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Abstract. A new approach to the problem of characterizing the dynamic
behavior of nonlinear biosystems in the presence of model uncertainty using
the notion of slow invariant manifold is proposed. The problem of interest is
addressed within the context of singular partial differential equations (PDE)
theory, and in particular, through a system of singular quasi-linear invariance
PDEs for which a general set of conditions for solvability is provided. Within
the class of analytic solutions, this set of conditions guarantees the existence
and uniqueness of a locally analytic solution which represents the system’s slow
invariant manifold exponentially attracting all dynamic trajectories in the ab-
sence of model uncertainty. An exact reduced-order model is then obtained
through the restriction of the original biosystem dynamics on the slow mani-
fold. The analyticity property of the solution to the invariance PDEs enables
the development of a series solution method that can be easily implemented
using MAPLE leading to polynomial approximations up to the desired degree
of accuracy. Furthermore, the aforementioned attractivity property and the
transition towards the above manifold is analyzed and characterized in the
presence of model uncertainty. Finally, examples of certain immobilized en-
zyme bioreactors are considered to elucidate aspects of the proposed context
of analysis.

1. Introduction. A notable research objective in nonlinear systems analysis is
undeniably the existence of invariant manifolds and the associated problem of find-
ing/computing them [1, 10, 11, 30]. This problem has been traditionally motivated
by efforts to develop systematic methods for the simplification of the analysis of
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the behavior of nonlinear dynamical systems through a reduction of the dimension-
ality of the original problem and the explicit computation of a reduced-order, yet
accurate, description of the system dynamics [1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 18,
19, 20, 21, 22, 23, 24, 28, 29, 30, 32, 33]. In particular, complex biosystems and
bioprocesses that are also inherently nonlinear represent a special class of systems
whose dynamic behavior could be reliably analyzed and characterized within the
aforementioned framework. However, in all the above approaches, appropriate a pri-
ori information is needed for their practical application. Indeed, quasi-steady-state
approximation and quasi-equilibrium-manifold methods and their variants require
the explicit physical identification of the system’s “fast” state variables, whereas
approaches based on singular perturbation theory presuppose the explicit physi-
cal identification of a function of the system’s parameters which is considered to
be “small” in a certain sense, and its “smallness” is indicative of an underlying
time-scale multiplicity. Please notice that in addition to relying on the above a
priori knowledge, all of the above methods are inherently inexact, since they can
not mathematically generate and characterize exactly the system’s slow invariant
manifold, inevitably resulting in long-term inaccuracies in the dynamic behavior of-
fered by the reduced-order model that describes the on-manifold dynamics. On the
other hand, a mathematically rigorous treatment of the problem of characterizing
the behavior of a nonlinear dynamical system ought to be founded on the explicit
characterization and computation of the system’s exact slow invariant manifold, as
well as the system’s dynamic approach towards it [1, 10, 11, 30]. Furthermore, it
should be pointed out, that dynamic models of biosystems can not fully capture and
accurately describe the actual biosystem’s behavior in practice, due to the inevitable
modeling errors and/or model uncertainty pertaining for example to unknown or
poorly known parameter values or unmodeled dynamics [1, 10, 11, 30]. It is there-
fore quite important to carefully analyze the behavior of a nonlinear biosystem, its
approach towards the slow manifold and the on-manifold dynamics in the presence
of model uncertainty and/or modeling errors [1, 10, 11, 30]. The present research
study proposes a new approach to this problem by mathematically characterizing
the associated system of singular invariance PDEs that offers the nominal biosys-
tem’s exact slow manifold, as well as analyzing the system’s dynamic approach
towards and evolution on the slow manifold in the presence of model uncertainty.

The present paper is organized as follows: Section 2 contains some conceptual
and mathematical preliminaries that are necessary for the ensuing theoretical de-
velopments. The paper’s main results are presented in Section 3. The proposed
method is evaluated in an illustrative example focusing on the characterization of
the nonlinear dynamic behavior exhibited by certain immobilized enzyme biore-
actors in the presence of enzymatic activity degradation and model uncertainty.
Finally, a few concluding remarks are provided in Section 5.

2. Conceptual and mathematical preliminaries. Consider the nonlinear dy-
namics of a biosystem mathematically represented by:

dx

dt
= f(x) (1)

where x ∈ X is the state vector and X ⊂ Rn a compact subset of state space. It
is assumed that f(x) is a real analytic vector function f : X −→ Rn, and without
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loss of generality, the origin x0 = 0 is an equilibrium point of (1): f(0) = 0. Fur-

thermore, it is assumed that the Jacobian matrix A =
∂f

∂x
(0) has eigenvalues with

negative real parts (Hurwitz matrix), and more specifically, its eigenspectrum σ(A)
consists of two distinct subsets of “fast” eigenvalues σf (A) and “slow” eigenvalues
σs(A): σ(A) = σf (A) ∪ σs(A), for which the real parts of the “fast” eigenvalues
are a few orders of magnitude larger than the real parts (in absolute value) of the
“slow” ones.

The following definition is essential:
Definition 1 [30]: A set

Ω = {x ∈ Rn|φ(x) = 0} (2)

where φ : Rn → Rn is a map with φ(0) = 0, is said to be invariant under the flow
of dynamics (1) if for each φ(x(0)) ∈ Ω, the integral curve {x(t)} of (1) satisfying
x(t = 0) = x(0), is such that φ(x(t)) ∈ Ω for all t ∈ R+. An invariant set Ω ⊂ Rn

passing through the origin x0 = 0 is said to be a real analytic local invariant
manifold, if φ is real analytic and Ω has the local topological structure of an analytic
manifold around the origin.

