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Abstract. The morphology of solid tumours is known to be affected by the
background oxygen concentration of the tissue in which the tumour grows, and

both computational and experimental studies have suggested that branched tu-

mour morphology in low oxygen concentration is caused by diffusion-limited
growth. In this paper we present a simple hybrid cellular automaton model

of solid tumour growth aimed at investigating this phenomenon. Simulation

results show that for high consumption rates (or equivalently low oxygen con-
centrations) the tumours exhibit branched morphologies, but more importantly

the simplicity of the model allows for an analytic approach to the problem. By

applying a steady-state assumption we derive an approximate solution of the
oxygen equation, which closely matches the simulation results. Further, we

derive a dispersion relation which reveals that the average branch width in
the tumour depends on the width of the active rim, and that a smaller active

rim gives rise to thinner branches. Comparison between the prediction of the

stability analysis and the results from the simulations shows good agreement
between theory and simulation.

1. Introduction. Several recent computational [15, 17, 1, 12] and experimental
studies [20, 29, 10] have shown that nutrient limitation is an important factor in
determining tumour morphology. Tumours grown in low oxygen concentration have
been shown to exhibit complex branched morphologies suggesting that tumour
growth under low oxygen concentration occurs through diffusion-limited growth
[21], a process which is known to govern the growth of a variety of animate and
inanimate systems. This observation could possibly have important implications
for cancer treatment as a tumour with a well-defined round margin is easier to sur-
gically remove than one with an irregular morphology. It also suggests that certain
modes of treatment such as anti-angiogenic treatment which reduces the oxygen
supply to the tumour, actually could make the tumour more invasive.
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In this paper we present a hybrid cellular automaton model of tumour growth,
aimed at investigating tumour growth in diffusion-limited growth conditions. The
model presented herein is a simplified version of a previous model, which also con-
tained an evolutionary component [15]. That model exhibited branched tumour
morphologies in low oxygen concentrations, and could also link the oxygen con-
centration to changes in the evolutionary dynamics. The model presented will not
capture the evolutionary side of tumour growth, but its simplicity will allow us to
perform a stability analysis, which will give further insight into the dynamics of the
model and highlight the impact of the model parameters.

1.1. Background. Branched growth patterns have been observed in a variety of
different living systems such as bacterial and fungal colonies, and are known to occur
when the growth is limited by the diffusion of a nutrient that is necessary for cell
division and survival [6, 5]. The morphologies obtained from these living systems
resemble that of many non-living systems such as electrodeposition [25], crystal
growth [4] and viscous fingers [11, 22]. All of these non-living systems obey the
same underlying growth principle, which is that of Laplacian growth, in which the
interface between two phases is advanced at a rate proportional to the gradient of a
potential field u that obeys Laplace equation ∇2u = 0 in one phase and satisifies the
boundary condition u = 0 at the interface and in the other phase. Depending on the
system under consideration the field u represents different physical quantities. In the
case of electrodeposition it is the electric field around the substrate, in crystal growth
it is the temperature field and in viscous fingering the pressure in the liquid. This
growth process is inherently unstable as perturbations to the interface are enhanced
through increased flux, and what stabilises the growth are microscopic forces such
as the surface tension or capillary force. The growth instabilities that occur in these
systems are described by the Mullins-Sekerka instability [28], which shows that the
typical length scale of the pattern depends these microscopic parameters of the
system under consideration.

This similarity between biological and non-living diffusion limited patterns has
led to the hypothesis that the biological patterns could be explained with the same
basic principles [24]. Perhaps the most studied example of these biological systems
is the growth of bacterial colonies subject to low nutrient levels. Bacteria are usually
grown in petri dishes at high nutrient concentrations. These conditions give rise to
colonies with simple compact morphologies, but in stressed growth conditions, such
as low nutrient concentration or elevated substrate stiffness, morphologies similar
to those encountered in diffusion limited growth are observed [24, 26]. Another
biological system that displays complex patterns under diffusion limited growth
are fungal colonies. Complex branched morphologies have been observed for both
multi-cellular filamentous growth [27] and for yeast-like unicellular growth [32].
These patterns primarily arise in low nutrient conditions or when there is a build
up of metabolites which inhibit the growth of the tumour.

