for the cage experiments
in [25]. The preferential parasitism on the superior A pisum allows the inferior M
viciae to escape from competitive exclusion, while M viciae’s behaviors interfere the
the predation of A ervi on A pisum and prevent overexploiting of A pisum.

5.2. Impacts of predation on interspecific competition. As we mentioned
previously, although we focus on an insect community and refer x, y and z to A
pisum, M viciae and A ervi, respectively, our model (2.1) can be used to model the
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predator-prey interactions with two competitive preys and one specialist predator
attacking only one of the preys. We call them prey, competitor and predator,
respectively.

Competition and predation are two basic and important interspecific interactions
in real ecosystems. Predation is one of the factors believed to have a major impact
on competitive interactions. What will happen when both competition and pre-
dation act simultaneously, as is typical in natural ecosystems? Ecologists working
with a range of organisms and environments have carried out many controlled field
experiments. These studies show that the effects of competition in the presence
of predators are less than those in the absence of predators [6]. Much remains to
be learned about the interaction between predation and interspecific competition,
both theoretically and empirically [1]. In order to understand the interaction be-
tween predation and competition, greater attention should be paid to determining
the impacts of predation on interspecific competition and to distinguish different
mechanisms by which predation alters interspecific competition among prey species
[1].

From our studies in Section 4, we arrive at the following conclusions. If α11 >
α21, α22 < α12 or if α11 < α21, α22 < α12, the predators increase the strength of
interspecific competition or promote the competition exclusion, the prey is excluded
by its competitor. Particularly, if α11 < α21, α22 < α12, then either prey or its
competitor can win the competition when there is no predator. However, when the
predators are presented, the prey is precluded by its competitor.

If α11 < α21, α22 > α12, the prey will be precluded by its competitor even when
there is no predation on the prey. When the predator appears in the community,
high enough predation can effectively suppress the prey and weaken its interspecific
competitive strength and hence enhance the possibility of the stable coexistence
of the whole community. In this case, the predator has positive effect on the sta-
ble coexistence of the community. However, the predator can overexploit its prey
and coexist with the prey at some very low population level if the competitor has
no effects on the predator. The interference of the competitor can effectively pre-
vent the predator from overexploiting its prey and increase the population level at
coexistence.

If α11 > α21, α22 > α12, then the prey and its competitor coexist in the absence
of the predator. In the three species community, TMIIs between the competitor
and the predator can effectively prevent the predator from overexploiting its prey.

To conclude, our theoretical and numerical studies show that the predators (par-
asitoid) may promote or hinder the interspecific competition, and the probability
of coexistence of the community depends on the mechanism and the details of the
process of predation (parasitism) and interspecific competition. Selective predation
(parasitism) on superior competitors can increase the chance for stable coexistence
of the community due to a combination of density-mediated and trait-mediated
indirect interactions.

5.3. Implications for biological invasion. There are interesting problems con-
cerning the possibility of invasion of alien species, and the control or eradication
of the invading alien species in order to protect native species. In the setting of
biological invasion, variables x, y and z can represent native prey, alien competitor,
and native predator, respectively.
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We discuss possible mechanisms for alien competitor’s invasion. When the alien
competitor is a superior competitor, it can successfully invade into the community
and preclude the native prey and leads to the extinction of the native predator.

When the native prey is the superior competitor or the native prey and the
alien competitor coexist in the absence of the native predator, the situation is
more interesting. If the alien competitor has no effect on the native predator,
then the native predator can overexploited the native prey and allow the alien
competitor to successfully invade. If the alien competitor has strong interference
with the native predator, and can effectively reduce the native predator’s searching
efficiency and prevent the native predator from overexploited the native prey, then
the alien competitor can also invade and coexist with the native prey and the
native predator as a community. However, the alien competitor’s interference with
the native predator reduces the chance of its invasion.

From the bifurcation surface for the alien competitor M viciae in Fig. 4.3 and
4.4, we find that the predation of the native predator can help the alien competitor
with invasion (increase of a is positive to the alien competitor) while the alien
competitor’s interference with the native predator prevents itself from invasion (the
increase of β is negative to the alien competitor). When the native prey is superior
competitor, if the predation rate a is somewhat small, the native predator can not
effectively suppress the native prey and the native prey preclude the alien competitor
and prevent the invasion of the alien competitor. To conclude, the existence of
native predator is positive to the alien competitor’s invasion while the native prey’s
competition and the alien competitor’s interference with the native predator are
negative to the alien competitor’s invasion.

Although much progress has been seen in the study of biological invasion, ecol-
ogists still pursue fundamental questions such as why some particular alien species
become widespread and abundant [14]. Several mechanisms are proposed to explain
the invasion of alien species. The most straightforward and intuitively appealing
explanation for the rapid establishment and proliferation of alien species is that
they are released from the effects of their natural enemies. This is the so-called
enemy release hypothesis. In the ecological community modeled by (2.1), the alien
competitor has no natural enemy in the community. However, the invasion of the
alien competitor is due to the weakness of native competitors instead of the lack
of natural enemies. Our proceeding discussions argue against a simple relationship
between the enemy release and the invasion or the abundance alien species.