One can easily show that for Ω to be rendered invariant under the flow of (1),
the map φ ought to satisfy the following invariance PDE:

∂φ

∂x
(x)f(x) = 0 (3)

Notice, that the above invariance PDE condition is satisfied by all possible invariant
manifolds of dynamics (1), and therefore, it admits multiple solutions. One of the
key issues that the present study aims at addressing is the development of a method
that allows the construction of the system’s slow manifold out of the above multitude
of invariant manifolds. Within such a context, this method would allow the explicit
mathematical characterization of the biosystem’s behavior that corresponds both
to the “fast” eigenmodes that govern the rapid transition of the system towards
the slow manifold, and the “slow” eigenmodes that determine the system’s dynamic
evolution on the slow manifold embedded in state space. Moreover, the restriction of
the biosystem dynamics (1) on the above slow manifold would represent a reduced-
order description of the original nonlinear dynamics (1).

At this point, please notice that one can always triangularize the linear part of

the system dynamics (1) by transforming the system’s Jacobian A =
∂f

∂x
(0) into

a block-triangular form. In particular, one can always find a linear coordinate

transformation such that the Jacobian A =
∂f

∂x
(0) becomes transformed into a

block-triangular form where the eigenvalues of the diagonal blocks are exactly the
slow and fast eigenvalues of A [30]. As a result, in the new coordinate system the
original system dynamics is represented via the following form:

dxf

dt
= Ff (xs, xf )

dxs

dt
= Fs(xs, xf ) (4)

with Ff (xs, xf ) and Fs(xs, xf ) being real analytic vector functions with: Ff (0, 0) =

0, Fs(0, 0) = 0,
∂Fs

∂xf

(0, 0) = 0 and σs(A) = σ(
∂Fs

∂xs

(0, 0)), σf (A) = σ(
∂Ff

∂xf

(0, 0)) are
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the set of the slow and fast eigenvalues of the Jacobian A as they surface once the
block-triangularization of the system’s linear part is performed.

However, special attention should be drawn with respect to broad classes of
bioprocesses or biosystems that exhibit the exact triangular structure shown below
(also known as a skew-symmetric system):

dxf

dt
= Ff (xs, xf )

dxs

dt
= Fs(xs) (5)

where the second dynamic equation describes the “slow” motion and the first the
“fast” one. Within this context, the first dynamic equation may correspond to a
biosystem or bioprocess whose own dynamics is driven by:

(i) either a time-varying process parameter vector xs(t) that follows the “slow”
dynamics of the second dynamic equation and models phenomena such as enzymatic
deactivation or loss of viablity of cells in immobilized enzyme or cell bioreactors
respectively [10, 16], or

(ii) the “slow” reaction-invariant dynamics encountered in numerous theoretical
and applied studies involving biological reactor dynamics [28], or

(iii) a “slowly” varying input/disturbance dynamics mathematically realized by
the second dynamic equation (where input or disturbance changes are modeled and
generated as “outputs” of the autonomous nonlinear dynamics associated with the
second equation) [2, 16], or finally

(iv) by an “upstream” bioprocess with slow dynamics modeled through the sec-
ond dynamic equation in (5) [16].

As it is often the case in practice, the above dynamic models can not adequately
capture and faithfully describe the behavior of the actual biosystem due to model
uncertainty that is inevitably introduced at the modeling stage. For example, one
may envision cases where kinetic parameters in biochemical reaction systems are
unknown or poorly known, or certain dynamics has not been captured by modeling,
and therefore, cases where an element of uncertainty and/or error is introduced
in the dynamic description of the biosystem under consideration [1, 10, 11, 30].
Mathematically, this uncertainty is very often represented in the following fashion:

dxf

dt
= Ff (xs, xf ) + ǫ1Gf (xs, xf )

dxs

dt
= Fs(xs, xf ) + ǫ2Gs(xs, xf ) (6)

where the terms: Fs(xs, xf ), Ff (xs, xf ) represent the “known” part of the dynamic
model (or equivalently its nominal part), whereas the terms: Gs(xs, xf ), Gf (xs, xf )
represent the model uncertainty or modeling error or some “unmodeled dynamics”.
Please notice, that ǫ1, ǫ2 > 0 are typically small numbers (perturbation parameters)
and even though we do not know Gs(xs, xf ), Gf (xs, xf ) exactly, we do have some
knowledge about them, for example some type of bound can be established. Indeed,
it is often assumed that the perturbation terms Gs(xs, xf ), Gf (xs, xf ) are bounded
on X satisfying the following condition:

||Gs(xs, xf )|| ≤ Ms

||Gf (xs, xf )|| ≤ Mf (7)

where Ms, Mf > 0 and (xs, xf ) ∈ X .
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Let us now focus on the “known” nominal dynamic model (4) (or (5)). One can
easily infer that:

Ω = {(xf , xs) ∈ Rn|xf − π(xs) = 0} (8)

represents an invariant manifold for system (4), if the map π satisfies the system of
invariance PDEs shown below:

∂π

∂xs

Fs(xs, π(xs)) = Ff (xs, π(xs)) (9)

