
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2010.7.51
AND ENGINEERING
Volume 7, Number 1, January 2010 pp. 51–66

DYNAMICS OF AN SIS REACTION-DIFFUSION EPIDEMIC

MODEL FOR DISEASE TRANSMISSION

Wenzhang Huang

Department of Mathematics, Shanghai Normal University
Shanghai, 200234 China

and
Department of Mathematical Sciences, University of Alabama in Huntsville

Huntsville, AL 35899, USA

Maoan Han

Department of Mathematics, Shanghai Normal University
Shanghai, 200234 China

Kaiyu Liu

College of Mathematics and Econometrics, Hunan University
Changsha, Hunan 410082, China

Dedicated to Horst R. Thieme on the Occasion of his 60th Birthday

Abstract. Recently an SIS epidemic reaction-diffusion model with Neumann
(or no-flux) boundary condition has been proposed and studied by several au-
thors to understand the dynamics of disease transmission in a spatially hetero-
geneous environment in which the individuals are subject to a random move-
ment. Many important and interesting properties have been obtained: such as
the role of diffusion coefficients in defining the reproductive number; the global
stability of disease-free equilibrium; the existence and uniqueness of a positive
endemic steady; global stability of endemic steady for some particular cases;
and the asymptotical profiles of the endemic steady states as the diffusion co-
efficient for susceptible individuals is sufficiently small. In this research we will
study two modified SIS diffusion models with the Dirichlet boundary condition
that reflects a hostile environment in the boundary. The reproductive number
is defined which plays an essential role in determining whether the disease will
extinct or persist. We have showed that the disease will die out when the repro-
ductive number is less than one and that the endemic equilibrium occurs when
the reproductive number is exceeds one. Partial result on the global stability
of the endemic equilibrium is also obtained.

1. Introduction. The SIS models provide essential frames in studying the dy-
namics of disease transmission in the filed of theoretical epidemiology. The under-
standing of dynamics of SIS models in a homogeneous media, in which models are
described by systems of ordinary differential equations, is quite complete, in partic-
ular, due to the work of Lajmanovich and York [7]. To summarize, the dynamics
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of disease transmission is governed by a reproductive number R0. The disease will
become extinct if R0 < 1 and disease persists if R0 > 1. To be more specific, when
R0 > 1, the population converges to a unique endemic steady state. This result
later was extended to a single group SIS age-structured model by Busenberg, Ian-
nelli and Thieme [3] and to a multi-group SIS age-structure model by Feng, Huang
and Chavez [5] . Recently Allen, Bolker, Lou, and Nevai [2] proposed a basic SIS
model to investigate the impact of spatial heterogeneity of environment and move-
ment of individuals on the persistence and extinction of a disease. Their model is
described by a system of reaction-diffusion equations

∂S

∂t
= dS∆S − β(x)

SI

S + I
+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + β(x)

SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

(1.1)

with a no-flux boundary condition (or Neumann boundary condition)

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω, t > 0. (1.2)

Here S(x, t) and I(x, t) denote the densities of susceptible and infected individuals at
location x and time t; dS and dI are positive diffusion coefficients for the susceptible
and infected populations, β(x) and γ(x) denote respectively the rate of disease
transmission and the rate of recovery from the infectives; Ω ⊂ IRm is an open region
in space and n is the outward normal vector in the boundary of Ω. The reproductive
number R0 has been defined in [2] such that when R0 < 1, the population density
(S(t, ·), I(t, ·)) converges to a unique disease free equilibrium (S0, 0), and when
R0 > 1, there exists a unique positive endemic equilibrium (S∗, I∗). In addition,
[2] has showed a very interesting result on the asymptotic behavior of endemic
equilibrium as the diffusion coefficient dS → 0. The analysis of the stability of
endemic equilibrium for model (1.1)-(1.2) has been conducted most recently by
Peng and Liu [10]. With some additional restrictions, namely when the diffusion
coefficients are equal or β/γ = a constant (in this case the endemic state is a
constant), [10] has obtained the global stability of the endemic equilibrium when
R0 > 1.

In this paper we will consider a similar SIS reaction-diffusion model to (1.1) but
instead, we are interested in the Dirichlet boundary condition:

S(t, x) = I(t, x) = 0, x ∈ ∂Ω, t > 0. (1.3)

This boundary condition reflects an environment where the boundary of region Ω is
hostile for the survival of population. Extremely cold or hot temperature, the lack
of any supporting resource, etc. give a few examples (see [8] for more examples).