Next, we assume that an alien competitor has successfully invaded and coexists
with the native competitor. We focus on the case that the native prey is a superior
competitor or the native prey and the alien competitor can coexist in the absence
of the native predator since the other two cases are very trivial.

The harm caused by alien invasive species is widely known, and control programs
are largely recognized as the best way to restore ecosystems [14]. When possible,
eradication is the favored approach. However, the ecological context of eradication is
very complex and there is also evidence that, without sufficient planning, successful
eradications can have many undesired and unexpected impacts [28]. Our studies
here show such a case. The control or removal of an alien competitor can possibly
release the native predator from the interference caused by the alien competitor
through the TMIIs, leads to overexploitation of the native prey and destabilizes the
whole community.
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Appendix A. Existence and local asymptotic stability of equilibria. Model
(2.1) has several possible equilibria: the extinction equilibrium E0(0, 0, 0), host (A
pisum) survival equilibrium Ex(1/α11, 0, 0), non-host (M viciae) survival equilib-
rium Ey(0, 1/α22, 0). More interesting scenarios include the parasitoid disappear-
ance equilibrium Exy(x∗

1, y
∗

1 , 0), where x∗

1, y∗

1 satisfy

1 − α11x − α12y = 0, 1 − α21x − α22y = 0, (A.1)

and the non-host disappearance equilibrium Exz(x
∗

2, 0, z∗2), where x∗

2, z∗2 satisfy

r1(1 − α11x) −
az

1 + αx + γz
= 0, −d +

sax

1 + αx + γz
= 0. (A.2)

There is also the coexistence of the community equilibrium Exyz(x
∗

3, y
∗

3 , z∗3), where
x∗

3, y
∗

3 , z∗3 satisfy

r1(1 − α11x − α12y) =
az

1 + αx + βy + γz
,

r2(1 − α21x − α22y) = 0,

−d +
sax

1 + αx + βy + γz
= 0.

(A.3)

The local stability of these equilibria is determined by the spectrum of the Jaco-
bian matrix of (2.1),

J(x, y, z) =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,

where

a11 = r1(1 − 2α11x − α12y) −
az(1 + βy + γz)

(1 + αx + βy + γz)2
,

a12 = −r1α12x +
βaxz

(1 + αx + βy + γz)2
, a13 = −

ax(1 + αx + βy)

(1 + αx + βy + γz)2
,

a21 = −r2α21y, a22 = r2(1 − α21x − 2α22y), a23 = 0,

a31 =
saz(1 + βy + γz)

(1 + αx + βy + γz)2
, a32 = −

sβaxz

(1 + αx + βy + γz)2
,

a33 = −d +
sax(1 + αx + βy)

(1 + αx + βy + γz)2
.
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In particular

J(E0) = J(0, 0, 0) =





r1 0 0
0 r2 0
0 0 −d



 ,

which leads to the claim that E0 is always an unstable saddle node.
At Ex and Ey we have

J(Ex) =











−r1 −r1
α12

α11
−

a

α11 + α

0 r2(1 −
α21

α11
) 0

0 0 −d +
sa

α11 + α











and

J(Ey) =









r1(1 −
α12

α22
) 0 0

−r2
α21

α22
−r2 0

0 0 −d









,

respectively, we thus arrive at the following results.

Proposition 1. Ex(1/α11, 0, 0) and Ey(0, 1/α22, 0) always exist. If

α21 > α11, d >
sa

α + α11
,

then Ex is locally asymptotically stable (LAS). If α12 > α22, then Ey is LAS.

Proposition 2. Let δ := a11a22 − a12a21. If

δ(α22 − α12) > 0, δ(α11 − α21) > 0,

then Exy exists. Moreover, if

δ > 0, d >
sa(α22 − α12)

δ + α(α22 − α12) + β(α11 − α21)
,

then Exy is LAS.

Proof. Solving (A.1) produces

x∗

1 =
α22 − α12

δ
> 0, y∗

1 =
α11 − α21

δ
> 0.

With the help of (A.1), one can rewrite J(Exy) to

J(Exy) =











−r1α11x
∗

1 −r1α12x
∗

1 −
αx∗

1

1 + αx∗

1 + βy∗

1
−r2α21y

∗

1 −r2α22y
∗

1 0

0 0 −d +
sax∗

1

1 + αx∗

1 + βy∗

1











.

Therefore, the assumptions of the theorem imply

a33 < 0, a11 + a22 < 0, a11a22 − a12a21 = δ > 0,

and thus all three characteristic roots of J(Exy) have negative real parts. Therefore,
J(Exy) is LAS.
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Theorem A.1. Assume that

0 < d <
sa

α + α11
,

then Exz exists. Moreover, if

sγ > α, d >
sa

α + α21
,

then Exz is local asymptotically stable.

Proof. First, we prove the existence of Exz. Note that x∗

2 and z∗2 satisfy (A.2), and
(x∗

2, z
∗

2) is the intersection of the following two curves

l1 : z =
(sa − dα)

dγ
x −

1

γ
, l2 : z =

r1s

d
x(1 − α11x).