Typically the above systems of invariance PDEs is accompanied by the condition:
π(0) = 0, which reflects the fact that the system’s equilibrium point lies on the
invariant manifold. From a mathematical standpoint, attention should be drawn
to the fact that the above system of first-order PDEs is of particular structure and
admits a common principal part consisting of the components of the vector function
Fs(xs, xf ). Furthermore, notice that the principal part vanishes at x = 0 due to the
equilibrium condition, and thus, the origin becomes a characteristic (singular) point
for the system of PDEs (9) [6, 8]. As a consequence, the well-known existence and
uniqueness Cauchy-Kovalevskaya theorem can not be invoked because the pertinent
conditions are not satisfied for the singular system of PDEs (9) [6, 8], and inevitably
one needs to resort to methods and results from singular PDE theory. Specifically,
the following results can be derived for the nominal system in the absence of model
uncertainty [14, 15]:
Theorem 2.1 Consider the nonlinear system (4) and let all the aforementioned
assumptions hold true. Moreover, assume that the eigenvalues ki of matrix As =
∂Fs

∂xs

(0, 0) are not related to the eigenvalues λi of matrix Af =
∂Ff

∂xf

(0, 0) through

any equations of the type:
m

∑

i=1

miki = λj

(j = 1, ..., p), where all the mi are non-negative integers that satisfy the condition:

m
∑

i=1

mi > 0

Then, the set Ω (8) is a real analytic invariant manifold of (4), where π(xs) is the
unique locally analytic solution of the singular invariance PDEs (9).
Theorem 2.2 Let all assumptions of Theorem 1 hold true. Furthermore, let Ω (8)
be an invariant manifold of (4), where π(xs) is the unique locally analytic solution
of the invariance PDEs (9) and {xs(t), xf (t)} a solution curve of (4). There exists
a neighborhood U0 of the origin and real numbers M > 0 and K > 0 such that, if
(xs(0), xf (0)) ∈ U0, then:

||xf (t) − π(xs(t))||2 ≤ M exp(−Kt)||xf (0) − π(xs(0))||2 (10)

Furthermore, the rate of decay of the dynamics of the off-manifold coordinate: z =

xf − π(xs) is governed by the fast eigenvalues of matrix Af =
∂Ff

∂xf

(0, 0).

Theorems 2.1 and 2.2 imply that for the nominal biosystem and in the absence
of model uncertainty, Ω represents exactly the system’s slow invariant manifold
that exponentially attracts all system trajectories once the fast transients die out.
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Therefore, a reduced-order description of the biosystem dynamics is the following
one:

dxs

dt
= Fs(xs, π(xs))

xf = π((xs)) (11)

The above reduced-order model represents exactly the system’s dynamics on the
slow manifold Ω (restriction of the system’s flow on the slow manifold), and can be
used in practice since the fast transients could be justifiably ignored. Indeed, the
proposed reduced-order model implies that almost instantaneously the fast state
xf jumps from its initial condition xf (0) to π(xs(0)) on the manifold Ω where the
system is bound to evolve and the relation xf (t) = π(xs(t)) holds true for every
t > 0.

In order to be able to make practical use of the proposed method, one must pro-
vide a solution scheme for the associated system of singular invariance PDEs (9).
Notice that the method of characteristics is not applicable because the aforemen-
tioned system of PDEs (9) is singular [6, 8]. However, since all functions involved are
locally analytic around the origin, it is possible to calculate the solution xf = π(xs)
in the form of a multivariate Taylor series around the origin. The method involves
expanding all functions involved, as well as the unknown solution xf = π(xs) in a
Taylor series and equating the same order Taylor coefficients of both sides of the
PDEs (9). This procedure leads to linear recursion formulas, through which one can
calculate the N -th order Taylor coefficients of the unknown solution xf = π(xs),
given the Taylor coefficients of xf = π(xs) up to the order N − 1 [15].

In the derivation of the recursion formulas, it is convenient to use the following
tensorial notation:

a) The entries of a matrix A are represented as aj
i , where the subscript i refers

to the corresponding row and the superscript j to the corresponding column of the
matrix.

b) The partial derivatives of the µ-th component Fµ(xs, xf ) of the vector function
F (xs, xf ) with respect to the state variables xs evaluated at (xs, xf ) = (0, 0) are
denoted as follows:

F i
µ =

∂Fµ

∂xs,i

(0, 0)

F ij
µ =

∂2Fµ

∂xs,i∂xs,j

(0, 0)

F ijk
µ =

∂3Fµ

∂xs,i∂xs,j∂xs,k

(0, 0) (12)

etc., where i, j, k, ..=1, ..., n.
c) The standard summation convention where repeated upper and lower tensorial

indices are summed up.
Under the above notation the l-th component πl(xs) of the unknown solution

π(xs) can be expanded in a multivariate Taylor series as follows [19]:

πl(xs) =
1

1!
πi1

l xs,i1 +
1

2!
πi1i2

l xs,i1xs,i2 + ... +

+
1

N !
πi1i2...iN

l xs,i1xs,i2 ...xs,iN
+ ... (13)
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Similarly one expands the components of the vector functions Fs(xs, xf ), Ff (xs, xf )
in multivariate Taylor series. Substituting the Taylor expansions of πl(xs) and
Fs(xs, xf ), Ff (xs, xf ) into the system of PDEs (9) and matching the Taylor coef-
ficients of the same order, the following relation for the N -th order terms may be
obtained [15]:

N−1
∑

L=0

∑

(N

L)

πµi1...iL

l F iL+1...iN

s,µ = Fµ
f,lπ

i1...iN

µ + f i1...iN

l (πi1...iN−1) (14)

where f i1...iN

l (πi1...iN−1) is a function of Taylor coefficients of the unknown solution
πl(xs) calculated in the previous recursive steps. Note that the second summation
symbol in (14) should be regarded as summing up the relevant quantities over the
(

