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Abstract. The purpose of this paper is to derive and analyze methods for
examining the stability of solutions of partial differential equations modeling
collections of excitable cells. In particular, we derive methods for estimating
the principal eigenvalue of a linearized version of the Luo-Rudy I model close to
an equilibrium solution. It has been suggested that the stability of a collection
of unstable cells surrounded by a large collection of stable cells can be studied

by considering only a collection of unstable cells equipped with a Dirichlet
type boundary condition. This method has earlier been applied to analytically
assess the stability of a reduced version the Luo-Rudy I model. In this paper
we analyze the accuracy of this technique and apply it to the full Luo-Rudy
I model. Furthermore, we extend the method to provide analytical results for
the FitzHugh-Nagumo model in the case where a collection of unstable cells
is surrounded by a collection of stable cells. All our analytical findings are
complemented by numerical computations computing the principal eigenvalue
of a discrete version of linearized models.

1. Introduction. A normal heart beat is initiated in the Sinoatrial (SA) node,
which sets up an electrical wave propagating through the entire cardiac muscle
and thereby sets off the contraction of the muscle. This contraction is the pumping
mechanism of the heart and thus vital for any human being. The process is repeated
about three billions times during an average life-time so the machinery is extremely
robust, but not without difficulties; every year about 300,000 US citizens die of
ventricular fibrillation, which is a complete break-down of the normal propagation
of the electrical wave starting in the SA-node. Understanding atrial and ventric-
ular fibrillation is a major scientific challenge and has been a subject of intense
research for centuries. Over the past fifty years, mathematical models have been
extensively used to understand what happens when the electrical flow turns from
a smooth, predictable and well synchronized flow enabling a forceful contraction of
the cardiac muscle to a seemingly chaotic situation which disables the contraction
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and ultimately, in the ventricular case, is lethal. For a comprehensive introduction
to mathematical models in this field we refer to [3, 11, 9].

The main triggering point of electrical activity in the heart is the SA-node. The
SA-node consists of cells that are automatic in the sense they keep on firing signals
without being stimulated. Also other parts of the heart contain automatic cells,
but most of the heart consists of cells that are stable in the sense that if they are in
equilibrium, they will remain quiescent until they are stimulated. To some extent
extra automatic cells represent a back-up system that will take over the pacemaker
role if the SA-node is in trouble, but there are also locations where automatic cells
may generate difficulties. For instance, around the pulmonary veins automatic cells
have been identified and this is a possible cause of atrial fibrillation; see the review
by Khan [5]. The ability of a set of automatic cells to initiate waves depend on
a number of parameters such as the strength of the automaticity, the number of
automatic cells and the electrical coupling between the cells; see [5, 10]. If such
an ectopic wave is generated, it may trigger a re-entrant electrical wave that again
may lead to fibrillation; see e.g. Weiss et al. [13, 14].

It is generally accepted that the Monodomain equations (see [4]) combined with a
system of ordinary differential equations modeling the cell dynamics can model the
electrical properties of the cardiac tissue adequately. In such a model, an ectopic
wave can be realized as an instability of the resting state. Jacquemet [2] studied
the stability of the resting state for single cell models, whereas the spatially coupled
case was studied by e.g. Pumir et al. [10] and in the paper [12]. In [12] we
derived a condition for setting off ectopic waves in models of excitable cells where
automatic cells were surrounded by stable cells. This was done by studying when
the automatic cells were able to break the resting state, depending on different
model parameters. In that paper, we provided numerical and analytical evidence
indicating that the stability of the resting state of the problem could be analyzed
by studying a simplified problem exclusively consisting of automatic cells. The
reasoning was as follows: If the automatic cells are surrounded by strongly stable
cells, the stable cells will act like a Dirichlet boundary condition for the automatic
cells and thus the problem can be approximated by a reduced model. That reduced
model can in turn be linearized and we can derive analytical bound for the stability
of the steady solution to the problem.

The aim of the present paper is to assess the validity of the approach presented
in [12]. More precisely, we consider the Monodomain system written on the form

vt = δ∆v − I(v, r, x), (1)

rt = R(v, r, x).

Here v denotes the transmembrane potential, r denotes a vector containing con-
centrations and gating variables, δ is the spatial diffusion coefficient, and I and R
are given non-linear functions explicitly depending on position x (in order to model
different cell collections). The system is here equipped with homogeneous Dirichlet
boundary conditions on the domain Ω, and the domain consists of two parts; ΩN

and ΩA where the first is assumed to surround the latter. In ΩN we assume that
all cells are normal in the sense that the equilibrium state of individual cells are
stable with respect to small perturbations. More precisely we assume that in the
case of δ = 0, there is a state (v0

N , r0
N ) which is stable in the sense that the principal

eigenvalue of the associated Jacobian has real part less than zero. Similarly, we
assume that the individual cells in ΩA are automatic in the sense that a single cell
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in that region would act as a pacemaker. Furthermore, we assume that there is a
steady state solution (v0

A, r0
A) for the single cell case, and that this state is unstable.

We let a denote the diameter of ΩA, and recall that the stability of the stationary
solution to the coupled system (1) depends on the factor δ/a2; see [4, 10, 12].

If the automatic cells are indeed capable of stimulating the normal excitable
heart cells they should be able to break the resting state. As mentioned previously
this ability is dependent on a number of parameters. In this paper we will with
analytical techniques investigate how the stability of the steady state depends on
different model parameters. Note that stability of the stationary solution indicates
that the automatic collection is not able to generate an ectopic wave, since in
this case all cells remain quiescent. In the paper [12], we demonstrated that a
good estimate for the stability region graphed in the (a, δ)−plane could be achieved
by considering the problem (1) defined on ΩA using (v0

A, r0
A) as a Dirichlet-type

boundary condition. The purpose of the present paper is to assess the accuracy of
this technique. Ideally, one would like to validate the reduced approach on realistic
three-dimensional domains. It is certainly possible to obtain numerical evidence for
the validity of the method by computer simulations, but this will not give a rigorous
justification of its accuracy. Here we aim to assess the accuracy of the method by
mathematical analysis of the PDEs. To this end we will need to solve the governing
eigenvalue problems analytically to find where the principal eigenvalue crosses the
imaginary axis depending on model parameters. In one spatial dimension this is a
feasible approach and we will therefore consider one-dimensional problems in the
following.