Consider the function defined by

F (x) =
r1s

d
x(1 − α11x) −

(sa − dα)

dγ
x +

1

γ
.

We have

F (
d

sa − dα
) > 0, F (

1

α11
) < 0.

By the Intermediate Value Theorem, there exists

x∗

2 ∈

(

d

sa − dα
,

1

α11

)

such that F (x∗

2) = 0. The uniqueness of x∗

2 is obvious. In addition, it is clear that

z∗2 =
r1s

d
x(1 − α11x

∗

2) > 0.

The proof of the existence of Exz is complete.

The Jacobian of (2.1) at Exz is

J(Eyz) = J(x∗, 0, z∗) =





a11 a12 a13

0 a22 0
a31 a32 a33





where

a11 = −r1α11x
∗ +

aαx∗z∗

(1 + αx∗ + γz∗)2
, a12 = −r1α12x

∗ +
aβx∗z∗

(1 + αx∗ + γz∗)2
,

a13 = −
ax∗(1 + αx∗)

(1 + αx∗ + γz∗)2
, a22 = r2(1 − α21x

∗), a31 =
saz∗(1 + γz∗)

(1 + αx∗ + γz∗)2
,

a32 = −
saβx∗z∗

(1 + αx∗ + γz∗)2
, a33 = −

saγx∗z∗

(1 + αx∗ + γz∗)2
.

If sγ > α, we can show that

a11 + a33 = −r1α11x
∗ −

(saγ − aα)x∗z∗

(1 + αx∗ + γz∗)2
< 0,

a11a33 − a13a31 =
r1α11saγ(x∗)2z∗

(1 + αx∗ + γz∗)2
+

sa2x∗z∗

(1 + αx∗ + γz∗)3
> 0.

In addition,

a22 = r2(1 − α21x
∗) < r2(1 −

dα21

sa − dα
) = r2

sa − (α + α21)d

sa − dα
< 0.

Therefore, Exz is locally asymptotically stable.
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Next, we turn to the positive equilibrium Exyz = (x∗

3, y
∗

3 , z∗3). From (A.3), we
know that (x∗

3, z
∗

3) is the intersection of the following curves

l3 : z =
r1s

d
x

[

1 −
α12

α22
+

α12α21 − α11α22

α22
x

]

=
r1s

dα22
x(α22 − α12 − δx),

l4 : z =
1

dγ

(

sa − dα +
dβα21

α22

)

x −
1

γ

(

1 +
β

α22

)

in the first quadrant of xz plane. Here

y∗

3 =
1 − α21x

∗

3

α22

must be positive, so x∗

3 must satisfy

x∗

3 <
1

α21
.

It can be verified that l3 and l4 always have two intersections in the xz plane if
δ > 0. Using a similar arguments as in the proof of Theorem A.1, we can establish
the following result, which gives the existence of intersections of l3 and l4 in the
first quadrant of the xz plane.

Theorem A.2.

• If δ > 0, α22 > α12, 0 < x1 < x2, then l3 and l4 have a unique intersection
in the first quadrant of the xz plane with x1 < x∗

3 < x2 (Fig. A.5(a)).
• If δ < 0, α22 < α12, 0 < x1 < x2, then l3 and l4 have a unique intersection

in the first quadrant of the xz plane with x∗

3 > x2 (Fig. A.5(b)).
• If δ < 0, α22 > α12, ∆ > 0, then l3 and l4 have two intersections in the first

quadrant of the xz plane (Fig. A.5(c)).
• If δ < 0, α22 > α12, ∆ = 0, then l3 and l4 have a unique intersection in the

first quadrant of the xz plane.
• If one of the following conditions is satisfied,

– δ > 0, α22 > α12, x1 ≥ x2,
– δ > 0, α22 > α12, x1 ≤ 0,
– δ > 0, α22 < α12,
– δ < 0, α22 < α12, x1 ≥ x2,
– δ < 0, α22 < α12, x1 ≤ 0,
– δ < 0, α22 < α12, ∆ < 0,

then l3 and l4 have no intersections in the first quadrant of the xz plane,

where δ is defined in Proposition 2,

x1 =
d(α22 + β)

α22(sa − dα) + dβα21
, x2 =

α22 − α12

δ
,

∆ = [α22(sa − dα) + dβα21 + γr1s(α12 − α22)]
2 + 4dδγr1s(α22 + β)

and

x2 <
1

α21
if α11 < α21.

The expressions of Exyz and its stability criteria are too complex to be explicitly
expressed in term of the parameters in (2.1). Theorem A.5 presents several cases
when Exyz exists. The deterministic nature of the model allows us to carry out a
systematic numerical study with the help of Matlab software. Numerical simulations
show that A pisum, M viciae, and A ervi can coexist together at the equilibrium
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Figure A.5. (a) δ > 0, α22 > α12, 0 < x1 < x2. (b) δ < 0, α22 <

α12, 0 < x1 < x2. (c) δ < 0, α22 > α12, ∆ > 0. (c) δ < 0, α22 > α12, ∆ = 0

Exyz (see Fig. 3.1), where the values of parameters are chosen from Table 1.1. Fig.
3.2 shows other possible dynamics of (2.1).
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