N

L

)

possible combinations of the indices (i1, ..., iN ). Furthermore, equations (14)

represent a set of linear algebraic equations in the unknown coefficients πi1,...,iN

µ ,
and this is the mathematical reason that allows the series solution method to be
accomplished in an automated fashion by exploiting the computational capabilities
and commands of a symbolic software package such as MAPLE. Finally, it should
be also pointed out, that occasionally the Taylor series solution method for the
invariance PDEs (9) exhibits slow convergence. In these cases, significant improve-
ment of the convergence properties of the invariance PDE solution scheme can be
achieved if direct Newton-type methods as described in [5, 10] are employed, or
relaxation methods such as the ones reported in [5, 12].

In light of the above remarks, an important question naturally arises: Would the
aforementioned invariant manifold-based approach to the problem of characterizing
the biosystem’s dynamic behavior still offer reliable results in the presence of model
uncertainty, and therefore the associated properties be “robust” to modeling errors
and uncertainty? Mathematically stated, under what conditions within the above
framework, the biosystem dynamics is structurally stable and does not significantly
deviate from the nominal one in the presence of perturbation terms representing
model uncertainty/error? Before proceeding with the study of this particular prob-
lem, we present the following Lemma which is an extension of Gronwall-Bellman’s
inequality [17].
Lemma 2.1 Let y : [0, T ] → R be a continuous function satisfying the inequality
shown below:

y(t) ≤ l + m

∫ t

0

y(s)ds + h(t) (15)

for 0 ≤ t ≤ T , where l, m are positive scalar constants and h : [0, T ] → R a
continuous function. Then, on the same interval, the following inequality holds
true:

y(t) ≤ l exp(mt) + m

∫ t

0

exp(m(t − s))h(s)ds + h(t) (16)

Proof. Denote: z(t) ≡ m

∫ t

0

y(s)ds and v(t) ≡ z(t) + h(t) + l − y(t) ≥ 0. Notice

that:
dz

dt
= my(t) = mz(t) + m(h(t) + l − v(t)) (17)
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with z(0) = 0, and therefore:

z(t) = m

∫ t

0

exp(m(t − s))(h(s) + l − v(s))ds (18)

Since v(t) ≥ 0, Equation (18) yields:

z(t) ≤ m

∫ t

0

exp(m(t − s))(h(s) + l)ds

= ml

∫ t

0

exp(m(t − s))ds + m

∫ t

0

exp(m(t − s))h(s)ds

= l exp(mt) − l + m

∫ t

0

exp(m(t − s))h(s)ds (19)

or:

y(t) ≤ l + l exp(mt) − l + m

∫ t

0

exp(m(t − s))h(s)ds + h(t)

= l exp(mt) + m

∫ t

0

exp(m(t − s))h(s)ds + h(t) (20)

thus completing the proof.

The following theorem provides the analytical means to address the key question
stated above, namely the characterization of the actual system’s behavior in the
presence of model uncertainty.
Theorem 2.3 Let all assumptions of Theorem 2 be satisfied. Furthermore, let Ω (8)
be a slow manifold of the “known” nominal system (4), where π(xs) is the unique
locally analytic solution of the invariance PDEs (9). Then, in the presence of model
uncertainty and for the perturbed system (6), the following holds true asymptotically
as t −→ ∞:

||xf (t) − π(xs(t))||2 ≈t→∞ O(ǫ1, ǫ2) (21)

Proof. Taking into account that:
∂Fs

∂xf

(0, 0) = 0, the dynamic equations of the

original system (4) may be rewritten as follows:

dxf

dt
= Ff (xs, xf ) = Afxf + Afsxs + f(xs, xf ) + ǫ1Gf (xs, xf )

dxs

dt
= Fs(xs, xf ) = Asxs + g(xs, xf ) + ǫ2Gs(xs, xf ) (22)

where Af , As, Afs are constant matrices with appropriate dimensions, and f(xs, xf ),
g(xs, xf ) are real analytic functions of (xs, xf ) with Taylor series expansions begin-

ning with terms of degree greater than one:
∂f

∂xf

(0, 0) =
∂f

∂xs

(0, 0) =
∂g

∂xf

(0, 0) =

∂g

∂xs

(0, 0) = 0. Furthermore, in the nominal case (of unmodeled dynamics), the

singular invariance PDEs (9) attain the following form:

∂π

∂xs

(Asxs + g(π(xs), xs)) = Afπ(xs) + Afsxs + f(π(xs), xs) (23)

Denote now by z the “off-manifold” coordinate:

z(t) = xf (t) − π(xs(t)) (24)
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whose dynamics is described by the following nonlinear differential equation:

dz

dt
=

dxf

dt
−

∂π

∂xs

dxs

dt
= Afxf + Afsxs + f(xf , xs) + ǫ1Gf (xf , xs) −

−
∂π

∂xs

(Asxs + g(xf , xs) + ǫ2Gs(xf , xs))

= Af (z + π(xs)) + Afsxs + f(z + π(xs), xs) + ǫ1Gf (z + π(xs), xs) −

−
∂π

∂xs

(Asxs + g(z + π(xs), xs) + ǫ2Gs(xf , xs))