The diffusion-limited supply of nutrients that occur in the early stages of tumour
growth suggests that avascular tumours grow under similar nutrient limited con-
ditions as bacteria cultured in petri dishes. Although the growth of a tumour is
a much more complex process compared to the growth of bacteria in petri dishes,
the similarity in morphology suggest that tumours exhibit branched morphologies
driven by diffusion limited growth. For example, in a clinical study on cervical
cancers [20] showed that hypoxic tumours exhibited larger tumour extensions, and
similar results have been obtained in in vitro studies [29, 10].
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1.2. Previous work. The connection between low nutrient levels and irregular
tumour morphologies has been established in several mathematical models. In a
multi-model study by Anderson et. al [3] it was shown that three distinct models
all gave rise to fingered morphologies, and that a spectrum of morphologies ranging
from compact circular to highly branched emerge depending on the cellular char-
acteristics. Another model by Ferreira et. al [12] also exhibited a range of fingered
morphologies, but in this case it was shown that the tumour morphology depends on
the concentration of two types of nutrient, one essential for survival and the other
necessary for cell division. The above models are all individual-based, but tumour
morphology has also been investigated in reaction-diffusion models. The impact of
cell-cell adhesion was for example investigated by Frieboes et. al [10]. They show
that when the adhesion between cancer cells is low long wave-length perturbations
are enhanced and that this can lead to break of of sub-tumours from the main tu-
mour mass. A similar approach was used by Macklin et. al [23]. They found that
both the tissue oxygen concentration and the biomechanical properties of the tissue
affect the resulting tumour morphology, and in particular that fragmented growth
occurs in low oxygen hypoxic conditions.

The model presented in this paper is a simplification of an evolutionary hybrid
cellular automaton model which has been used for investigating the impact of the
tumour micro-environment on the growth and evolutionary dynamics of tumour
growth. In agreement with other models it showed that fingered morphologies
occur in low oxygen micro-environments, but more importantly it also established
a link between morphology and the phenotypic properties of the cells showing that
branched tumour are more likely to contain highly proliferative cells [15]. Extending
the model to take into account the extra-cellular matrix further showed that a dense
matrix has a stabilising effect on tumour growth reducing the growth rate of small
wave-length perturbations and consequently leading to wider branches [17].

2. The model. The tissue under consideration is represented by a N ×N cellular
automaton with lattice constant ∆x. Each automaton element can either be empty
or be occupied by a cancer cell and is identified by a coordinate ~x = ∆x(i, j)
i, j = 0, 1, 2, ..., N − 1.. This of course neglects the complex interactions between
the cancer cells and the host tissue which may contain fibroblasts, macrophages,
blood vessels and many other cell types and stimuli, which have all been shown to be
important factors in tumorigenesis [31]. However, to keep the model simple we shall
focus on tumour cells as the only cell population. The metabolism of cancer cells
includes a large number of different chemicals that are all needed for maintenance
and cell division, but it is known that the oxygen concentration limits the growth of
tumours [33], and we chose to focus on oxygen as the only source of nutrient. The
cellular automaton is therefore coupled with a continuous field c(~x, t) that describes
the oxygen concentration in the tissue, and which determines the behaviour of the
cancer cells.

