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Abstract. The purpose of this paper is to use mathematical models to investi-

gate the claim made in the medical literature over a decade ago that the routine
rotation of antibiotics in an intensive care unit (ICU) will select against the

evolution and spread of antibiotic-resistant pathogens. In contrast, previous
theoretical studies addressing this question have demonstrated that routinely

changing the drug of choice for a given pathogenic infection may in fact lead to

a greater incidence of drug resistance in comparison to the random deployment
of different drugs.

Using mathematical models that do not explicitly incorporate the spatial

dynamics of pathogen transmission within the ICU or hospital and assuming
the antibiotics are from distinct functional groups, we use a control theoretic-

approach to prove that one can relax the medical notion of what constitutes

an antibiotic rotation and so obtain protocols that are arbitrarily close to the
optimum. Finally, we show that theoretical feedback control measures that ro-

tate between different antibiotics motivated directly by the outcome of clinical

studies can be deployed to good effect to reduce the prevalence of antibiotic
resistance below what can be achieved with random antibiotic use.

1. Introduction. Antibiotic rotation was been proposed over a decade ago as a
way of reducing the incidence of antibiotic-resistant infections. This view, articu-
lated by Niederman in the editorial Is Crop Rotation of Antibiotics the Solution to
a Resistant Problem in the ICU? (see [21]) states

“The ‘crop rotation’ theory of antibiotic use has suggested that if we
routinely vary our ‘go to’ antibiotic in the ICU (intensive care unit), we
can minimize the emergence of resistance...”

In the intervening decade, a number of theoretical studies have espoused a different
viewpoint in proposing that the heterogenous, random deployment of antibiotics
in an ICU unit or hospital can slow the evolution and spread of drug-resistant
pathogens [16, 2, 3]. The purpose of this paper is to interpret the antibiotic de-
ployment problem in the framework of optimal control theory using mathematical
models of antibiotic use already developed in [2, 3] and our main finding can be sum-
marised thus: for such mathematical models, the optimal antibiotic usage protocols
do indeed rotate between their ‘go-to’ antibiotics, just not routinely.
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There is no discrepancy between the findings of [2, 3] and this paper; the apparent
difference between the two sets of results rests in the interpretation of what antibiotic
rotation means. The citation of Niederman hints at a scheduled and cyclical rotation
that exchanges one drug for another periodically, where that period is fixed at the
start of a clinical trial, say, just as a crop rotation might only change the crop
with each new season. The work in [2, 3] shows that this idea need not work
for antibiotics. Indeed we believe that there is no theoretical basis to support the
optimality of scheduled antibiotic rotation. However, as we show below, it is equally
true that the random allocation of drugs to each patient is not optimal in the models
of [2, 3].

In general, the optimal protocol will exchange one antibiotic for another across
the theoretical ICU unit or hospital, not routinely or randomly, but in a manner
commensurate with the epidemiological and evolutionary dynamics observed in each
context. It is the resultant adaptive rotation of antibiotics based on the observa-
tion, or even partial observation, of those dynamics that may lead to the optimal
protocol and minimise selection for drug-resistant pathogens. We arrive at this
theoretical result by first noticing that rotational protocols as they are modelled in
[2, 3] switch between the prioritisation of two drugs in such a way that one of them
is designated the ‘go-to’ drug at every moment in time. As we explain later, this
form of antibiotic protocol can be written as a bang-bang function which allows us
to apply standard control-theoretic results (see [10], for example) and deduce the
theoretical optimality, or at least near-optimality, of rotational protocols.

In terms of empirical evidence for and against the cycling of antibiotics, some
studies support rotation [23, 19] but others either advocate against it or at least
indicate indifference [17, 33, 32]. The authors of [12] goes as far as making the claim
that antibiotic rotation may be implicated in the cause of an outbreak of resistant
Pseudomonas aeruginosa. Empirical studies evaluating the efficacy of antibiotic
rotation prior to 2005 have also been criticised for ‘multiple methodological flaws
and a lack of standardization’, a particular criticism being the lack of repetition of
cycles within rotational protocols [4].

In order to place our analysis into an empirical context we end the paper by taking
the idea that ‘...prescription patterns balancing the use of different antimicrobials
should be promoted to reduce selection pressure’ from [26] to create a feedback
control strategy that balances the use of different antibiotics. To design the rules for
this controller we distill the following observation taken from [1] into a mathematical
form:

“A non-premeditated change of antibiotics in empirical therapy, on the
basis of detected resistance patterns, provided promising results in re-
ducing some antimicrobial resistance rates.”

We interpret this quotation as a maxim that can be employed to control the spread
of resistance in theoretical models of antibiotic use, this maxim states: if the ob-
served level of resistance to an antibiotic is too high, exchange it for a different
antibiotic. Later, we show by example that the implementation of this simple rule
in pre-existing mathematical models of antibiotic use can outperform the random
allocation of drugs.

We end this section with a remark. A crucial biological assumption is used in [2, 3]
to simplify the modelling problem, namely antibiotic symmetry. This assumption is
not benign. It is a mathematical degeneracy and we prove that antibiotic rotation,
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in the weaker sense defined in this paper, is optimal whenever such a symmetry
property is not present in a mathematical, epidemiological model of antibiotic use.

1.1. Notation. The 1-norm of a vector s = (s1, ..., sk) is given by ‖s‖1 =
∑k

i=1 |si|.
L(Rk) denotes the space of linear maps on Rk, ‖s‖2 denotes the 2-norm of s: if
s = (s1, ..., sk) then

‖s‖2 =

(
k∑

i=1

s2
i

)1/2

and ‖s‖∞ = max
1≤i≤k

|si|.

A function or vector that is zero everywhere will be denoted, on occasion, by 0,
so that f = 0 means that f(t) = 0 or f(t) = (0, 0, ..., 0) for all t. For each linear
mapping A ∈ L(Rk) we define the operator 2-norm ‖A‖2 = sup‖s‖2=1 ‖As‖2.

We shall use a barcode graphic to denote the deployment of two different antibi-
otics as part of a rotational protocol, as illustrated in Figure 1. This graphic shows
that all patients are treated initially with drug A, before a switch is invoked at time
T1 to drug B.

controls

T3T1 T
antibiotic
switches

AB

T2

Figure 1: Barcodes are used to represent the timing of switches between antibiotics
A and B: in a rotational protocol each antibiotic is either deployed at its maximum
rate, or is not deployed at all.

2. Two mathematical models of antibiotic use. Throughout the paper shall
use boldscript s to denote the state variable of a mathematical model, p will denote
a vector of fixed parameters used to define the model and t will denote time. The
following mathematical model is investigated in [3, Case III]:

ẋ = λ− dx− b(yw + ya + yb)x + rwyw + raya + rbyb + ... (1a)
... + h(1− s)((fa + fb)yw + fayb + fbya),

ẏw = (bx− c− rw − h(fa + fb))yw, (1b)
ẏa = (bx− c− ra − hfb)ya + hsfayw, (1c)
ẏb = (bx− c− rb − hfa)yb + hsfbyw, (1d)

where the state variable is given by s := (x, yw, ya, yb) and the set of fixed, epidemi-
ological parameters in this model is given by

p := {λ, d, c, h, rw, s, ra, rb, b} .

whose interpretation is contained in Table 1. Here, x denotes the density of un-
infected hosts in a hospital or intensive care unit, say, yw is the density of hosts
infected by wild-type bacterial strain, ya are hosts infected with A-resistant bacteria
and yb are hosts infected with B-resistant strains. There are no multidrug-resistant
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Table 1: The parameters we use to simulate (1).

parameter meaning
fa, fb the fraction of patients treated with antibiotic A and B

rw, ra, rb recovery rates of wild-type, A-res and B-res infected hosts
b transmission rate of infection
h maximum rate at which patients are treated
s fraction of patients that acquire resistance when treated
d per capita death rate of uninfected hosts
λ arrival rate of uninfected hosts
c infected hosts’ death rate

bacterial strains in this model, although that case is also considered in a different
model in [3].