A modification of (1.1) is necessary under the boundary condition (1.3). To see
this, suppose that (S(t, x), I(t, x)) is a positive solution of (1.1). Then we have

∂S(t, x)

∂n
≤ 0,

∂I(t, x)

∂n
≤ 0, x ∈ ∂Ω, t > 0.

Adding two equations in (1.1), integrating the sum over the region Ω and with the
use of the divergence theorem we obtain that



SIS REACTION-DIFFUSION EQUATIONS 53

d

dt

∫

Ω

[S(t, x) + I(t, x)]dx =

∫

Ω

[

dS∆S(t, x) + dI∆I(t, x)
]

dx

=

∫

∂Ω

[

dS

∂S(t, x)

∂n
+ dI

∂I(t, x)

∂n

]

dx

≤ 0, t > 0.

(1.4)

From the inequality (1.4) it follows that the total population is decreasing. In
fact, it is not difficult to show that

∫

Ω
[S(t, x) + I(t, x)]dx → 0 as t → +∞. Thus

the dynamics of the model is trivial, which is caused by the population loss in the
boundary of the region and the diffusion process. To have a more meaningful model
we must add an additional growth term, other than the growth due to the recovery
from infectives, to the model to balance the population decay in the boundary.
In this paper we shall study the model in which we suppose the disease is not
inheritable. We consider two cases separately. For the first case we suppose the
population in the region is demographicly stable. Thus we may assume that the
growth rate for susceptible is independent of the population density and the model
takes the form

∂S

∂t
= dS∆S − β(x)

SI

S + I
+ γ(x)I + Λ(x), x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + β(x)

SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

(1.5)

where Λ(x) is positive and continuous on Ω which represents the growth rate for
the new born, etc.. The existence and uniqueness of solutions to the initial value
problem to equation (1.5) with the boundary condition (1.3) follow from the stan-
dard theory for the parabolic equations. By using the maximum principle one can
also show that, if the initial distributions S(0, ·) and I(0, ·) are positive, then S(t, x)
and I(t, x) are bounded and positive for all t > 0 and x ∈ Ω.

The choice of the growth function Λ in equation (1.5) may be oversimplified
because it depends only on the space variable x but not the population density in
this location. An alternative model in which the growth depends on the population
sizes can be formulated as

∂S

∂t
= dS∆S − β(x)

SI

S + I
+ γ(x)I + k(S + I) − νS(S + I), x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + β(x)

SI

S + I
− γ(x)I − νI(S + I), x ∈ Ω, t > 0.

(1.6)
Here k, ν are positive constants, k(S+I) is the birth rate for susceptible population,
and νS(S + I) and νI(S + I) denote the death rates for susceptible and infected
populations respectively. [We take the above form for the simplicity. More generally
we can let k = k(x) and ν = ν(x) be positive functions.] We choose square term for
the death rate to reflect a common fact that death rate increases when population
size increases.

The reproductive number for both models are defined that governs the stability
of disease free equilibrium steady state and the existence of an endemic equilibrium
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state. For a particular case in which the diffusion coefficients for two populations are
identical, we also showed the global stability of the endemic equilibrium state when
the reproductive number exceeds one. However, the stability of endemic equilibrium
state remains unsolved if two diffusion coefficients are not equal.

This paper is organized as follows. In Section 2 we define the reproductive number
and show that the disease free equilibrium is globally stable for the model (1.5),
and is locally stable for the model (1.6) when the reproductive number is less than
one. Section 3 is devoted to studying the existence and uniqueness of an endemic
equilibrium of the model (1.5) if the reproductive number is larger than one. In
particular, we prove the global stability of an endemic equilibrium for both models
if the diffusion coefficients dS and dI are identical. Concluding remarks are given
in Section 4.

2. Disease-free equilibrium and its stability. Let us first consider the system

∂S

∂t
= dS∆S − β(x)

SI

S + I
+ γ(x)I + Λ(x), x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + β(x)

SI

S + I
− γ(x)I, x ∈ Ω, t > 0,

S(t, x) = I(t, x) = 0, x ∈ ∂Ω, t > 0.

(2.1)

Throughout the paper we suppose β, γ, and Λ are positive and continuous functions
on Ω and ∂Ω is C2 smooth.