Each cell can be in three different states: (i) proliferating, (ii) quiescent and (iii)
dead. The cell dynamics are driven by the micro-environment of the cells and if
the oxygen concentration falls below a given threshold cn the cell dies. If the local
oxygen concentration is above cn the cell will be in the proliferative state unless it
has more than 3 neighbours (using a von Neumann neighbourhood), in which case
it will become quiescent. This mechanism is meant to imitate contact inhibition, a
well known characteristic of human cells.
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A proliferating cell divides when it has gone through the cell cycle, it then places
a daughter cell at random in an empty neighbouring grid point. After cell division
has occurred the age of both cells is set to zero, which means that they both need
to through the cell cycle again to divide. In order to account for variation in the
cell cycle time between different cells it is chosen randomly from a N(τ, σ) normal
distribution, where τ represents the average cell cycle time and the variance is set
to σ = τ/2. For simplicity we have consider non-motile cells, which implies that
the growth of the tumour is driven by cell division.

Proliferating cells are assumed to consume oxygen at some fixed rate k, while
quiescent cells consume oxygen at a lower rate kq. Oxygen is assumed to diffuse
in the tissue with a diffusion constant D. The nutrient concentration field c(~x, t)
therefore obeys the equation,

∂c(~x, t)
∂t

= D∇2c(~x, t)− n(~x, t) (1)

where n(~x, t) = k if the automaton element at ~x holds an active cell, n(~x, t) = kq if
it holds a quiescent cell and n(~x, t) = 0 if it is empty or contains a dead cell. The
consumption rates are determined by the per cell consumption rate rc measured
in mol cells−1 s−1, together with the well-known fact that kq < k. The boundary
conditions satisfied by the nutrient fields are Dirichlet with a constant value c0.
This represents a continuous and fixed supply of nutrient from the boundary of the
system, and is meant to imitate a situation where the tissue is surrounded by blood
vessels that supply the tumour with oxygen via perfusion.

Please note that as the equation is stated the oxygen concentration can become
negative, but this will never happen in a simulation as cell which reside in low
oxygen concentration will die, and consequently the consumption term n(~x, t) will
become zero.

This equation is discretised using standard five-point finite central difference for-
mulas and solved on a grid with the same spatial step size as the cellular automaton
using an ADI-scheme (please see [17] for details). Each time step of the simulation
the nutrient concentration is solved using the discretised equation and all the active
cells on the grid are updated in a random order.

In order to make the simulation and analysis of the model simpler we non-
dimensionalise the oxygen equation (1) in the standard way. Time is rescaled by
the typical time of the cell-cycle, τ = 16 h [8], and the length by the maximal size
of a early stage tumour, L = 1 cm. The oxygen concentration is rescaled using
background concentrations: c0 = 1.7 × 10−8 mol O2 cm−2 [1] and the tumour cell
density n0 = ∆x−2 = 0.0025−2 = 1.6 × 105 cells cm−2 (as the cells reside on a
2-dim. grid) [9]. The new non-dimensional variables are thus given by,

~̃x =
~x

L
, t̃ =

t

τ
, c̃ =

c

c0
, D̃ =

Dτ

L2
, r̃c =

τn0rc

c0
. (2)

For notational convenience we have dropped the tildes on the non-dimensional vari-
ables.

Cancer cells in multi-cell spheroids are known to consume oxygen at a rate of
4.5× 10−17 mol cells−1 s−1 [13] and we therefore set the base oxygen consumption
rate to k = rc = 4.5 × 10−17. The quiescent consumption rate is set to kq = k/5,
within the experimentally determined range [13]. The diffusion constant for oxygen
is set to D = 1.8 × 10−5cm2 s−1 [18]. The value of cn is difficult to estimate as it
depends on the cell type under consideration, but measurement performed in several
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Table 1. A summary of parameters in the model.

Parameter Meaning Value Reference
rc base oxygen 4.5× 10−17 [13]

consumption rate mol cells−1 s−1

kq quiescent oxygen rc/5 [13]
consumption rate mol cells−1 s−1

D oxygen 1.8× 10−5 [18]
diffusion constant cm2 s−1

τ proliferation age 16 h [8]
∆x cell size 25 µm [9]
c0 background 1.7× 10−8 mol [1]

oxygen conc. O2 cm−2

cn oxygen threshold 0.15c0 [7]

types of tumours reveal that the oxygen concentration in the necrotic centre of the
tumour is 0.5-30% of the concentration in the surrounding tissue [7]. We therefore
estimate cn to be 15 % of the initial oxygen concentration.