In (1), fa is a variable that may depend on time and denotes the proportion of
infected hosts treated with antibiotic A, fb is the proportion of hosts treated with a
second antibiotic B, moreover we shall invoke a must-treat everyone constraint that

fa(t) + fb(t) = 1

for all times t ≥ 0. The optimal control problem for (1) is to determine the protocol
fa(t) that minimises the observed prevalence of resistance over a given time period
of length T :

Problem 1

{
min

∫ T

0
yw(t) + ya(t) + yb(t)dt subject to constraints

0 ≤ fa(t) ≤ 1, fb(t) = 1− fa(t) and equation (1).

Definition 2.1. The 50-50 mixing protocol for Problem 1 is defined by taking a
constant value for the treatment protocol fa, namely

fa(t) = 1/2

for all t ≥ 0. The interpretation of this condition is that exactly half of all infected
hosts are treated with drug A, half with drug B so that fb(t) = 1/2 too. As the
mode in Problem 1 does not track individual treatments, this corresponds to the
random allocation of the two drugs per infected patient.

Other mathematical models of drug use are given in the literature such as the
following developed in [2]. Let S be the fraction of patients in a hospital colonised
by antibiotic susceptible bacteria, let R1 be the fraction of patients colonised by
bacteria susceptible to antibiotic 1, let R2 be the fraction colonised by bacteria
susceptible to antibiotic 2 and then X denotes the fraction of uncolonised patients.
If we use these variables to create a state vector s = (S, R1, R2, X), the following
epidemiological dynamics describing the antibiotic treatment of a patient population
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in a hospital are given in [2]:

Ṡ = µ(m− S)− (τ1 + τ2 + γ)S + βSX + σβ(c1R1 + c2R2)S (2a)

Ṙ1 = µ(m1 −R1)− (τ2 + γ)R1 + β(1− c1)R1X − ... (2b)
...− σβ(c1S + (c1 − c2)R2)R1 (2c)

Ṙ2 = µ(m2 −R2)− (τ1 + γ)R2 + β(1− c2)R2X − ... (2d)
...− σβ(c2S + (c2 − c1)R1)R2 (2e)

Ẋ = µ(1−m−m1 −m2 −X) + (τ1 + τ2 + γ)S + (τ2 + γ)R1 + ... (2f)
... + (τ1 + γ)R2 − βX(S + (1− c1)R1 + (1− c2)R2).

The interpretation of the parameter set used in this model

p = {µ, σ, m, m1, m2, γ, β, α, τmax, c1, c2}

is given in Table 2.
As done in [2] and in Problem 1 above, we simplify the optimisation problem

associated with (2) by imposing the must-treat constraint that

τ1(t) + τ2(t) = τmax

for all 0 ≤ t ≤ T , where τmax is a fixed parameter that determines the maximum
rate of drug use. The optimal treatment problem for (2) is to minimise the observed
prevalence of antibiotic-resistant infections subject to treating at the maximum rate
possible. We state this mathematically as follows:

Problem 2

{
min

∫ T

0
R1(t) + R2(t)dt subject to constraints

0 ≤ τ1(t) ≤ τmax, τ2(t) = τmax − τ1(t) and equation (2).

Problem 2 also has a 50-50 mixing protocol that is defined by taking a constant value
for the treatments: τ1(t) = τmax/2 for all t.

Remark 1. In Problem 1 the units of the treatment payoff functional∫ T

0

yw(t) + ya(t) + yb(t)dt

is the total number of patients infected over the period observed. In Problem 2 the
treatment payoff ∫ T

0

R1(t) + R2(t)dt

must be multiplied by the total population size in the hospital (some fixed and
unknown constant) in order to represent the total number of patients infected with
antibiotic-resistant pathogens over the period observed. So,

∫ T

0
R1(t)+R2(t)dt/T is

the per unit time, mean fraction of patients infected with drug-resistant pathogens;
it is unimportant whether or not we divide by T when minimising the treatment
payoff as T is a fixed parameter.
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Table 2: The parameters we use to simulate (2).

parameter meaning
τ1, τ2 rate of use of drugs 1 and 2 per unit time (days)

m,m1,m2 patients enter hospital in states S, R1 and R2

at rates µm,µm1 and µm2 resp.
c1, c2 fitness cost of resistance to bacteria

σ relative rate of secondary colonization to primary colonization
β rate constant for colonization of uncolonized individuals
γ untreated patients colonized by susceptible bacteria remain

colonized 1/γ days on average
µ rate of patient turnover in the hospital
α represents physician compliance with cycling program

2.1. Parameter values for simulations: The importance of asymmetry.
Throughout the remainder of the paper we shall use the parameter set for Problem
1 defined by

p(1) :=
{

λ = 100, d = 1, c =
3
2
, h = 1, rw = 0, s =

1
10

, ...

..., ra =
9
10

, rb =
1
10

, b =
4

100

}
with the following initial conditions

s
(1)
0 :=

{
x(0) = (c + rw)/b, yw(0) =

λ

c
− d

b
− drw

bc
, ya(0) = 0, yb(0) = 0

}
.

This set differs from the parameters given in [3] where s = 1/1000 and ra = 1/10;
the parameter b does not appear to have a defined numerical value in [3].

When working with Problem 2 we shall use the numerical parameter set

p(2) :=
{

µ =
1
10

, σ =
1
4
,m =

7
10

,m1 =
1
20

,m2 =
1
20

, γ =
3

100
, β = 1, ...

..., α =
4
5
, τmax =

1
2
, c1 =

35
100

, c2 =
1
20

}
with initial conditions

s
(2)
0 :=

{
S(0) =

1
5
, R1(0) =

3
10

, R2(0) =
1
10

, X(0) =
2
5

}
.

Throughout the paper the term parameter-initial condition set (PICS) will be
used for the set of epidemiological parameters and initial conditions defined within
Problems 1 and 2, note that each element of a PICS forms a pair that we shall write
throughout as (p, s0). The following important definition makes explicit the term
symmetric as it is used in [2].

Definition 2.2. If (p, s0) denotes a PICS for Problem 1, we say it is symmetric if

ra = rb and ya(0) = yb(0).

If (p, s0) denote a PICS for Problem 2, we say it is symmetric if

c1 = c2,m1 = m2 and R1(0) = R2(0).
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The two PICSs (p(1), s
(1)
0 ) and (p(2), s

(2)
0 ) so-defined are asymmetric in the sense of

Definition 2.2, contrasting with the values chosen for numerical simulations in [3, 2]
where symmetric values are used.

Mathematical models that have symmetric parameter values and initial condi-
tions can be thought of as descriptions of antibiotic deployment problems in which
the fundamental epidemiological properties of the drugs are identical. This may
means that there are equal fitness costs of antibiotic resistance to the pathogenic
bacteria, equal transmission rates of those pathogens or the equal prevalence of
resistant phenotypes at the beginning of an observation period. However, while it
is natural to support antibiotic symmetry on the grounds of numerical parsimony,
we claim it is unlikely that two antibiotics will exert precisely the same selection
pressures on bacterial pathogens. As a result we have chosen to use slightly different
parameter sets for our illustrative simulations given later in the paper from those
found in [3, 2] in order to mimic the deployment of two antibiotics from distinct
functional groups as defined, for example, in the sense of [35].