We start by considering a caricature model and strengthen the computational
evidence provided in [12] with an analytical assessment of the accuracy. Similar
arguments are given for a version of the FitzHugh-Nagumo equations adopted to
the setting of the present paper. Finally, we analyze the stability of the Luo-Rudy I
model; see [8]. We derive a linearized version of the model and analytically compute
an estimate of the stability region, and show that this estimate fits very well to the
results of numerical computations.

2. Caricature model. In a first stage we consider the Caricature model from
[12]; it has the purpose of mimicking the situation of automatic cells surrounded
by normal cells. By utilizing techniques from elementary quantum mechanics for
solving potential well problems we obtain useful insight into the stability properties
of the Caricature model. In the next section we will extend and apply the method
to the FitzHugh-Nagumo model.

Consider the Caricature model

ut = δuxx + p(x)u , u(x = ±Ma, t) = 0 (2)

where δ > 0 is the diffusion coefficient and

p(x) =







−β , x < −a ,
α , −a ≤ x ≤ a ,

−β , x > a .

Here 2a is the size of the automaticity region, 2Ma with M ≥ 1 is the domain size,
α > 0 corresponds to the degree of automaticity and β > 0 controls the stability of
surrounding cells. The PDE (2) has the equilibrium equation

δu′′ + p(x)u = 0 , u(±Ma) = 0 ,



508 ROBERT ARTEBRANT, ASLAK TVEITO AND GLENN T. LINES

and the stability of the null solution to (2) is governed by the corresponding eigen-
value problem

δu′′ + (p(x) − λ)u = 0 , u(±Ma) = 0 .

For convenience we introduce the scaling x̄ = x/a and obtain the equivalent eigen-
value problem

δ

a2
ū′′ + (p̄(x̄) − λ)ū = 0 , ū(±M) = 0 , (3)

where

p̄(x̄) =







−β , x̄ < −1 ,
α , −1 ≤ x̄ ≤ 1 ,

−β , x̄ > 1 .

2.1. Infinite domain. Our goal is to gain insight into how the stability properties
of (3) depend on the parameters a, α, β and δ; later on, we will consider the M
dependence as well. To begin with however, we assume that the number of normal
cells is much larger than the number of automatic cells; i.e. M ≫ 1. Thus, we will
start by considering (3) on R and look for square integrable solutions to

δ

a2
ū′′ + (p̄(x̄) − λ)ū = 0 , x ∈ R . (4)

The problem (4) resembles the finite well problem in quantum mechanics and can
be analyzed by adapting standard techniques from that field; see e.g. [6].

The eigenvalue problem (4) on the infinite domain can be written (omitting the
bars)

u′′ + g(x, λ)u = 0 , (5)

where the function g is piecewise constant in x

g(x, λ) =
a2

δ







−gN(λ) , x < −1 ,
gA(λ) , −1 ≤ x ≤ 1 ,

−gN(λ) , x > 1 .
(6)

Here

gN(λ) = β + λ (7)

gA(λ) = α − λ (8)

are functions defined on the normal and automatic domains, respectively. Now, let
k = a

√

gA(λ)/δ and κ = a
√

gN(λ)/δ and make the following ansatz for the first
eigenfunction

v(x) =







eκx , x < −1 ,
c cos kx , −1 ≤ x ≤ 1 ,

e−κx , x > 1 .
(9)

First we must ensure that the eigenfunction is continuous at x = ±1. This is readily
done by putting

c =
e−κ

cos k
.

Next, the ansatz function should be differentiable at x = ±1. Due to symmetry it
is sufficient to impose the following condition at x = 1

d

dx
e−κx|x=1 =

d

dx
(c cos kx)|x=1 .
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A straight forward calculation gives that κ = k tan k must hold for differentiability.
From this condition and the ansatz for k and κ we obtain an equation for the
eigenvalue λ

a

√

gA(λ)

δ
= arctan

√

gN (λ)

gA(λ)
, (10)

which in the present case takes the explicit form

a

√

α − λ

δ
= arctan

√

β + λ

α − λ
. (11)

In the Caricature model, the stability of the surrounding cells is given by the
size of β; the cells become more stable as this value is increased. From (11) we note
that as β goes to infinity, we get

λ = α − δ

a2

π2

4
, (12)

since arctan(x) → π/2 as x → ∞. This coincides with the principal eigenvalue of
the purely automatic problem given by

δu′′ + (α − λ)u = 0 , u(±a) = 0 . (13)

Thus, as stability of the surrounding cells increases we approach the purely auto-
matic case equipped with homogeneous Dirichlet boundary conditions.

2.1.1. Stability: infinite domain. We begin by considering the Caricature model on
the infinite domain. Equation (4) is self-adjoint and has therefore real eigenvalues.
Hence, stability is lost when the largest eigenvalue becomes positive. With λ = 0
in (11) we can solve for η∞ = δ/a2 (the subscript indicates the infinite domain) to
obtain

η∞ =
α

arctan2
√

β/α
. (14)

The eigenvalue λ in (11) changes sign at η∞ and we can solve the eigenvalue equation
(11) for an η 6= η∞ to find that λ < 0 for η > η∞. This motivates the definition of
a stability function δ∞(a) = η∞a2,

δ∞(a) =
α

arctan2
√

β/α
a2 . (15)

Stability functions separate the stable and unstable cases. For the purely automatic
case (13) we obtain from (12) that

ηa = 4α/π2 , (16)

and the corresponding stability function is

δa(a) =
4α

π2
a2. (17)

The stability of the two cases can be compared by considering the distance between
the stability functions

(δ∞ − δa)(a) = (η∞ − ηa)a2 = α





1

arctan2
√

β
α

− 4

π2



 a2 > 0 ,

which is positive since 4 arctan2(ξ) monotonically approaches π2 from zero as ξ
grows from zero. So, the case of automatic cells surrounded by an infinite collection
of normal cells is less stable than the corresponding purely automatic case, in the
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sense that it requires a larger diffusion coefficient δ to stabilize. Also note that, since
ξ =

√

β/α, the distance between the stability functions decreases with decreasing
automaticity α and increasing stability β of the normal cells.

2.2. Finite domain. We turn to the eigenvalue problem (3) that can be written
in the form (5)-(6) with boundary conditions u(±M) = 0. As before we have

gN(λ) = β + λ and gA(λ) = α − λ in the function (6), and we let k = a
√

gA(λ)/δ

and κ = a
√

gN (λ)/δ. The ansatz for the eigenfunction reads

w(x) =







sinh(κ(M + x)) , −M ≤ x < −1 ,
d cos kx , −1 ≤ x ≤ 1 ,

sinh(κ(M − x)) , 1 < x ≤ M .
(18)

Continuity at x = ±1 gives

d =
sinh(κ(M − 1))

cos k
,

and a differentiability condition on w at x = ±1 leads to

k tan k =
κ

tanhκ(M − 1)
.