= Afz + {f(z + π(xs), xs) − f(π(xs), xs) +
∂π

∂xs

g(π(xs), xs) −

−
∂π

∂xs

g(z + π(xs), xs)} + ǫ1Gf (z + π(xs), xs) −

− ǫ2
∂π

∂xs

Gs(z + π(xs), xs)

= Afz + H(z, xs) + ǫ1h1(z, xs) + ǫ2h2(z, xs) (25)

where:

H(z, xs) = f(z + π(xs), xs)− f(π(xs), xs) +
∂π

∂xs

g(π(xs), xs)−
∂π

∂xs

g(z + π(xs), xs)

h1(z, xs) = Gf (z + π(xs), xs)

h2(z, xs) = −
∂π

∂xs

Gs(z + π(xs), xs)

Notice that H(z, xs) is a real analytic vector function with: H(0, 0) =
∂H

∂z
(0, 0) = 0,

and ||h1(z, xs)|| = ||Gf (z + π(xs), xs)|| ≤ M1 ≡ N1, ||h2(z, xs)|| = ||
∂π

∂xs

Gs(z +

π(xs), xs)|| ≤ NM2 ≡ N2, since ||
∂π

∂xs

|| ≤ N in the compact set X . Consequently,

in the domain: ||z||2 < ρ1, ||xs||2 < ρ2 the following inequality holds true:

||H(z, xs)||2 < L||z||2 (26)

where the positive constant L can be made arbitrarily small by choosing ρ1, ρ2

small enough. Furthermore, since Af is Hurwitz, there exist positive constants β,
γ such that [18, 30]:

|| exp(Af t)y||2 ≤ γ exp(−βt)||y||2 (27)

for all y ∈ Rn. From equation (25), one obtains:

z(t) = exp(Af t)z(0) +

∫ t

0

exp(Af (t − τ)){H(z(τ), xs(τ)) +

+ ǫ1h1(z(τ), xs(τ)) + ǫ2h2(z(τ), xs(τ))}dτ (28)

and therefore:

||z(t)||2 ≤ γ exp(−βt)||z(0)||2 +

∫ t

0

γ exp(−β(t − τ)){L||z(τ)||2 + ǫ1N1 + ǫ2N2}dτ

(29)
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or:

exp(βt)||z(t)||2 ≤ γ||z(0)||2 +

∫ t

0

γL exp(βτ)||z(τ)||2dτ +

+
ǫ1γN1

β
(exp(βt) − 1) +

ǫ2γN2

β
(exp(βt) − 1) (30)

Using Lemma 2.1 one obtains:

exp(βt)||z(t)||2 ≤ γ exp(γLt)||z(0)||2 +

+ γL

∫ t

0

exp(γL(t − τ)){
ǫ1γN1

β
(exp(βτ) − 1)}dτ +

+ γL

∫ t

0

exp(γL(t − τ)){
ǫ2γN2

β
(exp(βτ) − 1)}dτ +

+
ǫ1γN1

β
(exp(βt) − 1) +

ǫ2γN2

β
(exp(βt) − 1) ⇒

||z(t)||2 ≤ γ exp(−(β − γL)t)||z(0)||2 +

+ γL exp(−βt)

∫ t

0

exp(γL(t − τ)){
ǫ1γN1

β
(exp(βτ) − 1)}dτ +

+ γL exp(−βt)

∫ t

0

exp(γL(t − τ)){
ǫ2γN2

β
(exp(βτ) − 1)}dτ +

+
ǫ1γN1

β
(1 − exp(−βt)) +

ǫ2γN2

β
(1 − exp(−βt)) (31)

An analytical calculation of the integrals of the right-hand side of (31) leads to:

||z(t)||2 ≤ γ exp(−(β − γL)t)||z(0)||2 +

+
ǫ1γ

2LN1

β
{

1

(β − γL)
(1 − exp(−(β − γL)t)) +

+
1

γL
(exp(−βt) − exp(−(β − γL)t))} +

ǫ1γN1

β
(1 − exp(−βt)) +

+
ǫ2γ

2LN2

β
{

1

(β − γL)
(1 − exp(−(β − γL)t)) +

+
1

γL
(exp(−βt) − exp(−(β − γL)t))} +

ǫ2γN2

β
(1 − exp(−βt)) (32)

Since L can be made arbitrarily small, let us denote: K = β − γL > 0 and also let
t −→ ∞. The above inequality yields:

||z(t)||2 ≤
ǫ1γ

2LN1

βK
+

ǫ1γN1

β
+

+
ǫ2γ

2LN2

βK
+

ǫ2γN2

β
=⇒

||z(t)||2 ≤
ǫ1γN1

β
(
γL

K
+ 1) +

ǫ2γN2

β
(
γL

K
+ 1) (33)

and the proof is complete.

On the basis of result (33) the following remarks can be made:
i) In the absence of model uncertainty: Gs(xs, xf ) = Gf (xs, xf ) ≡ 0, Theorem

2.3 naturally reproduces the result of Theorem 2.2. In this case, Ω represents exactly
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the system’s slow invariant manifold exponentially attracting all system trajectories
once the fast transients die out, and the biosystem dynamics ultimately evolves on
Ω until it reaches the reference equilibrium point.

ii) Notice that due to the presence of the model uncertainty terms Gs(xs, xf ),
Gf (xs, xf ) the off-manifold coordinate z(t) = xf (t) − π(xs(t)) does not converge
to zero asymptotically (even under “zero initial condition”, i.e. starting on the
slow manifold of the nominal system (4) : xf (0) = π(xs(0))). However, as can be
easily inferred from (21) or (33), the inevitable offset from Ω is of order O(ǫ1, ǫ2).
Equivalently stated, the distance from the nominal system’s slow manifold will be
ultimately bounded if the perturbation or model uncertainty term is itself bounded.
In particular, results (21) or (33) derived as bounds (in an asymptotic sense) on
the off-manifold coordinate z(t) = xf (t) − π(xs(t)), and therefore a measure of
boundedness of the distance from Ω, suggest that it is directly proportional to the
magnitude of the model uncertainty terms.

iii) The above results suggest that the slow manifold-based analysis is capable of
providing an accurate and robust quantitative characterization of the biosystem’s
dynamic behavior in the presence of suitably modeled and rather broad classes of
modeling errors and/or model uncertainties. The associated issues will be illustrated
in the next Section’s bioreactor examples.