We make the claim that both Problem 1 and Problem 2 must reflect this fun-
damental property on biological grounds too. Consider two antibiotics, rifampin
(rif) and sorangicin A (sor), that have the same mode of action and bind to the
same residue on their common target protein, inhibiting the synthesis of mRNA
by binding to the β subunit of RNA polymerase. Rif causes the bacterial cell to
abort transcription at the elongation phase, as does sor, albeit with slightly differ-
ent abortive transcripts and the gene rpoB controls resistance mutations to both
antibiotics. However, it is known [6] that mutations in rpoB conferring resistance
to rif need not confer resistance to sol because of the greater flexibility of the so-
rangicin A molecule (also see [34]); thus functionally identical antibiotics may be
different from an evolutionary perspective. As a result we argue that we should
seek to understand the structure of solutions to Problems 1 and 2 for all parameter
sets, whether symmetric or asymmetric, but we now explain why the mathematical
reasons why the symmetric case is so special.

First, note that the differential equations in Problems 1 and 2 can both be written
in the abstract form

ṡ = f(s, p) + A(t) g(p) · s + B(t) G(p) · s, s(0) = s0 ∈ Rk. (3)

Equation (1) can be written in the form (3) as follows: first set s = (x, yw, ya, yb)
and then

f(s, p) = (λ− dx− b(yw + ya + yb)x + rwyw + raya + rbyb, ...

(bx− c− rw)yw, (bx− c− ra)ya, (bx− c− rb)yb)

so that

g(p) =


0 h(1− s) 0 h(1− s)
0 −h 0 0
0 hs 0 0
0 0 0 −h

 and G(p) =


0 h(1− s) h(1− s) 0
0 −h 0 0
0 0 −h 0
0 hs 0 0

 .
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For equation (2) we have s = (S, R1, R2, X) and

f(s, p) = (µ(m− S)− γS + βSX + σβ(c1R1 + c2R2)S,

µ(m1 −R1)− γR1 + β(1− c1)R1X − σβ(c1S + (c1 − c2)R2)R1,

µ(m2 −R2)− γR2 + β(1− c2)R2X − σβ(c2S + (c2 − c1)R1)R2,

µ(1−m−m1 −m2 −X) + γS + γR1 + ...

... + γR2 − βX(S + (1− c1)R1 + (1− c2)R2)

with

g(p) =


−1 0 0 0

0 0 0 0
0 0 −1 0
1 0 1 0

 and G(p) =


−1 0 0 0

0 −1 0 0
0 0 0 0
1 1 0 0

 .

The fact that (1) and (2) can both be written in the form of (3) allows us to deduce
properties of these two specific models by deducing properties from the more general
and structural form of (3).

Now, equation (3) is a differential equation on a four-dimensional state-space
Σ of non-negative vectors, so s(t) ∈ Σ for all t, where the parameter vector p
lies in a space P of positive parameter values and so a PICS, (p, s0) say, is an
element of P × Σ. In Problem 1 we have s = (x, yw, ya, yb) whereas in Problem 2
we write s = (S, R1, R2, X). The parameter-dependent linear maps g(p) and G(p)
describe how the different rates of input of each antibiotic into the system drive the
epidemiological dynamics of that system.

The optimality criteria in Problems 1 and 2 can now be written in an abstract
form by defining a weight vector, call it w, setting A(t) + B(t) ≡ C, the latter a
fixed constant, and then seeking a protocol A(t) ∈ L∞(0, T ) that achieves

Problem A

{
min

∫ T

0
(w, s(t))dt subject to constraints

0 ≤ A(t) ≤ C, A(t) + B(t) ≡ C and equation (3);

the optimal protocol that solves Problem A will be denoted throughout by A∗(t).
Note that both Problems 1 and 2 have the same form as Problem A and so any
statement made of Problem A regarding the structure of A∗(t) has immediate con-
sequences for both Problem 1 and Problem 2.

For each measurable control or deployment function A satisfying 0 ≤ A(t) ≤ C,
the corresponding solution sA obtained by solving the differential equation (4) yields
a value of the functional

R(A) :=
∫ T

0

(w, sA(t))dt

that will be denoted R(A) throughout the remainder and called the treatment ob-
jective. The function of t, (w, sA(t)), will be called the running objective associated
with A. Moreover, for Problems 1 and 2 the weight vectors are

w = (0, 1, 1, 1) and w = (0, 1, 1, 0),

respectively.
Let us now be precise about the differences between antibiotic cycling, antibiotic

rotation and antibiotic mixing protocols and note that the terms alternating protocol
and sequential protocol are used synonymously for the term antibiotic rotation in
the remainder of the paper.
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Definition 2.3. Any measurable, almost-everywhere (a.e.) periodic function A(t)
defines an antibiotic cycling protocol for Problem A if 0 ≤ A(t) ≤ C a.e., whereas if
A(t) is constant (a.e.) it defines a mixing protocol. If two functions A(t) and B(t)
satisfy

A(t)B(t) = 0

for almost all t, we say that the antibiotics A and B are deployed in rotation in
Problem A.

Any protocol whereby ∫ T

0

A(t)dt =
∫ T

0

B(t)dt

will be described using the prefix ‘50-50’.
The subset M ⊂ P × Σ for which a solution A(t) of Problem A is a mixing

protocol is called the mixing PICS; note that M may be empty.

Implementing the must-treat constraint A(t) + B(t) = C in equation (3) yields

ṡ = f(s, p) + A(t) g(p) · s + (C−A(t)) G(p) · s,

= f(s, p) + C ·G(p) · s + A(t)(g(p)−G(p)) · s, (4)

and so we define, here and throughout,

G(p) := g(p)−G(p) and F(s, p) := f(s, p) + C ·G(p) · s.

Thus, if there is any parameter value p′ for which g(p′) = G(p′) then the set

{(p′, s0) : s0 ∈ Σ}

must lie in the mixing PICS because the independence of equation (4) of A in this
case renders the treatment objective identical for all deployment protocols. This is
a trivial form of degeneracy that causes the mixing PICS M to be non-empty; we
discuss less trivial examples below.

The Lagrangian of Problem A is

L(s,µ, A) =
∫ T

0

(w, s) + (µ,−ṡ + F(s, p) + A · G(p)s) dt,

and the Hamiltonian H is

H(s,µ, A) = (w, s) + (µ,F(s, p)) + (µ,G(p)s) ·A,

finally, the adjoint variable µ satisfies the final-value problem

− µ̇ = w + (Fs(s, p)T + A · G(p)T )µ, µ(T ) = 0. (5)

As is well-known, the Hamiltonian associated with (4-5) is maximised at all times
along an optimal solution (s∗,µ∗, A∗) of Problem A with respect to the control
variable A:

H(s∗(t),µ∗(t), A∗(t)) = max
0≤a≤C

H(s(t),µ(t), a).

Now max{H(s∗(t),µ∗(t), a)|0 ≤ a ≤ C} occurs when a = C if (µ∗(t),G(p)s∗(t)) >
0 and when a = 0 if (µ∗(t),G(p)s∗(t)) < 0, if (µ∗(t),G(p)s(t)) = 0 then A(t) is said
to be singular. The solution of the optimal control problem Problem A is therefore
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a bang-bang function A∗(t) taking only the values 0 and C unless t takes values in
an interval where the switching function (µ∗(t),G(p)s∗(t)) is zero:

A∗(t) =

 C if (µ∗(t),G(p)s∗(t)) > 0
0 if (µ∗(t),G(p)s∗(t)) < 0

something else if (µ∗(t),G(p)s∗(t)) = 0.
(6)

Bang-bang controls correspond precisely to the antibiotic rotational protocols of
Problem A and from the form of the optimal control A∗ given in (6) we deduce that
Problem A may only have a solution that is a mixing protocol when

σ(t) := (µ∗(t),G(p)s∗(t)) = 0 (7)

for almost all t between 0 and T .
Based on this observation, and one that is quite standard within the theory of

optimal control, condition (7) will be used below to rule out mathematical mod-
els within Problem A for which mixing outperforms antibiotic rotation. Moreover,
switching functions such as σ(t) in (7), so-named because it tells us when an ex-
change of antibiotics should be invoked, will be denoted using the Greek letter σ
throughout the paper.