From this condition and the ansatz for k and κ we obtain the following equation
for the eigenvalue λ

a

√

gA(λ)

δ
− arctan









√

gN (λ)

gA(λ)

1

tanh

(

a(M − 1)
√

gN (λ)
δ

)









= 0 , (19)

which in the present case takes the form

a

√

α − λ

δ
− arctan









√

β + λ

α − λ

1

tanh

(

a(M − 1)
√

β+λ
δ

)









= 0 . (20)

We remark that homogeneous Neumann conditions can be treated by replacing
the sinh-functions in (18) by cosh-functions.

2.2.1. Stability: finite domain. Let us now turn to the stability of the Caricature
model (2) on the finite domain [−M, M ] (after rescaling). The governing eigenvalue
problem is given by (3), which has the eigenvalue equation (20). Putting λ = 0 and
η = δ/a2 in (20) we obtain

G :=

√

α

η
− arctan







√

β/α

tanh
(

(M − 1)
√

β
η

)






= 0 . (21)

This equation defines implicitly the stability function δM = ηMa2 through ηM ,
which can be found numerically by using e.g. Newton’s method. However, we can
show that δM is bounded below by δa and bounded above by δ∞. To obtain the
bounds on δM we first calculate the limit

0 = lim
M→∞

G =

√

α

η
− arctan

√

β

α
.
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Comparing this to (14) we conclude that limM→∞ ηM = η∞. Similarly by (16) and

0 = lim
M→1+

G =

√

α

η
− π

2
,

it holds that limM→1+ ηM = ηa. Previously we found that ηa < η∞, so if ∂
∂M

ηM is
positive we will have

ηa ≤ ηM ≤ η∞ . (22)

Note from (21) that 0 = d
dM

G = GηM

∂
∂M

ηM + GM (here subscripts on G denote
partial derivatives). We find

∂

∂M
ηM = −GM/GηM

=
2ηMβ

(α + β) sinh2
(

(M − 1)
√

β
ηM

)

+ βM
> 0 ,

which is positive for the considered parameters. So, (22) holds and therefore δM is
bounded below by δa and bounded above by δ∞.

2.3. Numerical tests. In the present experiment the Caricature model (2) is dis-
cretized as follows

U ′
i(t) = δ

Ui−1(t) − 2Ui(t) + Ui+1(t)

∆x2
+ piUi(t)

where pi = p(xi), ∆x = 2Ma/(N + 1) and xi = −Ma + i∆x, i = 0, 2, . . . , N +
1; Dirichlet conditions U0 = UN+1 = 0 are used. These discrete equations can
be written U ′ = AU , where the matrix A is symmetric and therefore has real
eigenvalues. The largest eigenvalue of A determines stability of the discrete system.

We perform experiments with N = 400. To assure that enough points are used
in the computations in this paper we have run some numerical experiments using
larger values of N , e.g. N = 800, and we have found that the output agrees with the
results reported here. The stability of the discrete system is recorded for different
values of a and δ using certain fixed parameters α, β and M . The results of the
simulations are visualized in plots as follows: if the largest eigenvalue is negative
the corresponding location is marked with an ’o’ to indicate stability, and if not
it is marked with an ’•’ to denote instability. In addition, the stability function
δa = ηaa2 in (17) for the purely automatic case and δM = ηMa2 for bounded
domains are plotted. Recall that ηa and ηM are the scaled diffusion coefficients for
which the principal eigenvalue of the equations (13) and (3) is zero, respectively.
Note also that δM = ηMa2 is obtained by solving (21) for ηM . We will investigate
the influence of automaticity α and stability β of normal cells on the stability of
(2).

First, we will numerically verify the effect of β on the stability. The upper row in
Fig. 1 shows simulations on the domain [−Ma, Ma] with M = 8 and automatic cells
on [−a, a]. We observe that as β increases, the purely automatic case approximates
the mixed cell problem more accurately. In the lower row, the points η = δ/a2

where stability changes are graphed as a function of β. The results confirm that
the mixed cell problem on [−Ma, Ma], automatic on [−a, a], has points ηM that
satisfy ηa ≤ ηM ≤ η∞. That is, the purely automatic case is more stable, and the
mixed cell problem on the infinite domain is less stable than the mixed problem on
the finite domain. Notice that ηa, ηM and η∞ coincide for large β.

Next, the effect of α is considered. From the results visualized in the upper row
in Fig. 2 we conclude that the purely automatic case approximates the mixed cell
problem more accurately as α decreases. The lower row of the figure depicts ηa,
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ηM and η∞ for the three cases. We observe that ηa ≤ ηM ≤ η∞ and that they are
closer for smaller α.

We remark that scaling p̄ in (3) and (4) by a factor q (keeping the ratio β/α
fixed) results in the same scaling of the corresponding stability functions δ∞ and
δM ; put λ = 0 in the equations to see this. A comparison of the top rows in Fig. 1
and Fig. 2 confirms that changing α and β but keeping the ratio β/α fixed, results
in a corresponding scaling of δ.

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

a

α=0.1; β=1; M=8

 

 

δ
a
=η

a
 a2

δ
M

=η
M

 a2

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

a

α=0.1; β=10; M=8

 

 

δ
a
=η

a
 a2

δ
M

=η
M

 a2

0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

a

α=0.1; β=100; M=8

 

 

δ
a
=η

a
 a2

δ
M

=η
M

 a2

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

β

α=0.1; a=1; M=2

 

 

η
a

η
M

η∞

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

β

α=0.1; a=1; M=4

 

 

η
a

η
M

η∞

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

β

α=0.1; a=1; M=8

 

 

η
a

η
M

η∞

Figure 1. Caricature model. Varying β. Top: The dashed red
line is the stability function for the purely automatic case; the solid
blue line is for the domain [−Ma, Ma], automatic on [−a, a]. The
marking ’o’ indicates that the largest eigenvalue of the Jacobian
of the discretized system is negative. Parameter values; α = 0.1,
M = 8 and from left to right: β = 1, β = 10 and β = 100.
Bottom: The points η = δ/a2 where stability changes, plotted as
a function of β; the three cases are (i) purely automatic (dashed
red line), (ii) domain [−Ma, Ma], automatic on [−a, a] (solid blue
line), (iii) infinite domain, automatic on [−a, a] (broken green line).
Parameter values; α = 0.1, a = 1 and from left to right: M = 2,
M = 4 and M = 8.