A summary of all model parameters can be found in table 1 along with appro-
priate references. The grid size was set to N = 200, which corresponds to a domain
size of 0.5 cm and means that we can simulate a tumour of radius 100 cells, which
if we assume radial symmetry in a 3-dimensional setting would correspond to a
tumour consisting of approximately 1003 = 106 cells.

2.1. Simulations. With this model we have investigated how the oxygen consump-
tion rate k of the cells affects the growth dynamics of the tumour. Note that varying
the non-dimensional consumption rate k is equivalent to either varying the dimen-
sional consumption rate or the boundary concentration c0, see eq. (2). All simu-
lations were started with 4 cells at the centre of the grid and with a homogeneous
initial oxygen concentration of c(~x, t) = 1.

Figure 1 shows the spatial distribution of cancer cells for 3 different values of the
consumption rate k = (2rc, 5rc, 10rc) after t = 90 cell generations. For the lowest
consumption rate k = 2rc the tumour grows with a compact morphology and we
observe a wide active region, mostly populated by quiescent cells, surrounding a
core of dead cells. This is the typical structure of avascular tumours [33], and is
induced by the gradient in the oxygen concentration. For the higher consumption
rate k = 5rc the tumour no longer exhibits a compact shape, but instead grows with
a branched morphology where the living cells reside at the tips of the fingers. This
phenomena is even more pronounced for k = 10rc, which exhibits thinner branches.
These tumour morphologies are similar to those seen in other models of tumour
growth [1, 2, 12], and again highlight the importance of the micro-environment in
determining tumour morphology. Another phenomenon which is visible is that the
branch width seems to depend on the distance to the boundary of the domain.
Closer to the centre of the tumour the branches are thinner compared to those at
the edge.

3. Analysis. We will now proceed to a mathematical analysis of the growth dy-
namics of the model, similar to the one performed in [16]. The plan is to solve the
oxygen equation for a plane tumour interface, then perturb the interface and from
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(a)

(b)

(c)

Figure 1. The spatial distribution of cancer cells after t = 90 cell
generations for consumption rates (a) k = 2rc, (b) k = 5rc and (c)
k = 10rc. For the lowest consumption rate the tumour grows with a
compact morphology, while for higher k the tumour breaks up into
a branched morphology. Note that changing the consumption rate
k is equivalent to changing the background oxygen concentration.
An interesting observation is that the branches also become wider
as they move closer to the boundary of the domain.
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that derive a dispersion relation, which describes the growth rate of the perturba-
tion as a function of the wave number. The main assumption for this analysis is that
when the oxygen consumption rate of the cells is high compared to the background
concentration, the growth of the interface is diffusion-limited, i.e. v(~x) ∝ ~n · ∇c,
where v(~x) is the interface velocity and ~n is the normal of the interface [16, 19, 24].
This observation will be the basis for our stability analysis, which means that our
treatment of the system will not be rigorously related to our model, but rather
aimed more at understanding the dynamics of the model from a qualitative point
of view.

3.1. Sharp interface model. The oxygen field for the plane interface is found
by considering the tumour boundary as a sharp interface stretching infinitely in
the y-direction and moving at a constant speed vp = ∆x/τ in the x-direction.
The nutrient consumption of the cells is taken to be k in the active part of the
tumour, where c > cn, zero in the inactive part, where c ≤ cn, and zero outside the
tumour. As an approximation we have assumed that the interface is stationary (i.e.
vp ≈ 0), and try to find the steady-state solution of the nutrient field. This is a
reasonable assumption because of the disparity in time-scale between the dynamics
of the nutrient field and the movement of the interface (the diffusion time of oxygen
across one cell is ∆t ≈ 4×10−3 s while cell division occurs on the order of hours). We
have assumed that the interface is fixed at a distance S from the domain boundary,
and as we are looking for a steady-state solution of the nutrient field this implies
that the nutrient equation (1) is reduced to the following set of ODEs:

c′′ = 0, 0 ≤ x < S (3)