Using condition (7) as the starting point, we deduce the following theorem that
provides technical conditions on F and G under which there can be no solution of
Problem A that represents an antibiotic mixing protocol.

Theorem 2.4. Suppose that ω∗ ∈ (0,C) is a fixed constant and that

(w,G(p)s0) 6= 0, (8)

then there is a T > 0 such that for no T ∈ (0, T ) is A∗(t) ≡ ω∗ a mixing solution
of Problem A. However, if (w,G(p)s0) = 0 and either

(w,G(p)(F(s0, p) + ω∗G(p)s0)) 6= 0, or (9a)
(w, (Fs(s0, p) + ω∗G(p))G(p)s0) 6= 0, (9b)

then there is a T > 0 such that for no T ∈ (0, T ) is the constant function A∗(t) ≡ ω∗

a solution of Problem A.

Proof. Begin by defining a new time-scale τ := t/T and re-writing the Euler-
Lagrange equations of Problem A, namely (4-5), in the form

ṡ = T (F(s, p) + A(t)(g(p)−G(p))), s(0) = s0, (10)

−µ̇ = T (w + (Fs(s, p)T + A · G(p)T )µ), µ(1) = 0. (11)

Now set m := µ/T so that

− ṁ = w + T (Fs(s, p)T + A · G(p)T )m), m(1) = 0. (12)

To complete the proof we shall need the following auxiliary lemma that is required
nowhere else in the paper.

Lemma 2.5. Suppose that s(t) = (s1(t), ..., sk(t)) is any continuous function de-
fined on [0, 1] such that s(0) = s0,m ≤ si(t) ≤ M for all 1 ≤ i ≤ k and that
A : Rk → L(Rk) is a continuous map. If w ∈ Rk is any vector then the solution
µ ∈ C1([0, 1], Rk) of

µ̇(t) = T (A(s(t))µ + w)
with µ(1) = 0 satisfies

‖µ(t)‖∞ ≤ ‖w‖2(eTρ − 1)ρ−1,
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where ρ = max{‖A(s)‖2 : m ≤ s ≤ M}. Hence m(t) := µ(t)/T satisfies ‖m(t)‖∞ ≤
‖w‖2(eTρ − 1)/(Tρ).

Proof. Let Φ(t) be the smooth, one-parameter family of matrices that satisfies

Φ̇(t) = T ·A(s(t))Φ(t), Φ(0) = I.

If u ∈ Rn is any vector then |(A(s)u,u)| ≤ ‖A(s)‖2‖u‖22 and so
d

dt
‖Φ(t)u‖22 = 2T (A(s(t))Φ(t)u,Φ(t)u) ≤ ‖A(s(t))‖2 · 2T‖Φ(t)u‖22

≤ max
m≤s≤M

‖A(s)‖2 · 2T‖Φ(t)u‖22

and so ‖Φ(t)u‖2 ≤ eρTt‖Φ(0)u‖2 = eρTt‖u‖2 from where ‖Φ(t)‖2 ≤ eρTt. Now
µ(t) = T

∫ t

1
Φ(t− t′)wdt′ and so

‖µ(t)‖∞ ≤ ‖µ(t)‖2 ≤ T

∫ 1

0

‖Φ(t− t′)‖2‖w‖2dt′ ≤ T‖w‖2
∫ 1

0

eTρ(t−t′)dt′

and the result follows.

The proof of Theorem 2.4 follows immediately below and to reduce notational
clutter we assume without loss of generality that the constant C defined in Problem
A equals one.

Suppose that a parameter value T , that we label T ∗, exists for which Problem A
has optimal control A∗ ≡ ω∗ ∈ (0, 1) with treatment objective R(ω∗) and so we may
suppose (s∗,m∗) is a solution of the re-scaled Euler-Lagrange equations (10-11). If
we now define

S∗(t) := s∗(t)− s0,

we may re-write the Euler-Lagrange equations associated with Problem A as a non-
linear operator equation that we denote E(S,m, T, ω) = 0, where

E(S,m, T, ω) :=
(
−Ṡ + T (F(s0 + S, p) + ω · G(p)(s0 + S))
ṁ + T (FT

s (s0 + S, p) + ω · G(p)T )m + w

)
.

Hence E(S∗,m∗, T ∗, ω∗) = 0 for (S∗,m∗) ∈ U × V where

U := {S ∈ C1([0, 1], Rk) : S(0) = 0} and V := {m ∈ C1([0, 1], Rk) : m(1) = 0}
are Banach spaces when endowed with standard C1 norms and

E : U × V × R → C0([0, 1], Rk)× C0([0, 1], Rk)

is an everywhere continuously Fréchet differentiable nonlinear mapping.
Define the following isomorphism of Banach spaces D : U ×V → C0([0, 1], Rk)×

C0([0, 1], Rk) given by the differential operator

D(S,m) =
d

dt
(−S,m).

Being an isomorphism, D is a linear operator of Fredholm index 0 but then

∂S,mE : U × V → C0([0, 1], Rk)× C0([0, 1], Rk)

is also a linear, Fredholm mapping of index-0 because it is a compact perturbation
of D. Thus, ∂S,mE(S∗,m∗, T ∗, ω∗) is an isomorphism if and only if it is injective
and so, seeking a null-space of the linear operator ∂S,mE(S∗,m∗, T ∗, ω∗) we must
solve the linear differential equation

∂S,mE(S∗,m∗, T ∗, ω∗)[X, Y ] = [0,0]
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for X and Y .
Computing the form of the derivative matrix ∂S,mE(S∗,m∗, T ∗, ω∗)[X, Y ] gives

∂S,mE(S∗,m∗, T ∗, ω∗)[X, Y ] =

 −Ẋ + T ∗(Fs + ω∗G)X
Ẏ + T ∗((FT

s + ω∗GT )Y + ...
... + Fss(s0 + S∗)T [m∗, X]

 ,

where the entries in this matrix are evaluated at (S∗,m∗, T ∗, ω∗) and we deduce

−Ẋ + T ∗(Fs + ω∗G)X = 0

for some function X ∈ U . Standard uniqueness theorems for non-autonomous
ordinary differential equations now yield X(t) ≡ 0 as X(0) = 0, but then Y = 0 im-
mediately follows and so ∂S,mE(S∗,m∗, T ∗, ω∗), having been shown to be injective,
is an isomorphism for all (S∗,m∗, T ∗, ω∗) ∈ U × V × R2 with E(S∗,m∗, T ∗, ω∗) =
0, ω∗ ∈ [0, 1] and T ∗ > 0. As a consequence, we can apply the implicit function
theorem to solve E(S,m, T, ω) = 0 near to any given solution (S∗,m∗, T ∗, ω∗) to
provide a locally unique, two-dimensional solution surface on which one can write
S = S(T, ω) ∈ U,m = m(T, ω) ∈ V such that

E(S(T, ω),m(T, ω), T, ω) ≡ 0,

where S(T ∗, ω∗) = S∗ and m(T ∗, ω∗) = m∗. Denote the common domain of defi-
nition of S(T, ω) and m(T, ω) as provided above by the implicit function theorem
by Ω′ and then define Ω to be Ω′ ∩ (0, T ∗]× (0, 1).

We shall call the two-parameter function (S(T, ω),m(T, ω)) the mixing surface
of Problem A for it contains every possible small-T mixing solution of this optimal
control problem. We can extend the domain of this surface, currently Ω, to the
entire rectangular domain [0, T ∗]× [0, 1] using Lemma 2.5 and the implicit function
theorem, but we shall only sketch the argument as follows.