2.4. Summary: Caricature model. The spatial scaling of the problem (2)
showed that δ = ηa2, where a is the size of the automatic region. It is there-
fore sufficient to study the scaled problem and its scaled diffusion coefficient η. We
have determined scaled diffusion coefficients η such that the equilibrium equation
of the Caricature model (3) has the principal eigenvalue λ∗ = 0; thus stability of
the null solution changes for these values of η.

It is found that the scaled diffusion coefficient ηM for the problem with two
cell types on a finite domain satisfies (22), ηa ≤ ηM ≤ η∞, while keeping the cell
characteristics fixed. Here, ηa and η∞ are the diffusion coefficients for the purely
automatic problem and the mixed cell problem on the infinite domain, respectively.
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Figure 2. Caricature model. Varying α. Top: The dashed red
line is the stability function for the purely automatic case; the solid
blue line is for the domain [−Ma, Ma], automatic on [−a, a]. The
marking ’o’ indicates that the largest eigenvalue of the Jacobian
of the discretized system is negative. Parameter values; β = 1,
M = 8 and from left to right: α = 0.1, α = 0.01 and α = 0.001.
Bottom: The points η = δ/a2 where stability changes, plotted as
a function of α; the three cases are (i) purely automatic (dashed
red line), (ii) domain [−Ma, Ma], automatic on [−a, a] (solid blue
line), (iii) infinite domain, automatic on [−a, a] (broken green line).
Parameter values; β = 1, a = 1 and from left to right: M = 2,
M = 4 and M = 8.

From (10) and (12) these coefficients can be written

η∞ =
1

arctan2
√

gN (λ∗)
gA(λ∗)

gA(λ∗) , (23)

ηa =
4

π2
gA(λ∗) , (24)

where λ∗ = 0 and gN and gA are given in (7)-(8). Because of (22), the purely
automatic case is a better stability indicator for the mixed cell problem on a finite
domain when η∞ ≈ ηa. η∞ and ηa will be close when ηa is small: Let 0 < gA(λ∗) =:
z and fix the normal cells, 0 < gN(λ∗) =: C. Then a Taylor expansion reveals that

η∞
ηa

≈ 1 +
4

π
√

C

√
z → 1 , as z → 0 . (25)

When gA(λ∗) is small, the scaled diffusion coefficient ηa in (24) is small and the
automatic cells are not very unstable. In this case the purely automatic case is a
good stability indicator for the mixed cell problem on a finite domain.

3. FitzHugh-Nagumo model. In this section we consider the FitzHugh-Nagumo
model [1, 4]. Our objective is to assess the stability of the equilibrium solution when
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two types of cells are present. In a first step the equilibrium equation with only
automatic parameters is studied; this is followed by the case of automatic cells
surrounded by normal cells.

3.1. Purely automatic case. The FitzHugh-Nagumo model with diffusion reads

vt = δvxx +
1

ǫ
f(v, w, α) (26)

wt = v − γw

f(v, w, α) = v(v + α)(1 − v) − w

and is augmented with the boundary conditions v(±a, t) = 0. Here δ > 0, 1
ǫ
≫ 1,

γ > 0 and for the automatic case α > 0. This PDE has the equilibrium equation

δv′′ +
1

ǫ
f(v, w, α) = 0

v − γw = 0 ,

with v satisfying v(±a) = 0. The stability properties of the equilibrium solution
v0 = w0 = 0 are uncovered by linearizing the equilibrium equation and solving the
corresponding eigenvalue problem

δv′′ +
1

ǫ
(fv(0, 0, α)v + fw(0, 0, α)w) = λv

v − γw = λw,

with v(±a) = 0. Here the partial derivatives of f are given by

fv(v, w, α) = v(2(1 − α) − 3v) + α

fw(v, w, α) = −1,

so the eigenvalue problem simplifies to

δv′′ +
1

ǫ
(αv − w) = λv

v − γw = λw .

By noting that w = v/(λ+γ) and substituting this into the first equation we obtain
the scalar equation

δv′′ + gA(λ)v = 0 ,

where

gA(λ) = −λ − 1

ǫ(λ + γ)
+

1

ǫ
α . (27)

With the boundary conditions v(±a) = 0 the corresponding eigenvalue equation
reads

η
π2

4
− gA(λ) = 0 , (28)

where as before η = δ/a2. Stability of the null solution is lost when Re λ > 0.
To find the possible values of η for which the eigenvalues cross the real axis we
put λ = ib, with b real, in (28); one complex equation, or two real equations are
obtained. The equation for the imaginary part is

Im gA(ib) = b

(

1 − 1

ǫ(b2 + γ2)

)

= 0 .
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Solving this equation for b we get

b0 = 0 ,

b∗2 =
1

ǫ
− γ2 > 0 ,

and from (28) the corresponding values of η are

η0 =
4

π2
gA(0) =

4

π2
(
α

ǫ
− 1

ǫγ
) ,

η1 =
4

π2
gA(ib∗) =

4

π2
(
α

ǫ
− γ) .

Note that at η1 the eigenvalues are purely imaginary. We have found the η-values
that have Re λ = 0, so the real part of the eigenvalues can only change sign at
these values of η. We can easily find out if both eigenvalues have negative real part
(indicating stability) for large η by solving (28) for an η > ηa where

ηa = max{η0, η1} = max{gA(0), gA(ib∗)} .

In the following we will fix the parameters ǫ = 1/100 and γ = 1, and consider
the automatic case α ∈ (1/100, 1). These parameters give η0 = 400(α − 1)/π2 < 0

for λ = 0, and η1 = 4(100α− 1)/π2 > 0 for λ = ib∗ = ±i
√

99. So, we have

ηa =
4

π2
gA(ib∗) =

4

π2
(100α − 1) (29)

and the corresponding stability function is

δa(a) = ηaa2 =
4

π2
(100α − 1)a2 . (30)

3.2. Automatic cells surrounded by normal cells. The case of automatic cells
surrounded by normal cells is modelled by

vt = δvxx +
1

ǫ
f(v, w, p(x)) (31)

wt = v − γw

f(v, w, p(x)) = v(v + p(x))(1 − v) − w

with homogeneous Dirichlet boundary conditions for the finite domain [−Ma, Ma],
and a condition on square integrability in the case of infinite domain. Here the
automaticity parameter p depends on x,

p(x) =







−β , x < −a ,
α , −a ≤ x ≤ a ,

−β , x > a .
(32)

Stability is governed by the eigenvalue problem for the linearized equilibrium equa-
tion for (31); linearizing around the null solution we find

δv′′ +
1

ǫ
(p(x)v − w) = λv

v − γw = λw ,

augmented with the appropriate boundary conditions. For convenience we introduce
the scaling x̄ = x/a and obtain the equivalent eigenvalue problem

δ

a2
v̄′′ +

1

ǫ
(p̄(x̄)v̄ − w̄) = λv̄

v̄ − γw̄ = λw̄ ,
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where

p̄(x̄) =







−β , x̄ < −1 ,
α , −1 ≤ x̄ ≤ 1 ,

−β , x̄ > 1 .