3. Illustrative examples of immobilized enzyme bioreactors. The use of
immobilized cell and enzyme bioreactors in the food, pharmaceutical and nutraceu-
tical industries, as well as in the field of medicine is rather wide. Examples of
such processes for food or nutraceutical production include the production of flavor
volatiles such hexanal from linoelic acid using the immobilized enzymes lipoxyge-
nase and hydroperoxide lyase [4], and the production of the food grade linoleic acid
from corn oil using immobilized lipase [26]. Furthermore, the number of biomedical
applications in which immobilized enzyme or cell bioreactors assume a key role is
growing. Notable examples include implantable bioreactors consisting of immobi-
lized phospholipase A2 that have been proposed for the reduction of serum levels
of low density lipoprotein [27], and immobilized hepatocyte bioreactors that have
been examined for use as extracorporeal bioartificial livers, and have been shown to
be quite effective at clearing harmful toxins from a medium (blood) stream [31]. It
should be pointed out that in all the above biosystems/bioprocesses, the short term
behavior of the bioreactor depends primarily on the (typically nonlinear) kinetics
of the immobilized enzymes or cells participating in the associated (bio)chemical
reaction schemes. However, the long term behavior of the bioreactors depends on
either the stability of the immobilized enzymes or the viability of the immobilized
cells employed in specific applications. It should be also emphasized that while the
short term behavior of these systems is important in determining the conversion of a
nutraceutical or degradation of a toxin (parameters associated with bioreactor per-
formance), the long term behavior of the bioreactor typically determines when the
enzyme or cell catalyst needs to be replaced in order to maintain conversions at ac-
ceptable levels. Therefore, being able to accurately estimate bioreactor performance
degradation over time (below the acceptable levels) has important implications and
consequences for the health/safety of a patient as well as the profitability of the
bioprocess.

Actual kinetic data on enzyme performance and enzyme degradation are con-
sidered in the present study for an immobilized enzyme bioreactor that is used for



412 NIKOLAOS KAZANTZIS AND VASILIKI KAZANTZI

the production of food grade linoleic acid from corn oil [26]. In the case study con-
sidered, we assume that the enzymatic bioreactor behaves as an ideal continuous
stirred tank reactor (CSTR). It is also assumed that the enzyme involved converts
substrate into product, in this case corn oil into linoleic acid, via a ping-pong bi bi
mechanism, as reported in [26]. Under a set of standard assumptions, the following
nonlinear dynamic process model can be developed:

dS

dt
= f (1)(S, E) =

k1ES

1 − k2S
+

v0

V
(S0 − S)

dE

dt
= g(1)(E) = −kd1E (34)

The above dynamic equations describe the change in substrate concentration in the
reactor as a function of time, and the degradation of activity of the enzyme. S,
S0 and E represent the concentrations of substrate, substrate in the feed stream
and enzyme respectively. k1, k2 represent kinetic parameters describing the rate
of the enzymatic reaction and kd1 is a kinetic parameter describing the rate of
deactivation of the enzyme. v0 is the flow rate of the substrate and V is the reactor
volume. In Table 1, kinetic parameters used in the example, as well as initial
substrate and enzyme concentrations are provided. It is worth mentioning that
under these parameter values, the above bioreactor dynamics is characterized by a
latent two-time-scale multiplicity attributed to the slow degradation of the enzyme
when compared to the much faster bioprocess dynamics. Let us now assume that
the value of the k1 kinetic constant is not fully known, but uncertain. It is assumed
that: k1 = k0

1 + ǫ∆k, where k0
1 = 8.2E − 2 (h−1g−1) is a known nominal value

and ǫ∆k with |∆k| < M represents a bounded term reflecting the uncertainty that
characterizes the numerical value of k1, and ǫ > 0 being a small positive constant.
Given the structure of the above dynamic model (34), it can be easily deduced that
the perturbation term is given by the following expression:

h(S, E) = ǫ
(∆k)ES

1 − k2S
(35)

Furthermore, it can be easily proven that the nominal system is asymptotically
stable around the equilibrium point of interest (S0, E0) = (3.4, 0) using standard
Lyapunov stability arguments, and that the above perturbation term is indeed
bounded. In order to conform to the theory presented in the previous Section,
the following set of deviation variables relative to the equilibrium point (S0, E0) =
(3.4, 0) are introduced:

x = S − S0

w = E − E0 (36)

Let us also denote: F̄ (1)(x, w) = F (1)(x + S0, w + E0), Ḡ(1)(w) = G(1)(w + E0).
Notice that for the bioreactor model (34) all conditions of Theorems 2.1, 2.2 and
2.3 are satisfied. Therefore, for the nominal bioreactor model there exists a unique
and locally analytic slow manifold: x = π(w), with π(w) being the solution to the
following invariance equation:

∂π

∂w
Ḡ(1)(w) = F̄ (1)(π(w), w)

π(0) = 0 (37)
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A series solution to the above invariance equation is sought around the origin. The
Taylor coefficients of the unknown solution x = π(w) can be automatically com-
puted using a simple MAPLE code. A finite-order series truncation N is considered
leading to a Taylor polynomial approximation x = π[N ](w) of the actual solution
of the invariance equation (37). In particular, with the aid of the aforementioned
MAPLE code a 5-th order series truncation was considered: N = 5. In the ab-
sence of uncertainty ǫ = 0 and for N = 5, Figure 1 depicting the phaseportrait
of the bioreactor dynamics suggests that the actual approach to the slow invariant
manifold (solid line) can be quite satisfactorily approximated by the computed one
(dotted line) obtained using the proposed series solution method. If one increases
the truncation order to N = 8, they become almost indistinguishable as demon-
strated in the phaseportrait of Figure 2. This is certainly not surprising since it
follows from the uniform convergence of the series solution of the invariance equation
(37). Please notice the underlying two-time-scale multiplicity that manifests itself
quite explicitly in Figures 1 and 2 and how a familiar dynamic pattern naturally
emerges: the transition of the system from the initial state to the slow manifold
is depicted through the vertical constant-E lines since the enzymatic concentration
remains practically unchanged due to the much slower enzymatic dynamics, while
the substrate concentration changes rather rapidly until the system reaches the slow
manifold, upon which the bioreactor dynamics is bound to evolve (for large times).
In the presence of model uncertainty: ǫ∆k = 0.002 and in the case of N = 8, one
can observe in Figure 3 the inevitable offset and deviation from the system’s actual
approach to the slow manifold (solid line) exhibited by the one computed on the
basis of the nominal system (dotted line) and through the solution of the invariance
equation (37). As uncertainty increases: ǫ∆k = 0.0045, N = 8, and in agreement
with the theoretical results obtained in the previous Section, the above deviation
becomes more pronounced as shown in Figure 4 and the distance/offset from the
system’s actual slow manifold becomes larger.

Let us now increase the degree of complexity of the example considered by in-
cluding a second enzymatic step in the associated bioprocess and use representative
kinetic parameters for the second enzyme. In particular, we assume that the sec-
ond enzyme converts substrate to product via a Michaelis-Menten mechanism, and
both enzymes degrade via a first order decomposition process [16]. Under these
assumptions the following nonlinear dynamic process model can be developed:

dS

dt
= F (1)(S, E1, E2) =

k1E1S

1 − k2S
+

k3E2S

KM2
+ S

+
v0

V
(S0 − S)

dE1

dt
= G(1)(E1, E2) = −kd1E1

dE2

dt
= G(2)(E1, E2) = −kd2E2 (38)

As before, the above dynamic equations describe the change in substrate concen-
tration in the reactor as a function of time, and the degradation of activity of the
two enzymes. S, S0, E1 and E2 represent the concentrations of substrate, substrate
in the feed stream, enzyme one, and enzyme two respectively. k1, k2, k3, and KM2

represent kinetic parameters describing the rates of reaction of enzyme one and two,
and kd1 and kd2 are kinetic parameters describing the rate of deactivation of en-
zymes one and two respectively. Table 2 contains the new set of kinetic parameter
values, as well as initial substrate and enzyme concentrations. Let us also assume
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that the value of the k1 kinetic constant is, as in the previous case, not fully known,
but uncertain: k1 = k0

1 + ǫ∆k, where k0
1 = 8.2E − 2 (h−1g−1) is a known nominal

value and ǫ∆k with |∆k| < M represents the bounded uncertainty term. Given the
structure of the above dynamic process model (38), it can be easily inferred that

the perturbation term is the same as before: h(S, E) = ǫ
(∆k)ES

1 − k2S
. The following

set of deviation variables relative to the equilibrium point (S0, E0
1 , E0

2) = (3.4, 0, 0, )
is now introduced:

x1 = S − S0

w1 = E1 − E0
1

w2 = E2 − E0
2 (39)

Furthermore, let us also denote: F̄ (1)(x1, w1, w2) = F (1)(x1 +S0, w1 +E0
1 , w2 +E0

2),
Ḡ(i)(w1, w2) = G(i)(w1 + E0

1 , w2 + E0
2) (i = 1, 2). Notice that for the bioreactor

system (38) all conditions of Theorems 2.1, 2.2 and 2.3 are satisfied, and therefore,
there exists a unique and locally analytic slow manifold: x1 = π(w1, w2), with
π(w1, w2) being the solution to the following singular PDE (invariance equation):

∂π

∂w1
Ḡ(1)(w1, w2) +

∂π

∂w2
Ḡ(2)(w1, w2) = F̄ (1)(π(w1, w2), w1, w2)

π(0, 0) = 0 (40)