First fix ω = ω∗. If

inf{T : (S(T, ω∗),m(T, ω∗), T, ω∗) : (T , T ∗] → U × V × [0,∞) such that

E(S(T, ω∗),m(T, ω∗), T, ω∗) = 0} > 0

then we can find a sequence (S∗
n,m∗

n, T ∗n , ω∗) ∈ U × V × [0, T ∗] to form this
infimum. By Lemma 2.5 this sequence is C0-bounded, but from the form of
E(S∗

n,m∗
n, T ∗n , ω∗) = 0 we can bootstrap to readily obtain C2 bounds on this same

sequence and so extract C1-convergent subsequences that we do not relabel that
converge to a solution of E(S,m, T, ω∗) = 0. We can then apply the implicit func-
tion theorem using the fact that ∂S,mE(S,m, T, ω∗) is an isomorphism at this point
to further extend the definition of (S(T ),m(T ), T, ω∗) to a lower value of T . This
is a contradiction which ensures that

inf{T : (S(T, ω∗),m(T, ω∗), T, ω∗) : (T , T ∗] → U × V × [0,∞) such that

E(S(T, ω∗),m(T, ω∗), T, ω∗) = 0} = 0.

With a further application of the implicit function theorem at each point (T, ω∗) ∈
[0, T ∗] × {ω∗}, we can extend the domain of definition of the mixing surface in an
entirely analogous manner to a rectangular strip [0, T ∗]× (ω∗− η, ω∗ + η), for some
η > 0, that contains the line [0, T ∗]× {ω∗}. Lemma 2.5 can then be used to boot-
strap and so continuously extend the domain of definition of the mixing surface to
the strip [0, T ∗]× [ω∗−η, ω∗+η]. Further applications of this bootstrapping process
and the implicit function theorem then allow one to extend this domain from a thin
strip to the entire rectangle [0, T ∗]× [0, 1].
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Although the mixing surface is now defined on [0, T ∗] × [0, 1], because mixing
solutions must be totally singular in the construction of the optimal control (6) this
surface only contains mixing solutions of Problem A when the switching function σ
defined in (7) equals zero as a function in C0[0, 1] when evaluated on that surface.
In other words,

σ(T, ω)(t) := (G(p)(s0 + S(T, ω)(t)),m(T, ω)(t)) = 0

must be satisfied for all t between 0 and 1 in order for the mixing protocol ω to be
a solution of Problem A.

Our goal now is to use the infinite-dimensional version of Taylor’s theorem to
determine conditions that must be satisfied by F and G under the assumption
that mixing is optimal. From this working assumption, the optimal control of
Problem A is A∗(t) ≡ ω∗ identically in t which is a constant and so smooth function.
Accordingly we can apply the infinite-dimensional version of Taylor’s theorem and
write, for 0 ≤ t ≤ 1 and fixed ω > 0,

σ(T, ω)(t) = σ(0, ω)(t) + T∂T σ(0, ω)(t) + O(T 2),

where the O(T 2) term here is measured in the C0-norm. Solving E(S,m, T, ω) =
(0, 0) when T = 0 and ω is arbitrary yields the unique solution

S(t) = 0, m(t) = (1− t)w.

Continuing with the application of the Taylor’s theorem and expanding the solution
locus of E(S,m, T, ω) = (0, 0) locally as a Taylor series, we therefore obtain

S(T, ω)(t) = 0+T∂T S(0, ω)(t)+O(T 2), m(t) = (1−t)w+T∂T m(0, ω)(t)+O(T 2).

Let us now compute the T -derivative ∂T S(T, ω)(t) that we denote by ST ∈ U ,
for the derivative ∂T m(T, ω)(t) we shall write mT ∈ V . On differentiating the
equation E(S,m, T, ω) = 0 with respect to T we find

d

dt
ST = F(s0, p) + ω · G(p)s0 (13a)

− d

dt
mT = (Fs(s0, p)T + ω · G(p)T )m (13b)

where m(t) = (1 − t)w. Solving (13 a-b) and incorporating boundary conditions
we obtain, for 0 ≤ t ≤ 1 and at T = 0,

ST (t) = t(F(s0, p) + ω · G(p)s0), mT (t) =
1
2
(1− t)2(Fs(s0, p)T + ω · G(p)T )w.
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But the following expression for the switching function σ is identically zero in ω, T
and t:

0 = σ(T, ω)(t) = (G(p)(S(T, ω)(t) + s0),m(T, ω)(t))

= (G(p)s0 + G(p)S(T, ω)(t), (1− t)w + TmT (0, ω)(t) + O(T 2))

= (G(p)s0 + G(p)(S(0, ω)(t) + TST (0, ω)(t) + O(T 2)),

(1− t)w + TmT (0, ω)(t) + O(T 2))

= (G(p)s0 + TG(p)(ST (0, ω)(t) + O(T )),

(1− t)w + TmT (0, ω)(t) + O(T 2))

= (1− t)

compare with (8)︷ ︸︸ ︷
(G(p)s0,w) +T (1− t)(G(p)ST (0, ω)(t),w) + ...

... + T (G(p)s0,mT (0, ω)(t)) + O(T 2)
(14)

In order for the mixing constant ω∗ to be the optimal solution of Problem A from
the O(1) terms in (14) we require (G(p)s0,w) = 0, but the O(T ) terms must also
be identically zero in t. Hence, the quadratic expression in t

t(1−t)(G(p)[(F(s0, p)+ω ·G(p)s0)],w)+
1
2
(1−t)2(G(p)s0, (Fs(s0, p)T +ω ·G(p)T )w)

must be zero for all t ∈ [0, 1] and all (T, ω) in the domain of σ, concluding the
proof.

Theorem 2.4 is a negative result in the sense that it does not help us find solutions
of Problem A, but it can be used to tell us when antibiotic mixing is not a solution
of Problem 1 and Problem 2 in concrete cases. In particular, we have the following
two corollaries which state that Problem 1 and Problem 2 have optimal controls
that are mixing protocols only when their respective sets of parameters and initial
conditions (PICSs) are symmetric.

Corollary 1. Suppose that system parameters (given by the vector p) and initial
conditions (given by the vector s0 = (x(0), yw(0), ya(0), yb(0))) are non-negative in
(1) with h > 0 and suppose also that Problem 1 has an optimal mixing treatment
f∗a (t) that we denote by the constant ω∗ ∈ (0, 1). If yw(0) > 0 and h > 0, then the
PICS (p, s0) is necessarily symmetric:

ω∗ =
1
2
, ra = rb and ya(0) = yb(0), (15)

and so ya(t) = yb(t) for all t ≥ 0.

Proof. On setting w = (0, 1, 1, 1), s0 = (x(0), yw(0), ya(0), yb(0)) and using the
functions F and G to represent the system (1), we find

G(p) =


0 0 −h(1− s) h(1− s)
0 0 0 0
0 hs h 0
0 −hs 0 −h

 .

Applying condition (8) and using

G(p)s0 = ((ya(0)− yb(0))h(1− s), 0, hsyw(0) + hya(0),−hsyw(0)− hyb(0))
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we obtain

(w,G(p)s0) = (0, 1, 1, 1) · ((ya(0)− yb(0))h(1− s), 0, hsyw(0) + hya(0), ...

...,−hsyw(0)− hyb(0)) (16)

= h(ya(0)− yb(0)) = 0 (17)

But then
h(ya(0) + hsyw(0))(rb − ra + h(2α− 1)) = 0 (18)

and
h(ya(0)(rb − ra) + h(2α− 1)(ya(0) + hsyw(0))) = 0 (19)

follow from conditions (9 a-b) of Theorem 2.4. Assuming h > 0 and yw(0) > 0, the
first part of the corollary (15) follows on solving the three algebraic relations (17),
(18) and (19).

The last part of the statement of this corollary follows by noting that if δ(t) :=
ya(t)− yb(t), along solutions of (1) the function δ satisfies δ(0) = 0 and δ̇(t) ≡ 0 if
the restriction (15) is imposed from where we deduce that δ is identically zero as
required.