By substituting w̄ = v̄/(λ + γ) in the v̄-equation we find, on omitting the bars, a
scalar equation on the form (5)

v′′ + g(x, λ)v = 0 ,

where g is a function on the form (6)

g(x, λ) =
a2

δ







−gN(λ) , x < −1 ,
gA(λ) , −1 ≤ x ≤ 1 ,

−gN(λ) , x > 1 .

Thus, we are now in the same setting as for the Caricature model. Note however,
that the functions gA and gN are different for the Caricature and the FitzHugh-
Nagumo models. In the present case gA is given in (27) and

gN (λ) = λ +
1

ǫ(λ + γ)
+

1

ǫ
β . (33)

From the results on the Caricature model in Sect. 2 we have that k = a
√

gA(λ)/δ

and κ = a
√

gN(λ)/δ in the eigenfunctions (9) and (18) on the infinite and finite
domains, respectively. Since we are looking for real valued (and square integrable)
solutions we must have κ real. Thus, it is required that δκ2 = a2gN (λ) > 0. At the
points where the real part of λ changes sign we have with b ∈ R

gN (ib) =
1

ǫ

(

β +
γ

b2 + γ2

)

+ ib

(

1 − 1

ǫ(b2 + γ2)

)

.

To have gN > 0 the imaginary part of the eigenvalue must consequently be b0 = 0
or b∗2 = 1

ǫ
− γ2 > 0. In order to satisfy the differentiability condition on the

eigenfunction, k must be real as well. Otherwise we would have a cosh-function in
the ansatz for the eigenfunction and that would make the ansatz non-differentiable
at the boundaries between the automatic region and the normal regions. Therefore
it is required that also gA is positive. With c ∈ R we calculate

gA(ic) =
1

ǫ

(

α − γ

c2 + γ2

)

− ic

(

1 − 1

ǫ(c2 + γ2)

)

,

so gA is real valued if c is c0 = b0 = 0 or c∗2 = b∗2 = 1
ǫ
− γ2 > 0, and is positive if

in addition α − γ/(c2 + γ2) > 0.
As in the previous subsection we will fix the parameters ǫ = 1/100 and γ = 1;

the present mixed cell problem is investigated for α ∈ (1/100, 1) and β > 0. Let us
first consider the infinite domain case.

3.2.1. Infinite domain. Recall the eigenvalue equation (10)

a

√

gA(λ)

δ
= arctan

√

gN (λ)

gA(λ)
,

where now the functions gA and gN are given by (27) and (33). Putting λ = 0 in
this equation and solving for η = δ/a2 we get

η0 =
gA(0)

arctan2
√

gN (0)
gA(0)

=
100(α − 1)

arctan2
√

β+1
α−1

.
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which is not a real number for the parameter ranges, α ∈ (1/100, 1) and β > 0. For

λ = ib∗ = ±i
√

99 we calculate

η1 =
gA(ib∗)

arctan2
√

gN (ib∗)
gA(ib∗)

=
100α − 1

arctan2
√

100β+1
100α−1

,

which is a positive number for the considered parameter ranges. Therefore we have
that η∞ = η1,

η∞ =
gA(ib∗)

arctan2
√

gN (ib∗)
gA(ib∗)

=
100α− 1

arctan2
√

100β+1
100α−1

. (34)

As in Sect. 2.1.1 on the Caricature model, we will compare the stability of the null
solution in the case of automatic cells surrounded by an infinite collection of normal
cells to the purely automatic case. The distance between the stability function

δ∞(a) = η∞a2 =
100α− 1

arctan2
√

100β+1
100α−1

a2 , (35)

and the stability function (30) for the purely automatic case is

(δ∞ − δa)(a) = (η∞ − ηa)a2 = (100α − 1)





1

arctan2
√

100β+1
100α−1

− 4

π2



 a2 > 0 ,

which is positive, since 4 arctan2(ξ) monotonically approaches π2 from zero as ξ
grows from zero. Thus, as for the Caricature model, the purely automatic case is
more stable. The argument of the arctan-function is ξ =

√
100β + 1/

√
100α− 1,

and we conclude that the stability functions are closer for increasing β of the normal
cells and decreasing α of the automatic cells, α → ǫ = 1/100 from above. Notice
from (29) that ηa → 0 as α → ǫ and the cells become less automatic. These results
are analogous to the ones for the Caricature model in Sect. 2.

Next, we turn to the case of the finite domain, [−M, M ] after rescaling, with
homogeneous Dirichlet boundary conditions at ±M .

3.2.2. Finite domain. Recall the eigenvalue equation (19)

a

√

gA(λ)

δ
− arctan









√

gN (λ)

gA(λ)

1

tanh

(

a(M − 1)
√

gN (λ)
δ

)









= 0 ,

where gA and gN in the present case are given by (27) and (33). With λ = ib∗ =

±i
√

99 and η = δ/a2 we obtain

G :=

√

100α− 1

η
− arctan







√

100β + 1

100α − 1

1

tanh
(

(M − 1)
√

100β+1
η

)






= 0 , (36)

which implicitly determines δM = ηMa2 through ηM ; this ηM can be found numer-
ically by using e.g. Newton’s method. Following the calculations in Sect. 2.2.1 we
find the bounds on δM by first calculating the limit

0 = lim
M→∞

G =

√

100α − 1

η
− arctan

√

100β + 1

100α − 1
.



518 ROBERT ARTEBRANT, ASLAK TVEITO AND GLENN T. LINES

Now, from (34) we obtain that limM→∞ ηM = η∞. Similarly by (29) and

0 = lim
M→1+

G =

√

100α − 1

η
− π

2
,

it holds that limM→1+ ηM = ηa. Previously we found that ηa < η∞, so if ∂
∂M

ηM is

positive we will have ηa ≤ ηM ≤ η∞. Note from (36) that 0 = d
dM

G = GηM

∂
∂M

ηM +
GM . We find that

∂

∂M
ηM = −GM/GηM

=
2ηM (100β + 1)

100(α + β) sinh2
(

(M − 1)
√

100β+1
ηM

)

+ (100β + 1)M
> 0 .