Dc′′ − k = 0, S ≤ x < S + d (4)

c′′ = 0, x ≥ S + d (5)

where x is the distance from the domain boundary, S is the distance to the interface
and d is the width of the active region of the tumour (where c > cn). We require
the solution to be smooth across the interface, i.e. that the solutions to (3) and
(4) have the same value as do their derivatives at x = S. We also require that the
solutions to (4) and (5) take the value cn at x = S + d and that the derivative is
zero at that point. Finally we want the solution to take the value c(x = 0) = 1 at
the domain boundary. If we let ce(x) be the external solution, ca(x) the solution in
the active region and ci(x) in the inactive region we formally require that,

ce(0) = 1,
ce(S) = ca(S)
c′e(S) = c′a(S)
ca(S + d) = ci(S + d) = cn

c′a(S + d) = c′i(S + d) = 0.

(6)

A solution to (3 - 5) with boundary conditions (6) is given by

c(x) =

 1− kd
D x, 0 ≤ x < S

k
2D

(
x2 − 2(S + d)x + S2

)
+ 1, S ≤ x < S + d

cn, x ≥ S + d
(7)

where

d =

√
S2 +

2D

k
(1− cn)− S (8)
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is the width of the active region. This solution can now be compared to the simu-
lation results of the full model, though there is one difficulty with this comparison.
In the simplified model we assumed that all active cells consume oxygen at a fixed
rate k, while in the full model the active rim consists of both proliferating and
quiescent cells (see fig. 1), and these cells consume oxygen at different rates. The
composition of cells in the active region is difficult to estimate as it depends on the
exact geometry and width of the rim. In the comparison with the full model shown
in fig. 2, we have estimated the consumption rate to be that of proliferating cells.
This is clearly an over-estimate, but still shows good agreement between the analyt-
ical result and the oxygen profile obtained from simulation of the full model. The
oxygen concentration from the full model is measured radially, which shows that
for the tumour sizes we consider the plane interface approximation is reasonable.
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Figure 2. The nutrient profile plotted for the bounded domain
solution (7) and compared with the radial oxygen concentration of
the full model at t = 60 when the distance from the domain bound-
ary to the tumour interface is S = 40 cells. The solution consists of
three parts: (i) outside the tumour, (ii) the active/proliferating re-
gion and (iii) the inactive/dead region. The baseline consumption
rate is set to k = 3rc.

3.2. Stability analysis. We now introduce a small perturbation of wave number q
to the interface, which means that the position of the interface is given by ξ(y, t) =
S + δ(t) cos qy. This alters the oxygen concentration in the vicinity of the interface
and we need to find the perturb field cδ(x, y) to determine the stability of the
interface. The steady-state assumption, which made it possible to find unperturbed
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oxygen concentration, also simplifies this step of the analysis, as it implies that
the nutrient concentration approximately satisfies ∇2c = 0 outside the tumour and
implies that we can approximate the nutrient profile by a linear function in the
vicinity of the interface. Further it allows us to omit any time dependence in the
solutions for the perturbed field.

We also assume that the iso-concentration curve cδ(x, y) = cn curve is given by
displacing the interface by d in the x-direction, i.e d(y) = d + δ cos qy (cf. fig. 3).
This is of course only valid when d is small and when the wave number q of the
oscillation is small. The values of d which give rise to branching patterns are of
the order of one cell size and the interesting range of wave numbers is small as we
are not interested in perturbations of wave length smaller than a cell size (q ≤ 2π).
This means that this assumption is valid within the dynamically interesting range.