Our main interest of this section is the existence, uniqueness and stability of the
disease-free equilibrium. A disease free equilibrium is a time independent solution of
the form (S0, 0), where S0(x) > 0 for x ∈ Ω. For this purpose let us first introduce
some notations. For a closed linear operator A : D(A) ⊂ L2(Ω) → L2(Ω), where
D(A) is the domain of A, the spectral spread s(A) of A is defined by

s(A) = sup{ℜλ : λ ∈ σp(A)},

where σp denotes the point spectrum of A. We let

H1
0 (Ω) =

{

φ ∈ L2(Ω) :
∂φ

∂xj

∈ L2(Ω), j = 1, · · · ,m, φ(x) = 0, x ∈ ∂Ω

}

.

For φ ∈ L2(Ω), let

‖φ‖ = ‖φ‖L2(Ω).

For a positive constant d and a function µ ∈ C(Ω, IR), we let d∆+µ be the operator
defined by

[d∆ + µ]φ(x) = d∆φ(x) + µ(x)φ(x), x ∈ Ω

with D(d∆ + µ) = H2
0 .

We need the following lemma. The proof of this lemma can be found in the
indicated references.

Lemma 2.1. Let d be a positive constant and µ ∈ C(Ω, IR). Then

(1) (Theorem 1, p.301 in [12]) Let

−λ∗ = min

{
∫

Ω

[d|∇φ(x)|2 − µ(x)φ2(x)]dx : φ ∈ H1
0 (Ω),

∫

Ω

φ2(x) = 1

}

.
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Then s(d∆ + µ) = λ∗ and λ∗ is the largest eigenvalue of the operator d∆ + µ
under the Dirichlet boundary condition on ∂Ω and the corresponding eigen-
function is strictly positive. In particular, by setting µ = 0, we deduce that

s(d∆) < 0.

(2) [9] Let T (t) : L2(Ω) → L2(Ω), t ≥ 0, be the semigroup generated by the
operator d∆+µ and let λ∗ = s(d∆+µ). Then there is a constant C > 0 such
that

‖T (t)‖ ≤ Ceλ∗t, i.e. ‖T (t)φ‖ ≤ Ceλ∗t‖φ‖, φ ∈ L2(Ω), t ≥ 0,

where ‖T (t)‖ is the operator norm L2(Ω).
(3) (Theorem 1, P.318, [12]) For any ρ > λ∗ and any function h ∈ L2(Ω), the

equation
d∆φ + [µ− ρ]φ = −h

has a unique solution φ ∈ H2
0 (Ω) and φ ∈ C2(Ω) if h ∈ C(Ω). Moreover,

by the strong maximum principle, if h is positive, then φ(x) > 0 all x ∈ Ω.
In particular, there is a unique function S0(x), which is strictly positive for
x ∈ Ω, such that

dS∆S0 + Λ = 0, S0(x) = 0, x ∈ ∂Ω.

As an immediate consequence of Lemma 2.1 (3) we have

Corollary 2.2. The equation (2.1) has a unique disease free equilibrium (S0, 0),
where S0 is defined in (3) of Lemma 2.1.

Now let us turn to define the reproductive number R0 that governs the stability
of the disease free equilibrium. For (2.1), the corresponding reproductive number
R0 actually can be defined in the same way as in [2],

R0 = sup







∫

Ω β(x)φ2(x)dx
∫

Ω

[

dI |∇φ(x)|2 + γ(x)φ2(x)
]

dx
: φ ∈ H1

0 (Ω), φ 6= 0







. (2.2)

With the above defined reproductive number, we have

Lemma 2.3.

R0 < 1 (> 1) if and only if s(dI∆ + β − γ) < 0 (> 0).

One is able to directly verify this lemma so that we shall omit its proof.
By the maximum principle for parabolic systems, if S(0, ·) and I(0, ·) are positive,

then both S(t, x) and I(t, x) are positive and bounded for x ∈ Ω and t > 0 whenever
the solution exists. It therefore follows from the standard theory for semi-linear
parabolic systems that (S(t, x), I(t, x)) actually is a classical solution that exists for
all t > 0 [4].

We are ready to establish the following global stability for the disease free equi-
librium.

Theorem 2.4. For equation (2.1), if R0 < 1, then all its nonnegative solutions
converge to the disease free equilibrium (S0, 0) as time goes to +∞.