Thus δM is bounded below by δa and bounded above by δ∞.

3.3. Numerical tests. We linearize the FitzHugh-Nagumo model (31) around the
null solution and discretize the equations in space on [−Ma, Ma] with homogeneous
Dirichlet conditions. The spatial discretization has ∆x = 2Ma/(N + 1), xi =
−Ma + i∆x, i = 0, 1, . . . , N + 1. We can write this as a semi-discrete system
U ′(t) = CU(t), where U = (V1, W1, . . . , VN , WN )T is the numerical solution vector
and the system matrix is C = δA+ 1

ǫ
B. Here A is the 2N×2N -matrix of the classical

second order finite difference approximation to the second derivative acting on odd
entries of U (that is on V ); the matrix B has the block structure

B2i−1,2i−1 = pi , B2i−1,2i = −1
B2i,2i−1 = ǫ , B2i,2i = −ǫγ ,

where pi = p(xi). The eigenvalue of C with the largest real part determines stability
of the null solution.

In our tests we use N = 400 points and the results are visualized by plotting
the stability function (30) and δM obtained numerically from (36), together with a
marking indicating the sign of the principal eigenvalue of the matrix C: if the largest
eigenvalue is negative the corresponding location is marked with an ’o’ to indicate
stability, and if not it is marked with an ’•’ to denote instability. The influence of
automaticity α of the automatic cells and the parameter β of the normal cells on
the stability of (31) is checked numerically.

We begin by considering the effect of β on the stability. The results of the simu-
lations shown in Fig. 3 are indeed qualitatively very similar to the results depicted
in Fig. 1 for the Caricature model. The upper row in Fig. 3 shows simulations on
the domain [−Ma, Ma] with M = 8 and automatic cells on [−a, a]. As for the
Caricature model, the purely automatic case approximates the mixed cell problem
more accurately as β increases.

In the lower row, η = δ/a2 is plotted as a function of β. The results confirm that
ηM for the mixed cell problem on the finite domain is bounded below by ηa and
bounded above by η∞. That is, roughly speaking, the mixed cell problem on the
infinite domain is less stable than the mixed problem on the finite domain, which
in turn is less stable than the purely automatic case.

We turn to the effect of the automaticity α. The results displayed in Fig. 4 for
the FitzHugh-Nagumo model are similar to the output for the Caricature model
shown in Fig. 2. The purely automatic case approximates the mixed cell problem
more accurately as α decreases towards ǫ, that is as ηa decreases towards zero; c.f.
the upper row in Fig. 4. The lower row of the figure depicts the points η for the
three cases. We note that ηa ≤ ηM ≤ η∞ and that the points are closer for less
automatic cases, α → ǫ+.
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Table 1 quantifies our results. Shown is a comparison of the critical diffusion
coefficients obtained for the mixed cell problem (δM from (36)) and the purely
automatic case (δa from (29)) when the model parameters α and β are varied; the
parameters ǫ = 1/100, γ = 1 and M = 8 are fixed. Examining Table 1 closely,
we may draw some formal conclusions: From the table we find that δM/δa → 1+

as 1/β → 0 with the rate ∼ 1/2 for fixed α. Similarly, for fixed β we have that
δM/δa → 1+ as µ → 0, where µ = α − ǫ, with a rate around 1/2. Furthermore,
we observe that (ηM − ηa) → 0+ as µ → 0 with a rate ∼ 3/2 for fixed β, while
(ηM − ηa) → 0+ as 1/β → 0 with a rate ∼ 1/2 for fixed α.
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Figure 3. FitzHugh-Nagumo model. Varying β. Top: The
dashed red line is the stability function for the purely automatic
case; the solid blue line is for the domain [−Ma, Ma], automatic on
[−a, a]. The marking ’o’ indicates that the largest real part of the
eigenvalues of the Jacobian of the discretized system is negative.
Parameter values; α = 0.02, M = 8 and from left to right: β = 0.2,
β = 2 and β = 20. Bottom: The points η = δ/a2 where stability
changes, plotted as a function of β; the three cases are (i) purely
automatic (dashed red line), (ii) domain [−Ma, Ma], automatic on
[−a, a] (solid blue line), (iii) infinite domain, automatic on [−a, a]
(broken green line). Parameter values; α = 0.02, a = 1 and from
left to right: M = 2, M = 4 and M = 8.

3.4. Summary: FitzHugh-Nagumo model. We have managed to determine
values of the scaled diffusion coefficient η = δ/a2 in the FitzHugh-Nagumo model
(31), for which the stability of the equilibrium solution changes. For our parameter
choices the principal eigenvalue of the linearized equilibrium equation was purely
imaginary, λ∗ = ib∗ with b real. It was discovered that (22) holds; from (29) and
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Figure 4. FitzHugh-Nagumo model. Varying α. Top: The
dashed red line is the stability function for the purely automatic
case; the solid blue line is for the domain [−Ma, Ma], automatic on
[−a, a]. The marking ’o’ indicates that the largest real part of the
eigenvalues of the Jacobian of the discretized system is negative.
Parameter values; β = 0.2, M = 8 and from left to right: α = 0.02,
α = 0.011 and α = 0.0101. Bottom: The points η = δ/a2 where
stability changes, plotted as a function of α − ǫ, ǫ = 1/100; the
three cases are (i) purely automatic (dashed red line), (ii) domain
[−Ma, Ma], automatic on [−a, a] (solid blue line), (iii) infinite do-
main, automatic on [−a, a] (broken green line). Parameter values;
β = 0.2, a = 1 and from left to right: M = 2, M = 4 and M = 8.

α = 0.015, M = 8, ǫ = 0.01 and γ = 1

β 0.10000 0.31623 1.0000 3.1623 10.000 31.623 100.00

ηM 2.7003e-01 2.3859e-01 2.2206e-01 2.1328e-01 2.0853e-01 2.0593e-01 2.0448e-01

ηa 2.0264e-01 2.0264e-01 2.0264e-01 2.0264e-01 2.0264e-01 2.0264e-01 2.0264e-01

δM /δa 1.3326 1.1774 1.0958 1.0525 1.0291 1.0162 1.0091

β = 1, M = 8, ǫ = 0.01 and γ = 1

α 5.0000e-02 2.0040e-02 1.2520e-02 1.0632e-02 1.0159e-02 1.0040e-02 1.0010e-02

ηM 2.1177 4.6370e-01 1.0894e-01 2.6469e-02 6.5374e-03 1.6277e-03 4.0691e-04

ηa 1.6211 4.0689e-01 1.0213e-01 2.5632e-02 6.4335e-03 1.6147e-03 4.0528e-04

δM /δa 1.3063 1.1396 1.0667 1.0326 1.0162 1.0080 1.0040

Table 1. FitzHugh-Nagumo model. Comparison of the criti-
cal diffusion coefficients δM (automatic and normal excitable cells)
and δa (only automatic cells) where the stationary solution loses
stability for different values of the model parameters.