!! " ! # $ % & ' ( )
!&

"

&

!"

d

2π/q

ξ(y) = δ cos qx

cδ(x,y) = cn

y

x

Figure 3. This figure shows the structure of the interface. It is
assumed that the curve cδ(x, y) = cn is given by displacing the
interface by d in the x-direction.

A solution to the oxygen equation for the perturbed interface is given by

cδ(x, y) = ĉ(x)− δBe−q(S+d−x) cos qy. (9)

where the linear part ĉ(x) is given by

ĉ(x) =
x (cn − c(S))

d
+ c(S)

(
1 +

S

d

(
1− cn

c(S)

))
(10)

where c(S) is the concentration at the interface and the constant B > 0 is de-
termined from the boundary condition cδ(S + d(y), y) = cn. This field satisfies
∇2cδ = 0 and the boundary condition cδ(S + d(y), y) = cn (to first order in δ) and
is therefore an approximate solution for the perturbed interface.

The nutrient field now depends on x and when the consumption rate of cells is
large compared to the oxygen concentration at the interface the growth of the
interface is as argued above proportional to ~n · ∇cδ(ξ(y), y), where ~n = (1 +
δ2q2 sin2 qy)−1/2(δq sin qy, 1). But as δ � 1 the interface velocity in the y-direction
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is negligible and the gradient dependent growth velocity can be approximated by

v(y) = A
∂cδ(x, y)

∂x

∣∣∣∣
x=ξ(y)

= A
(
ĉ′(ξ(y)) + δBqe−q(S+d−(S+δ cos qy)) cos qy

)
=

A

(
(cn − c(S))

d
+ δBqe−q(d−δ cos qy) cos qy

)
(11)

where A > 0 is the constant of proportionality. The velocity can also be written as

v(y) =
∂ξ

∂t
= δ̇(t) cos qy. (12)

Taking the derivative in the y-direction and equating the two expressions for the
velocity gives (only taking into account first order in δ)

∂2ξ

∂t∂y
=

∂2cδ

∂x∂y

∣∣∣∣
x=ξ(y)

−δ̇q sin qy = −ABδq2e−q(d−δ cos qy) sin qy ≈ −ABδq2e−qd sin qy.

The growth rate δ̇/δ of the perturbation is therefore given by

ω(q) = δ̇/δ = ABqe−qd ∼ qe−dq. (13)

This is the same type of instability we described in [16], where the stability of the
growing interface depends on d, the width of the proliferating rim of the tumour.
The wave number which has the highest growth rate is qmax = 1/d, and when d is
large only modes with a small wave numbers (long wave lengths, as λ = 2π/q) have
a significant growth rate, but for smaller d the maxima is shifted to larger wave
numbers (smaller wavelengths) and the growth rates of these wavelengths increase
(cf. fig. 4).

3.3. Comparison to simulations. We will now proceed to compare the predic-
tion from the stability analysis with the simulation results of the model. In order to
do this we must establish a connection between the dispersion relation and a mea-
surable quantity of the tumour, such as the average branch width. When a branch
grows it is constantly subject to perturbations and when it reaches a critical width
it becomes linearly unstable and splits, similar to what occurs in splitting of viscous
fingers [30]. As we do not have any detailed information about the dynamics of the
tip splitting we considered a idealised version of the process. We assumed that the
branches grow to the critical width lc = λmax = 2π/qmax at which they split and
that each splitting gives rise to two branches of equal width. If we assume that no
branches are annihilated and that they grow at a constant speed then an estimate
of the average branch width in the colony is

lavg ≈ (λmax/2 + λmax)/2 = 3/4λmax = 3/2πd. (14)

This is of course a highly idealised picture of the branching process, but at least
contains the essential dynamics of the mechanism.