The following shows that a similar statement can be made for Problem 2.

Corollary 2. Suppose that system parameters (given by the vector p) and all ini-
tial conditions (given by the vector (S(0), R1(0), R2(0), X(0)) are non-negative in
(2) and suppose Problem 2 has a mixing optimal control τ∗1 that we denote by the
constant ω∗ ∈ (0, τmax), then

R1(0) = R2(0), c2 = c1 +
τmax − 2ω∗

β(X(0) + σS(0))
, m1 = m2 +

2(2ω∗ − τmax)σR1(0)2

µ(X(0) + σS(0))
.

(20)
As a result, if the 50-50 mixing protocol ω∗ = τmax

2 is optimal then c1 = c2 and
m1 = m2, therefore R1(t) = R2(t) for all t ≥ 0.

Proof. On setting w = (0, 1, 1, 0), s0 = (S(0), R1(0), R2(0), X(0)) and using the
functions F and G to represent the system (2), we find that

G(p) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 −1 1 0

 .

Using the fact that G(p)s0 = (0, R1(0),−R2(0), R2(0)−R1(0)) we obtain

(G(p)s0,w) = R1(0)−R2(0) (21)

and the first part of (20) follows from condition (8). The remaining two conditions
of Theorem 2.4, (9 a) and (9 b), yield the following algebraic relations for elements
within the mixing PICS:

µm1 −R1 τ − β R1 Xc1 − σ β Sc1 R1 − 2 σ β R1
2c1 + 2 σ β R1

2c2 + ... (22)
... + 2 α R1 − µm2 + β R1 Xc2 + σ β Sc2 R1 = 0

and

−R1 τ − β R1 Xc1 − σ β Sc1 R1 + 2 α R1 + β R1 Xc2 + σ β Sc2 R1 = 0, (23)

where the initial condition of each variable, S, R1, R2 and X, has been omitted for
clarity, so that S denotes S(0) and similarly for the other variables. On solving the
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relations (22) and (23) for (m1, c2) in terms of all the other variables, equation (20)
results.

Finally, if ω∗ = τmax
2 is optimal and we define the function δ(t) := R1(t)−R2(t),

δ can be shown to satisfy δ(0) = 0 and δ̇(t) ≡ 0 along solutions of (2) when one
imposes the restriction that c1 = c2 and m1 = m2 from (20). The result now
follows.

Corollaries 1 and 2 represent analogous statements in terms of Problems 1 and 2
that may be summarised as follows: we do not yet know whether antibiotic mixing
protocols are optimal for Problems 1 and 2, but if mixing is optimal for one of these
models at some parameter value, the parameters and initial conditions within that
model must be symmetric in the sense of Definition 2.2. These two results form
the essence of our argument, ensuring as they do that many biologically interesting
parameter values exist for which antibiotic mixing is not the optimal protocol.
Indeed, these corollaries show that mixing may only be optimal in mathematically
rare cases.

3. Optimal protocols: Bang-Bang controls. The results of the previous sec-
tion are entirely negative and give no clue as to what the optimal deployment
protocols might actually be for a given mathematical model. So, we now apply
standard control-theoretic results to establish the epidemiological result that alter-
nating protocols are optimal for Problem A, or at least ‘ε-suboptimal’ in a sense
described below.

The set of admissible controls U for Problem A is the set of measurable functions
taking values almost everywhere between 0 and C:

U = {φ ∈ L∞[0, T ] : 0 ≤ φ(t) ≤ C for almost all t ∈ [0, T ]},

we are interested in conditions under which a solution of Problem A exists and lies
in U . The set of bang-bang functions B is contained within U and is defined by

B = {φ ∈ U : ∃ partition 0 = t1 < ... < tn = T : φ(t) ∈ {0,C} ∀ t ∈ (tk, tk+1)} .

It is important to note that bang-bang functions B exactly describe the rotational
protocols of equation (4) because the range of a function φ ∈ B can only contain
the two values 0 and C. In terms of Problem A, if A(t) = φ(t) and B(t) = C− φ(t)
then A and B represent a rotational protocol that is completely described by φ.

The following basic existence theorem tells us that an optimal control exists
for Problem A provided (4) has a natural control-independent, point-dissipative
bound. More importantly, it shows that the optimal deployment protocol can be
approximated arbitrarily closely in a suitable sense by functions that rotate between
the two antibiotics.

Theorem 3.1. Suppose that there is a finite constant C depending on C, p, T and
s0 such that for any function A ∈ U , the solution s of (4) with s(0) = s0 satisfies,
for any norm ‖ · ‖,

sup
0≤t≤T

‖s(t)‖ ≤ C(C, p, T, s0). (24)

Then Problem A has at least one solution A∗ ∈ U with corresponding state response
s∗ which satisfies (4) with A = A∗. For each ε > 0 there is a function Aε ∈ B such
that if sε(t) is obtained by setting A = Aε in (4), then Aε is ε-suboptimal in the
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sense that ∫ T

0

(w, sε(t))dt <

∫ T

0

(w, s∗(t))dt + ε.

Proof. Suppose that the sequence (sn, An) provides the infimum

R∗ := inf {R(A) : A ∈ U} ,

then we may assume that there is an Ainf ∈ U such that An
∗
⇀ Ainf in L∞(0, T ) as

n →∞ because U is compact with respect to the weak∗ topology on L∞. Without
the loss of any generality, let us shift the initial datum to zero in equation (4) by
assuming that sn satisfies

ṡn = F(s0 + sn, p) + An · G(p)(s0 + sn), sn(0) = 0,

instead of (4). We obtain the bound
∥∥ d

dtsn

∥∥
∞ ≤ ‖F(s0 + sn)‖∞ + C‖G(p)‖1‖s0 +

sn‖∞, but ‖sn‖ ≤ C(C, p, T, s0) and as all finite-dimensional norms are equiva-
lent it follows that the sequence (sn) ⊂ W 1,∞

0 ((0, T ), Rk) is bounded (the space
W 1,∞

0 ((0, T ), Rk) appropriately incorporates the zero boundary condition at t = 0).
As a result (sn) has a weak∗ convergent subsequence that we do not relabel, con-
verging to sinf ∈ W 1,∞

0 ((0, T ), Rk). As the nonlinear mapping N : W 1,∞
0 (0, T ) ×

L∞(0, T ) → L∞(0, T ) given by

N (s, A) = − d

dt
s + F(s0 + s, p) + A · G(p)s

is continuous with respect to weak∗ convergence in W 1,∞
0 (0, T )× L∞(0, T ), we see

that the limiting pair (s0 + sinf , Ainf) satisfies (4), that is N (sinf , Ainf) = 0 and the
result follows on setting A∗ = Ainf .

3.1. The optimal mixing protocol. As pointed out in Appendix B3 of [3], the
idea of an optimal mixing protocol is meaningful in the context of asymmetric
antibiotic deployment problems whereby asymmetric PICS values are used. In such
a case, the optimal mixing protocol has to be adjusted from the 50-50 value of
ω = 1/2 to account for their different evolutionary and epidemiolgical properties.

So, let sω(t) be the solution of the differential equation

ṡ = f(s, p) + C ·G(p)s + ω(g(p)−G(p)) · s, s(0) = s0

which sees the constant deployment of two antibiotics at some rate ω ∈ [0, C].
The optimal mixing protocol for equation (4) is found by solving a one-dimensional
optimisation problem which asks for the single value ω between 0 and C, denoted
ω∗, for which the treatment objective

R(ω) :=
∫ T

0

(w, sω(t))dt

is minimal. It is clear that the optimal mixing protocol is suboptimal in the context
of (4) because

R(ω∗) = min
0≤ω≤C

ω constant

R(ω) ≥ min
0≤A(t)≤C

A measurable

R(A) = R(A∗), (25)

by definition. Note that we have already proven in Corollaries 1 and 2 of the previous
section that equality is possible in (25) for Problem 1 and Problem 2 only when the
parameters and initial conditions used within those problems are symmetric.