(34) the results (23) and (24) hold with λ∗ = ib∗ as well:

η∞ =
1

arctan2
√

gN (λ∗)
gA(λ∗)

gA(λ∗) ,

ηa =
4

π2
gA(λ∗) ,

ηa ≤ ηM ≤ η∞ ,
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where gA is given in (27) and gN in (33). The situation is completely analogous to
the Caricature model: equation (25) holds with z = gA(λ∗) and C = gN (λ∗),

η∞
ηa

≈ 1 +
4

π
√

C

√
z → 1 , as z → 0 .

We observe from (24) that ηa → 0 as z → 0 and conclude from (25) that the
automatic cells cannot be very unstable if the purely automatic problem should
accurately determine the stability of the null solution to the mixed cell problem.

4. The Luo-Rudy I model. Although interesting from a mathematical point of
view, the FitzHugh-Nagumo model does not provide an accurate description of the
action potential of a cardiomyocyte. Over the past decades, a large number of
increasingly accurate models have been developed; see e.g. [15] where an overview
is given. In the present paper we consider the Luo-Rudy I model [8] which is a fairly
accurate model, but still simple enough to be analyzed. We are able to analyze the
purely automatic case with respect to stability. However, for the problem involving
two types of cells we will resort to numerical computations. Our purpose is to
find out if the purely automatic case serves as a good stability indicator for the
more complicated mixed problem, as has been the case for the previously analyzed
simpler models.

Equipped with diffusion the Luo-Rudy I kinetics read

vt = δvxx − I(v, c, g) (37)

ct = C(v, c, g5, g6)

(gi)t = αgi
(v)(1 − gi) − βgi

(v)gi , i = 1, . . . , 6

where v is the transmembrane potential, c a scaled calcium concentration and
g = (x̄, m, h, j, f, d)T is a vector of gating variables. We are interested in the
stability of the equilibrium solution (v0, c0, g0)T to (37). To this end we augment
the equilibrium solution with a small perturbation that vanishes on the boundary,
put the result in the Luo-Rudy 1 heart tissue model (37) and linearize around the
equilibrium to obtain the relevant eigenvalue problem. This eigenvalue problem
governs the stability of the stationary solution and can be written as follows,

δv′′ − I0
v v − I0

c c −
6

∑

i=1

I0
gi

gi = λv (38)

C0
vv + C0

c c + C0
g5

g5 + C0
g6

g6 = λc

(φi)
0
vv + (φi)

0
gi

gi = λgi , i = 1, . . . , 6

with homogeneous Dirichlet boundary conditions at x = ±a. Here superscript 0 in-
dicates evaluation at the component-wise constant equilibrium solution (v0, c0, g0)T ,
and φi are the functions given by the right hand side in the ODEs for the gate vari-
ables in (37). Introducing the notation u = (v, c, g1, . . . , g6)

T for the unknowns and
letting sij be the factors multiplying uj in the left hand side of the ith equation of
(38), the system can be written

δu′′
1 +

8
∑

j=1

s1juj = λu1 (39)

s21u1 + s22u2 + s27u7 + s28u8 = λu2

si1u1 + siiui = λui , i = 3. . . . , 8
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with ui(±a) = 0 for all components. Note that the sijs are nothing but the entries
of the Jacobian of the single cell LRI-system, evaluated at the equilibrium solution.
Solution components 3 to 8 of u in terms of the first one are given by

ui =
si1

λ − sii

u1 , i = 3, . . . , 8

while the second one is

u2 =

(

s27s71

(λ − s22)(λ − s77)
+

s28s81

(λ − s22)(λ − s88)
+

s21

λ − s22

)

u1 .

Putting the above expressions in the first equation in (39) one obtains the scalar
eigenvalue problem δu′′

1 + G(λ)u1 = 0 where G is the function

G(λ) = s11 − λ +
s12s27s71

(λ − s22)(λ − s77)
+

s12s28s81

(λ − s22)(λ − s88)
+

8
∑

j=2

s1j

sj1

λ − sjj

.

Thus λ satisfies G(λ) − δ(kπ/2a)2 = 0 for k = 1, 2, . . ., which can be written

F (λ, η) := −
8

∏

i=1

(λ − sii) + s12s27s71

8
∏

i=3,i6=7

(λ − sii) + s12s28s81

7
∏

i=3

(λ − sii) (40)

+

8
∑

i=2

s1isi1

8
∏

j=2,j 6=i

(λ − sjj) − η

(

kπ

2

)2 8
∏

i=2

(λ − sii) = 0 ,

with η = δ/a2.
To find the η-points where the real parts of λ cross zero we can proceed as in

Sect. 3.1. We start by calculating F (ib, η) = 0 for b, η ∈ R to obtain equations for
the real and imaginary parts of (40)

Fr(b, η) = 0 (41)

Fi(b, η) = 0 .

Here, Fr and Fi are linear in η and polynomials of degree 8 and 7 in b with only
even and odd powers, respectively. We will have 8 + 7 = 15 roots, (b∗, η∗), which
can be found by using computer algebra software; e.g. Maple. Only real roots are
interesting; in particular the one with the largest η∗, say ηa. Now we can solve (40)
for an η bigger than ηa to verify that all λ have negative real part for all η > ηa.

Before we investigate the stability of the PDE (37) we will parameterize the single
cell Luo-Rudy I model to describe automatic cells of different strengths. In [12] the
extracellular potassium concentration, [K]o = 5.4, and the m-gate rate functions
were modified in order to model an automatic cell. The Luo-Rudy I rate functions
for a normal cell read [8],

αm(v) = 0.32(v + µ)/{1 − exp[−0.1(v + µ)]}
βm(v) = 0.08 exp(−v/ν) ,

where µ = 47.13 and ν = 11.0. To model an automatic cell we follow the suggestions
in [12, 7] and modify the Luo-Rudy I parameters [K]o, µ and ν in the following way,

[K]o = (1 − α)[K]o + 10α

µ̄ = (1 +
α

4
)µ

ν̄ = (1 +
α

4
)ν ,
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where α is the parameter controlling the automaticity; note that α = 0 corresponds
to the unperturbed Luo-Rudy I model. Table 2 lists, for different values of α,
the single cell equilibrium states and the eigenvalue with largest real part of the
corresponding Jacobian. The computation of the equilibrium state is explained in
[12].