The stability of the interface (and consequently the branch width) depends on
a number of model parameters (see eq. (8)), but we have chosen to focus on the
consumption rate k and the distance from the boundary S. The reason for this is
that changing k is equivalent the background oxygen concentration, an important
variable in tumour growth. Secondly, we chose S because it is naturally varied
as the tumour grows in the computational domain. It should be noted that the
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dimensional parameters (n0, c0 etc.) also impact the stability by determining the
values of the non-dimensional parameters through eq. (2).

Figure 5 shows the average branch width in the tumour as a function of these
two parameters, and from this plot it is clear that the branch width is a decreasing
function of both parameters. In order to compare this prediction with the simulation
results the average branch width was measured for several values of the oxygen
consumption rate and at a range of distances from the domain boundary. The
results can be seen in fig. 6, where each measurement was averaged over 30 different
simulations and the error bars correspond to one standard deviation.

In comparing the prediction from the stability analysis with the simulation results
we again encounter the problem of estimating the consumption rate of the cells. This
was resolved by calculating the expected branch width for the two extremes of the
cell composition of the active region. In the first case we assume that the rim only
consists of quiescent cells with a consumption rate of kq, and in the other case that
the active region only consists of proliferating cells with consumption rate k. This
gives us an upper and lower bound on the average branch width in the tumour, and
as can be seen from the fig. 6a and 6b this gives a good estimate of the average
branch width. Simulations were also performed where all cells (proliferating and
quiescent) had the same consumption rate, and the average branch width in this
case was in better agreement with the theoretical prediction (data not shown).
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Figure 4. This plot shows the dispersion relation (13) for d =
2, 4, 8 measured in cell size. It can be seen that both the fastest
growing mode and its growth rate depends on the width of the
active region d.
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Figure 5. The average branch width in the tumour as predicted
by the stability analysis of the bounded domain solution (7). The
branch width is a function of both the distance from the domain
boundary S (measured in cell diameters) and the consumption rate
of the cells k (in units of the oxygen consumption rate rc, also equiv-
alent to the oxygen concentration). The thinnest branches occur at
a large distance from the boundary and at high consumption rates
(low nutrient concentrations).

As expected the average branch width is a decreasing function of both the con-
sumption rate and the distance from the boundary, although the decrease is more
consistent in the case of the consumption rate. The discrepancy between theory and
simulation when the average branch width is viewed as a function of S is probably
due to the fact that the “distance from the boundary” does not translate well from
one to two dimensions. We made the estimate S ≈ N − R, where N is the size of
the grid and R is the distance from the centre of the tumour. This clearly under-
estimates the true distance to the boundary, but even more sophisticated methods
cannot give an accurate measure of the distance from the boundary when for ex-
ample screening effects are involved, or when the width of a branch is on the order
of the distance from the boundary.

From the data in fig. 6a we also calculated the consumption rate which best
reproduces the branch width in the simulation. This was found to be approximately
2k/5, and using this value we can calculate the fraction of quiescent and proliferating
cells in the active region. The average consumption rate in the active region is given
by

kavg = nq
k

5
+ npk (15)

where nq,np are the fraction of quiescent and proliferating cells which satisfy nq +
np = 1. We know that kavg = 2k/5, and from this we can calculate the fraction of
quiescent cells to be nq = 3/4.
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Figure 6. The average branch width in the full model as a func-
tion of (a) the consumption rate (or equivalently the oxygen con-
centration) and (b) the distance from the boundary. The results
from the full model are shown in circles and the lines represent dif-
ferent estimates of the consumption rate of the cells in the active
region of the tumour. Each measurement was averaged 30 times
and the error bars correspond to one standard deviation. In the
figures S and lavg are given in terms of cell size and the consump-
tion rate k is normalised with the baseline consumption rate rc. In
figure (a) the branch width was measured at a distance of S = 50
and in (b) the consumption rate is k = 5. The dotted line shows the
predicted branch width if the consumption rate is that of quiescent
cells (k = rc/5), while the dashed line corresponds to the consump-
tion rate of proliferating cells (k = rc). The solid line shows the
best fit to the data in (a) and corresponds to a consumption rate
of k = 2rc/5.