Theorem 3.1 can be applied to Problems 1 and 2 to provide the main mathemat-
ical result of this paper as a corollary.
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Corollary 3. Problems 1 and 2 have optimal controls f∗a (t) ∈ L∞(0, T ) and A∗(t) ∈
L∞(0, T ) respectively. If their respective PICSs are asymmetric then there are infin-
itely many antibiotic rotation protocols that outperform antibiotic mixing in terms
of the performance measure R(A).

Proof. From Theorem 3.1 we only have to establish the existence of a dissipative
bound of the form (24) for equations (1) and (2), the result then follows from the
second part of Theorem 3.1.

1. From equation (1) define the strictly positive vector v = (d, c, c + hsfb, c +
hsfa) and vmin = min{v} which is either c or d if hs > 0 and fa + fb = 1.
Define the state vector s = (X, yw, ya, yb), the vector of initial conditions
s0 = (X(0), yw(0), ya(0), yb(0)) and the vector 1 = (1, 1, 1, 1). Also define the
parameter vector p = (λ, d, c, h, rw, s, ra, rb, b) for completeness.

Equation (1) is point dissipative in the sense that if fa ∈ L∞(0, T ) is any
measurable function with 0 ≤ fa(t) ≤ 1, fb(t) = 1− fa(t) and hs > 0 then

(1, s(t)) ≤ λ

vmin
+ e−vmint

(
(1, s0)−

λ

vmin

)
for all t ≥ 0. To see this define n(t) := (1, s(t))− λ

vmin
, then

d

dt
n = (1, ṡ(t)) = λ− vT s(t) =

(
λ− (v, s(t))

vmin

)
vmin,

but −(v,s(t))
vmin

< −(1, s(t)) and so the following differential inequality results

d

dt
n <

(
λ

vmin
− (1, s(t))

)
vmin = −nvmin.

Integration of the latter inequality when n(0) > 0 implies n(t) < e−vmintn(0),
the result now follows because if n(0) < 0, then n(t) can never be positive and
so

sup
0≤t≤T

‖s(t)‖1 ≤
λ

vmin
+ e−vminT

(
(1, s0)−

λ

vmin

)
=: C(p, T, s0). (26)

2. Now consider (2) and define the state vector s = (S, R1, R2, X), the vector
of initial conditions s0 = (S(0), R1(0), R2(0), X(0)), the vector 1 = (1, 1, 1, 1)
and the vector of parameters p = (µ, σ,m, m1,m2, γ, β, α, τmax, c1, c2).

Equation (2) is point dissipative in the sense that if τ1 ∈ L∞(0, T ) is any
measurable function with 0 ≤ τ1(t) ≤ τmax, τ2(t) = τmax − τ1(t) then

(1, s(t)) = 1− µe−µt(1, s0),

for all t ≥ 0. To see this define n = (1− (S +R1 +R2 +X))/µ = (1− (s,1))/µ
and a short calculation shows that ṅ = −µn. As a result n(t) = e−µtn(0) and
therefore

(1, s(t)) = X(t) + R1(t) + R2(t) + S(t) = 1− µe−µtn(0), t ≥ 0

and so

sup
0≤t≤T

‖s(t)‖1 ≤ 1− e−µT + e−µT (1, s0) =: C(p, T, s0). (27)

The bounds (26) and (27) ensure that Theorem 3.1 can be applied to Problems 1
and 2 and the result follows.
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The following theorem illustrates that when condition (8) of Theorem 2.4 applies,
the optimal antibiotic deployment protocol cannot be antibiotic mixing. Indeed,
within the optimal protocol there is a time interval over which one of the drugs
should not be deployed and the analysis immediately below tells us that this is be-
cause condition (8) can be thought of as telling us when the prevalence of resistance
to one of the antibiotics is too high. We formalise this idea in the following theorem.

Theorem 3.2. Suppose that there is a finite constant C depending on C, s0, T and
p (but not A) such that for any function A ∈ U , the solution s of (4) with s(0) = s0

satisfies ‖s‖ ≤ C(C, p, T, s0). Also assume that condition (8) holds:

(w,G(p)s0) 6= 0

and write s∗(t) for the solution of (4) corresponding to an optimal control A∗(t) of
Problem A. As a result, to each T we can associate at least one optimal control A∗

T

by Theorem 3.1.

Under these restrictions there exists uncountably many T > 0 for which A∗
T (·) takes

either the value 0 or C on a non-trivial sub-interval of [0, T ] of the form [0, τ) and
so cannot be a mixing protocol.

Proof. Let (Tn) be any positive sequence of times converging to zero and let A∗
Tn

be an optimal solution of Problem A associated with these times; such a sequence is
well-defined from the conditions of the theorem. Now define the switching function
σn(t) := (mn(t),G(p)sn(t)) where sn and mn provides a solution of the re-scaled
Euler-Lagrange equations given by the pair (10) and (12) when the function A(t)
in those equations is given by the optimal control A∗

Tn
. (The rescaling alluded to

changes the time interval of the problem from [0, T ] to [0, 1] and so this will be
assumed in the remainder of the proof.)

As Tn → 0 in the Euler-Lagrange equations (10) and (12), the associated solu-
tions (sn,mn) with control An := A∗

Tn
satisfies

sn → s0 and mn → (1− t)w,

as n → ∞, where the convergence is strong in W 1,∞(0, 1), as can be seen by
bootstrapping on the assumption of the existence of the a-priori bound ‖sn‖ ≤
C(p, T, s0). Thus, the corresponding sequence of switching functions (as given in
(7) but now with m(t)/T replacing µ(t))

σn(t) :=
1
T

(G(p)sn(t),mn(t)) satisfies σn(t) → (1− t)
T

(w,G(p)s0),

strongly in W 1,∞(0, 1) as n →∞.
However, the affine function of t, (1 − t)(w,G(p)s0) defined for 0 ≤ t ≤ 1 is

non-zero on [0, 1) by assumption and has a transverse zero at t = 1. As a result, by
the properties of uniform convergence, there is a sequence τn converging to 1 from
below such that for all large enough n the function σn(t) is non-zero in [0, τn).

Now let A0
n(t) denote any measurable function bounded below by 0 and above

by C. From (6) the optimal control An has the form

An(t) =

 C : σn(t) > 0,
0 : σn(t) < 0,

A0
n(t) : σn(t) = 0,
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for each n, it follows for sufficiently large n that An has the form

An(t) =
{

C : 0 ≤ t ≤ τn,
A0

n(t) : τn < t ≤ 1,

if we assume that (w,G(p)s0) > 0. If, on the other hand (w,G(p)s0) < 0, then

An(t) =
{

0 : 0 ≤ t ≤ τn,
A0

n(t) : τn < t ≤ 1,

completing the proof.

Applying Theorem 3.2 to Problems 1 and Problems 2 gives the following natural
condition on the form of the optimal controls. From equation (17) in the case of
Problem 1, condition (8) can be written

h(ya(0)− yb(0)) 6= 0

whereas from equation (21) in the case of Problem 1 this abstract condition becomes

R1(0)−R2(0) 6= 0.

We can see from an epidemiological perspective that the abstract condition (8) has
a very simple and practical interpretation: if resistance to one of the antibiotic is
greater than to the other, do not use that antibiotic.