α 0 0.803 0.80445 0.8045 0.805

v -83.98 -69.28 -69.18 -69.18 -69.14
Ca 0.0001819 0.0003584 0.0003604 0.0003604 0.0003611
x̄ 0.005967 0.02417 0.02438 0.02439 0.02447
m 0.001831 0.09478 0.09615 0.0962 0.09668
h 0.9811 0.6510 0.6459 0.6458 0.6440
j 0.9882 0.6611 0.6557 0.6556 0.6537
d 0.003124 0.01115 0.01124 0.01125 0.01128
f 1.000 0.9997 0.9997 0.9997 0.9997

λ+ -0.004352 -0.003114 0.00002226 0.0002229 0.002246

Table 2. Single cell Luo-Rudy I (ODE). Equilibrium states for
different automaticities α; note that α = 0 (unperturbed Luo-Rudy
I) and α = 0.803 correspond to stable states since λ+ < 0. Here
λ+ = max{Re λ} of the Luo-Rudy I Jacobian evaluated at the
steady state.

Let us proceed to find numerical values of ηa = δ/a2 for the PDE (37) on [−a, a]
for the purely automatic case parameterized with α. We determine the non-zero
Jacobian matrix entries sij at the ODE equilibrium solutions tabulated in Table 2
and obtain from equation (41) the results listed in Table 3 below. Since the equi-
librium solution to the PDE modelling automatic cells surrounded by normal cells
is not piecewise constant, we are not able to analytically assess the stability for this
case.

α 0.80445 0.8045 0.805

ηa 1.8152 · 10−5 1.8173 · 10−4 1.8315 · 10−3

λ∗ ±i5.3953 · 10−2 ±i5.4003 · 10−2 ±i5.4509 · 10−2

Table 3. Luo-Rudy I with diffusion (PDE); purely automatic case.
Points ηa = δ/a2 where stability changes for different automatic-
ities α; the corresponding eigenvalue with the largest real part of
the Jacobian is the purely imaginary λ∗.

In the next section numerical experiments will be performed to see if δa = ηaa2 is
a good approximation of the unknown stability function δM for (37) on [−Ma, Ma]
with automatic cells on [−a, a]. Different degrees of automaticity (controlled by α)
of the automatic cells will be investigated. Recall that the previous sections have
shown, both for the Caricature model and the FitzHugh-Nagumo model, that δa is
a good approximation of δM when the automatic cells are not very unstable.
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4.1. Numerical tests. The Luo-Rudy I model (37) is linearized around its equilib-
rium solution and discretized on [−Ma, Ma], using Dirichlet boundary conditions
given by the equilibrium states for the normal cell. On [−a, a] we have a collection of
automatic cells. The discretization is similar to the one for the FitzHugh-Nagumo
model in Sect. 3.3. We now need to compute the non-zero and smooth equilib-
rium solution to the present PDE for the given parameters. By linearizing around
this solution we are able to formulate a semi-discrete system U ′(t) = CU(t). The
eigenvalue with the largest real part of the system matrix C governs stability of
the equilibrium solution. We present the results by plotting the stability functions
δ = ηaa2 from Table 3, and indicating stability of the discretized system with the
symbol ’o’. N = 200 points are used in all simulations, and the domain has M = 8.

In a first experiment three simulations are run on [−Ma, Ma] with different
strength of the automatic collection on [−a, a]. A smaller α means smaller ηa and
weaker automatic cells; the surrounding normal cells have α = αN = 0. The results
are depicted in Fig. 5. We observe that the purely automatic case is a better
approximation to the mixed cell case when ηa (and α) is smaller; just as for the
previously studied models. However, in contrast to the other models the purely
automatic case does not act as a lower stability bound. We believe the reason
for this is the non-constant smooth equilibrium solution to the present PDE. The
solution differs from the piecewise constant equilibrium states suggested by the
single cell ODE for the normal and automatic cases. This discrepancy is bigger for
problems with larger α which will need a larger diffusion coefficient δ to stabilize.
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Figure 5. Luo-Rudy I model. Varying α. Normal cells have
αN = 0. The dashed red line is the stability function for the purely
automatic case. The marking ’o’ indicates that the largest real
part of the eigenvalues of the Jacobian of the discretized system is
negative. Parameter values; M = 8 and from left to right: α =
0.805, α = 0.8045 and α = 0.80445.

We recall from Table 2 that α = 0.803 corresponds to a stable state where the
single cell equilibrium state is closer to the ones for the automatic cases. In a sec-
ond experiment we therefore conduct simulations where the surrounding “normal”
cells have αN = 0.803. This will make the PDE equilibrium solution being close to
component-wise constant. The results shown in Fig. 6 agree qualitatively with the
output for the previous models. The main point is, however, that the purely auto-
matic case gives us a good indication of stability for the mixed cell case, especially
so for collections of less automatic cells.

5. Summary and conclusions. We have assessed the stability of equilibrium
solutions to different equations modelling collections of excitable and automatic
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Figure 6. Luo-Rudy I model. Varying α. Surrounding “nor-
mal” cells have αN = 0.803. The dashed red line is the stability
function for the purely automatic case. The marking ’o’ indicates
that the largest real part of the eigenvalues of the Jacobian of the
discretized system is negative. Parameter values; M = 8 and from
left to right: α = 0.805, α = 0.8045 and α = 0.80445.

cells. Depending on model parameters we have analyzed when the automatic cells
are able to break the resting state in the presence of normal excitable cells. Stability
of the stationary solution indicates that the automatic collection is not able to
generate an ectopic wave.

It is found that for all these models, including Luo-Rudy I, the stability for the
purely automatic case is a good indicator of the stability for the case of unstable cells
surrounded by normal cells; in particular if the automatic cells are not very unstable
and the normal cells are stable. For the Monodomain model with FitzHugh-Nagumo
cell dynamics we established quantitatively the approximation error in terms of
cell characteristics. An advantage is that this indicator can be extended to multi-
dimensional problems. For a simple Caricature model and the FitzHugh-Nagumo
model we found that the mixed cell case is becoming less stable with a larger
collection of surrounding normal cells, and that the corresponding purely automatic
case gives us a lower stability bound.
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