4. Conclusions. In this paper we have presented a simple hybrid cellular automa-
ton model of tumour growth aimed at investigating the branched morphologies
observed in a number previous models [15, 1, 12]. The cell dynamics in this sim-
plified model are reduced to cell proliferation and nutrient consumption, but the
model still exhibits complex branched growth patterns. Simulation results show that
consumption rate (or equivalently the oxygen concentration) affects the growth dy-
namics, and that under low consumption rates the tumour grows with a compact
morphology while for higher consumption rates we observe branched growth. Bio-
logically this means that we expect to find tumours with a well-defined margin in a
well oxygenated tissue, while a harsh micro-environment with a poor vasculature is
likely to produce tumours with a branched morphology. Although branched mor-
phologies are generally associated with aggressive tumours, it should be noted that
the tumour mass is smaller in the low oxygen case which could result in a lower
tumour burden.

By observing a separation in time-scales between the growth of the tumour and
the dynamics of the oxygen field we could derive an approximate solution of the
oxygen equation, which showed good agreement with the simulation results. Under
the assumption that in low oxygen concentrations the growth of the tumour is
diffusion-limited we could then derive a dispersion relation, which describes the
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stability of the tumour interface. The stability analysis showed that the average
branch width critically depends on the width d of the active region, which acts as
a buffer for perturbations to the tumour interface. When d is large the growth is
stable and we observe compact tumours, while for smaller d the growth becomes
unstable and this leads to branched tumour growth.

The width of the active region depends on several parameters, but most im-
portantly on the consumption rate k (or equivalently the oxygen concentration)
and the distance from the boundary S. The fact that low nutrient levels leads
to branched tumour growth has been previously observed in several mathematical
models [2, 12, 10], but the stability of the growth has never been associated with
the width of the proliferating rim. The theoretical result was compared to the sim-
ulations by measuring how the average branch width in the tumour depends on
the consumption rate k and the distance from the boundary S. This comparison
showed good agreement between theory and simulation, and also gave insight into
the composition of cell types in the active rim of the tumour.

The stability analysis also allows us to estimate the impact of other model pa-
rameters such as the nutrient diffusion constant D and the hypoxia threshold cn. If
we consider the width of the boundary layer as a function of the diffusion constant
D, then we can see that the average branch width scales as lavg ∼

√
D (as lavg ∼ d).

The dependence on D is especially relevant in the case of glycolytic tumours [14],
where the growth of the tumour is limited by glucose instead of oxygen. The diffu-
sion of glucose is approximately 5-fold faster than oxygen, and this implies that a
tumour which is dominated by glycolytic cells should exhibit wider branches. This
phenomenon was in fact observed in [17], and is something that could be tested
experimentally. Similarly we see that lavg ∼

√
1− cn, which suggests that tumours

consisting of cells with a down-regulated apoptotic response to hypoxia (i.e. smaller
cn) should exhibit wider branches. These observations could offer new ways of de-
termining cellular characteristics in a tumour by simply inspecting the morphology.
According to this prediction wider fingers should be correlated with the existence of
glycolytic cells and cells with reduced hypoxia-induced apoptosis. This observation
poses a difficulty in that these two characteristics (glycolysis and reduced hypoxia)
usually are associated with poor prognosis, while at the same time they, according
to our model, stabilise tumour growth. This means that there could be several fac-
tors influencing tumour morphology, and that these in turn can affect the outcome
of the disease in different directions.

In conclusion we have presented simulations and analysis of a hybrid cellular
automaton model of tumour growth. Our findings highlight the importance of the
micro-environment of the tumour and in particular the oxygen concentration, which
we could directly relate to the resulting tumour morphology. These findings shed
new light on the dynamics of diffusion-limited tumour growth, and will hopefully
increase our understanding of the progression of the disease.
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