A series solution to the above singular PDE is sought around the origin, and the
Taylor coefficients of the unknown solution x1 = π(w1, w2) are computed by us-
ing a MAPLE code. We computed both the actual response of the bioreactor by
simulating the full model (38) in both the nominal and perturbed cases , as well
as the long term asymptotic behavior of the bioreactor, i.e. the on-manifold dy-
namics using the slow-manifold approach by solving the invariance PDE (40) with
N = 3. As it can be seen in Figure 5, the estimated substrate concentration profile
(dotted line) at the outlet of the reactor obtained through the reduced-order dy-
namics on the slow manifold (calculated for N = 3) becomes indistinguishable from
the actual substrate concentration profile (solid line) in the nominal case (ǫ = 0)
at times close to 100h, the approximate half life of the fastest decaying enzyme.
In Figure 6, the estimated substrate concentration profile (depicted by the dotted
line and computed using the invariance PDE in the “known” nominal case) is com-
pared with the actual one (solid one) in the presence of uncertainty: ǫ∆k = 0.002.
One observes, that there is now a slight discrepancy or offset between the asymp-
totic behavior estimate based on the on-manifold dynamics and the system’s actual
behavior for large times. However, under the given uncertainty, the asymptotic
behavior estimate remains satisfactorily close to the actual bioprocess performance
at times much shorter than the half life of the fastest decaying enzyme, a very use-
ful feature from a bioprosess monitoring standpoint. Indeed, in this example, the
knowledge of when substrate conversion drops below acceptable values is certainly
of importance in the profitability of the process. Furthermore, the above analysis
yields estimates of drop off in bioreactor performance that are superior to intuition
or “engineering judgment” based on knowledge of the half lives of enzymes in the
bioreactor. Please notice that when the bioreactor serves as an artificial organ or is
implanted, the benefit to understanding how bioreactor performance declines with
time has real implications for the health of the patient. Within this context, the
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above analysis provides a fairly accurate method for estimating the long term de-
cline in the performance of the artificial organ, and could be used in scheduling
implant replacement prior to artificial organ failure and the associated decline in
health. Finally, as expected, for a larger uncertainty magnitude: ǫ∆k = 0.0045, the
discrepancy between the nominal invariant manifold-based susbstrate concentration
profile estimate and the actual one becomes more pronounced as shown in Figure
7.

4. Concluding remarks. A new approach to the problem of characterizing the
dynamic behavior of nonlinear biosystems in the presence of model uncertainty
using the notion of slow invariant manifold was presented. The problem of interest
was formulated and addressed within the context of singular partial differential
equations (PDE) theory, and in particular, through a system of singular first-order
quasi-linear invariance partial differential equations (PDEs). Within the class of
analytic solutions, a set of conditions was derived that guarantees the existence and
uniqueness of a locally analytic solution which was proven to represent the slow
invariant manifold of the nonlinear biosystem under consideration exponentially
attracting all dynamic trajectories in the absence of model uncertainty. Under these
conditions, an exact reduced-order model for the nonlinear biosystem dynamics can
be obtained through the restriction of the original system dynamics on the slow
manifold. The aforementioned attractivity property and the fast transition towards
the above manifold was then analyzed and characterized in the presence of model
uncertainty. Finally, features of the proposed framework of analysis are illustrated
in examples involving certain types of immobilized enzyme bioreactors.
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TABLE 1: Example I - Kinetic and Bioreactor Parameter Values

Process parameters Values
S0 3.4 M

S(t = 0) 3 M
E(t = 0) 4 g

V 50 ml
v0 100 ml/h
k1 8.2E-2 h−1g−1

k2 5.9E-1 M−1

kd1 3.4E-3 h−1

TABLE 2: Example II - Kinetic and Bioreactor Parameter Values
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Process parameters Values
S0 3.4 M

S(t = 0) 3 M
E1(t = 0) 4 g
E2(t = 0) 1 g

V 50 ml
v0 100 ml/h
k1 8.2E-2 h−1g−1

k2 5.9E-1 M−1

k3 3.0E-1 Mh−1g−1

kM2
8 M

kd1 3.4E-3 h−1

kd2 5.0E-4 h−1

Approach to slow manifold - Estimate (N=5) Actual dynamic trajectories
Actual approach to slow manifold

E g
0 1 2 3 4

S M

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 1. Example I: Approach to slow manifold (N=5 and no uncertainty)

Approach to slow manifold - Estimate (N=8) Actual dynamic trajectories
Actual approach to slow manifold

E g
0 1 2 3 4

S M

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 2. Example I: Approach to slow manifold (N=8 and no uncertainty)
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Approach to slow manifold - Estimate (N=8) on the basis of nominal model
Actual dynamic trajectories
Approach to slow manifold in the presence of uncertainty with magnitude 0.002

E g
0 1 2 3 4

S M

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 3. Example I: Approach to slow manifold (N=8 and un-
certainty 0.002)

Approach to slow manifold - Estimate (N=8) on the basis of nominal model
Actual dynamic trajectories
Approach to slow manifold in the presence of uncertainty with magnitude 0.0045

E g
0 1 2 3 4

S M

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 4. Example I: Approach to slow manifold (N=8 and un-
certainty 0.0045)

Substrate concentration estimate (N=3)
Actual substrate concentration profile

t h
0 100 200 300 400 500

S M

2.8

2.9

3.0

3.1

3.2

3.3

Figure 5. Example II: Substrate concentration profile (N=3 and
no uncertainty)
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Substrate concentration profile estimate (N=3) on the basis of 
nominal model
Substrate concentration profile in the presence of 
uncertainty of magnitude 0.002

t h
0 100 200 300 400 500

S M

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 6. Example II: Substrate concentration profile (N=3 and
uncertainty 0.002)

Substrate concentration estimate (N=3) on the basis of 
nominal model
Substrate concentration profile in the presence of uncertainty 
of magnitude 0.0045

t h
0 100 200 300 400 500

S M

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Figure 7. Example II: Substrate concentration profile (N=3 and
uncertainty 0.0045)
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