We now ask what happens when we take the idea hinted at in the previous
paragraph of deploying only one antibiotic when the situation demands, for example
use only drug 2 if if R1(t) > R2(t), and extrapolate it as a deployment rule into the
future. While this protocol will not usually produce an optimal policy, in the next
section we show that it can produce effective rotational protocols that are superior
to antibiotic mixing. As a result, the control strategies that we deploy to combat
the evolution of resistance in (1) and (2), as motivated by the above analysis, are
defined as the following feedback control laws:

Rule 1: in Problem 1 continue with the present antibiotic but if ya(t) > yb(t) then
switch to antibiotic B, if yb(t) > ya(t) switch to A.

Rule 2: in Problem 2 use antibiotic 2 if R1(t) > R2(t), otherwise use 1.
One further concept needed to complete the definition of the feedback controls

is the idea of a sample time. The variable t in Rule 1 and Rule 2 may refer to all
instances of time or t could be a sample time whereby the control decision is taken
periodically or at some other prescribed instants in time. In the numerical examples
of the next section we take the latter approach due to its practical relevance to
managing antibiotic use in hospitals and ask how often must the system be sampled
so that the feedback rules outperform antibiotic mixing? This can be interpreted
in the sense of how much information do we need so that a protocol based on
exploiting that information outperforms protocols founded on no information at
all, like cycling and mixing.

4. Rotation outperforms mixing: Numerical examples. The first numerical
example, illustrated in Figure 2, provides a comparison of equation (1) for symmetric
and asymmetric parameter sets, where optimal mixing is compared with a sequence
of cycling protocols. In the symmetric case of Figure 2a where 50-50 mixing provides
the optimal mixing protocol, the protocols that cycle between the two antibiotics
are inferior to optimal mixing; note that the optimal protocol itself is not known
for these parameters so this figure is a comparison of several sub-optimal protocols.
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Figure 2: Two different parameter sets, one symmetric and one asymmetric, are
used in Problem 1 to compute the response to the cycling protocols shown in the
right-hand column and mixing protocols: in (A-B) the symmetric parameter values
are taken from [2] but in (C-D) we used the asymmetric set (p(2), s

(2)
0 ) defined in

this paper, taking T = 50 in both cases. The (red) mixing and (black/solid) cycling
lines in the two figures illustrate that cycling protocols may be outperformed by the
optimal mixing protocol and vice versa (the symmetric case (A) and the asymmetric
case (C), respectively). (The dashed lines in (C) are a reproduction of the data from
(A); the cycling protocols used in (D) are biased towards more frequent use of one
of the drugs whereas the cycling protocols in (B) may be described as 50-50.

In Figure 2c where asymmetric parameters are used (the values in (p(2), s
(2)
0 )) and

50-50 mixing performs poorly as a result, a range of cycling protocols biased to
one of the drugs outperform optimal mixing provided each cycle occurs sufficiently
quickly.

The purpose of this computation is to show that cycling and mixing protocols
cannot be compared in any definitive sense: cycling can beat mixing and vice versa,
the precise nature of the comparison depends on the structure of the cycling itself
and on the numerical parameters used in the mathematical model.

Figure 3 shows the result of a numerical computation that deploys an optimi-
sation algorithm to determine the best rotational protocols where the asymmetric
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Figure 3: Rotational protocols outperform antibiotic mixing. For a treatment dura-
tion of T = 50, the PICS used to simulate (1) is (p(1), s

(1)
0 ): the best 5 and 6-switch

controls achieve treatment objectives of 1259 and 1257 patients, respectively, opti-
mal mixing is worse at 1260 and 50-50 mixing is worse still at 1506 patients.

parameter set (p(1), s
(1)
0 ) has been used to parameterise the model (1). While both

antibiotic rotation protocols outperform optimal mixing, if only by relatively small
amount with less than 1% difference, the dynamics of antibiotic rotation shown as
black lines exhibit spikes whereby drug resistance can increase sharply after the in-
troduction of a new antibiotic regime. Nevertheless, it is with rotational protocols,
and not through mixing protocols, that we can minimise the performance measure
defined in [3].

Figure 4 shows one outcome of applying Rule 1 to Problem 1 using the same
asymmetric parameter values as Figure 3 where it is evident that the rule-based
control measure is superior to optimal mixing even though the rule only implements
seven switches of antibiotic. Figure 5 is an analogous computation that implements
Rule 2 on Problem 2 using parameters (p(2), s

(2)
0 ). Similarly, the rule-based controller

produces rotational protocols that outperform optimal mixing.

5. Discussion. This paper demonstrates that antibiotic mixing can optimally re-
duce the prevalence of drug-resistant pathogens in existing mathematical models of
antibiotic use only when symmetries are present in the model, if those symmetries
are broken, antibiotic rotation is optimal. While numerical optimisation techniques
can be used to determine effective rotational protocols for specific model instances
defined in (1) and (2), of greater practical importance are the rule-based feedback
controllers that invoke an exchange of antibiotics when resistance to the present



ROTATING ANTIBIOTICS IS OPTIMAL 549

0 10 20 30 40 50
10

0

10

20

30

40

50

60

70

time

st
at

e
State versus time

 

 

controls

X
yw
ya
yb

(a)

0 10 20 30 40 50
20

25

30

35

40

45

time

Total infected hosts versus time

y a(t)
 +

 y
b(t)

 +
 y

w(t)

 

 
50 50 mixing
optimal mixing
feedback

(b)

Figure 4: Rule 1 applied to (1) with T = 50 and 23 maximum possible switches.
(A) The state obtained using Rule 1 has a performance of 1252 patients, less than
optimal mixing strategy (1261) and 50-50 mixing (1506). (B) Comparison of the
running treatment objectives (the function ya(t) + yb(t) + yw(t)) of optimal mixing
(blue line) and 50-50 mixing (red line) with the rule-based feedback treatment (black
line). As the black line is lowest on average, the feedback outperforms all mixing
protocols.
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Figure 5: Rule 2 applied to (2) when T = 50 and 25 maximum possible switches.
(A) The state response obtained Rule 2. (B) The running treatment objective (the
function R1(t) + R2(t)) obtained using 50-50 mixing (shown in red, with treatment
objective equal to 15), optimal mixing (blue, treatment objective close to 11.7) and
the rule-based feedback (black, treatment objective close to 11.61).

one is observed to be high. While such simple rules cannot produce optimal de-
ployment policies, they can reduce the incidence of infection below what is possible
with mixing protocols. Moreover, an important robustness property follows from
linearity of models (1) and (2) with respect to their control variables, fa and A
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Figure 6: Comparing the performance of optimal mixing (blue), 50-50 mixing (red)
with Rule 1 and Rule 2 (boxes). The filled boxes illustrate the number of sampling
points for which the rules-based contollers outperform optimal mixing. The asym-
metric parameter sets used for these simulations are defined in the text and T = 50
for both models (1) and (2), any number from 1 to 50 sampling points were used
with at most one sample per unit time. Diagram (A) shows results obtained for (1)
and (B) are results for (2).

respectively. This property ensures that all rotational protocols sufficiently close
to the true, and usually unknown, optimal control will perform nearly as well the
optimum, providing a degree of protection against errors in the implementation of
the optimal policy.

Finally, in Figure 6 both Rules 1 and 2 have been applied to equations (1) and
(2) in the search for suboptimal rotational protocols that outperform antibiotic
mixing. With a time parameter T of fifty units, no more than N switches of
antibiotic were allowed on any given simulation and the dynamical systems (1) and
(2) were sampled T/N time units apart to make the deployment decision as to which
antibiotic would be used until the next sample. The sampling parameter N is shown
along the horizontal axis in Figure 6 where it is labelled as sampling points and both
diagrams in the figure show that the performance of these rule-based controls (as
plotted on the vertical axis) improves dramatically with increasing N , although not
monotonically. In both cases a value of N is reached above which the feedback rules
Rule 1 and Rule 2 outperform optimal mixing. We deduce from this computation
that there are infinitely many alternating protocols superior to optimal mixing.
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