Proof. Suppose that R0 < 1. We will use the comparison principle to show that
I(t, ·) → 0 as t→ ∞. First we observe from the second equation of (2.1) that

∂I

∂t
≤ dI∆I + (β(x) − γ(x))I, x ∈ Ω and t > 0
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since I(t, x) is nonnegative. Next, let u(t, x) with u(0, x) = I(0, x) be the solution
of the linear equation

∂u

∂t
= dI∆u+ (β(x) − γ(x))u, x ∈ Ω and t > 0,

and u(x, t) = 0 for x ∈ ∂Ω and t > 0. By the comparison principle, 0 ≤ I(t, x) ≤
u(t, x) for all t ≥ 0 and x ∈ Ω. Let U(t) be the semigroup generated by the operator
dI∆ + β − γ. Now R0 < 1 implies that λ∗ = s(dI∆ + β − γ) < 0. It follows from
Part (2) of Lemma 2.1 that there is a constant M > 0 such that

‖I(t, ·)‖ ≤ ‖u(t, ·)‖ = ‖U(t)u(0, ·)‖ ≤Meλ∗t‖I(0, ·)‖ → 0 as t→ ∞. (2.3)

We now show that S(t, ·) tends to S0 as t→ ∞. Notice that dS∆S0 = −Λ. Thus
we can rewrite the first equation of (2.1) as

∂(S − S0)

∂t
= dS∆(S − S0) +

[

γ −
βS

S + I

]

I, x ∈ Ω and t > 0. (2.4)

(2.3) yields that

‖
[

γ−
βS(t, ·)

S(t, ·) + I(t, ·)

]

I(t, ·)‖ ≤ C1e
−bt, t > 0, b = −λ∗ = −s(dI∆+β−γ) (2.5)

for some positive constants C1. Let T (t) : L2(Ω) → L2(Ω), t ≥ 0 be the semigroup
generated by the operator dS∆. Then, since s(dS∆) < 0, there is a constant C > 0
such that

‖T (t)‖ ≤ Ce−at, t ≥ 0, a = −s(dS∆).

Applying the variation-of-constant formula to (2.4) and with the use of (2.5) we
arrive at

‖S(t, ·) − S0‖ ≤ ‖T (t)S(0, ·)‖ +

∫ t

0

‖T (t− s)
[

γ −
βS(t, ·)

S(t, ·) + I(t, ·)

]

I(t, ·)‖ds

≤ Ce−at‖S(0, ·)‖ + CC1e
−at

∫ t

0 e
(a−b)sds

→ 0 as t→ ∞.
(2.6)

It follows that S(t, ·) → S0 as t→ ∞.

We remark that, by the above proof, the convergence is in L2(Ω). However, it is
clear that the convergence holds in Lp(Ω) for and p > 1. Hence, with the use of the
regularity theorem we actually are able to show that the convergence is uniform.

Now we turn to study the system

∂S

∂t
= dS∆S − β(x)

SI

S + I
+ γ(x)I + k(S + I) − νS(S + I), x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + β(x)

SI

S + I
− γ(x)I − νI(S + I), x ∈ Ω, t > 0,

S(t, x) = I(t, x) = 0, x ∈ ∂Ω.
(2.7)
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It is obvious that (S∗
0 , 0) is a disease free equilibrium if and only if S∗

0 is a positive
solution of the equation

dS∆S + S(k − νS) = 0, x ∈ Ω, S(x) = 0, x ∈ ∂Ω. (2.8)

The following proposition is well known (see Proposition 7.7, p.332 in [12]).

Proposition 2.5. Equation (2.8) has a positive solution S∗
0 if and only if s(dS∆+

k) > 0. Moreover, the positive solution S∗
0 is unique and it is strictly positive on Ω.

Hence we always assume that s(dS∆+k) > 0. Thus the system (2.7) has a unique
disease free equilibrium (S∗

0 , 0). For the system (2.7) we define the reproductive
number R0 by

R0 = sup







∫

Ω β(x)φ2(x)dx
∫

Ω

[

dI |∇φ(x)|2 + [γ(x) + νS∗
0 (x)]φ2(x)

]

dx
: φ ∈ H1

0 (Ω), φ 6= 0







.

(2.9)
With the above defined reproductive number, similar to Lemma 2.3, we have

Lemma 2.6.

R0 < 1 (> 1) if and only if s(dI∆ + β − γ − νS∗
0 ) < 0 (> 0).

Theorem 2.7. For the system (2.7), the disease free equilibrium (S∗
0 , 0) is local

asymptotically stable If R0 < 1. It is unstable if R0 > 1.

Proof. A direct computation shows that the linearization of (2.7) at the disease free
equilibrium (S∗

0 , 0) is

∂S

∂t
= dS∆S + (k − 2νS∗

0 )S − (β − γ − k + νS∗
0 )I, x ∈ Ω, t > 0,

∂I

∂t
= dI∆I + [β − γ − νS∗

0 ]I, x ∈ Ω, t > 0,

S(t, x) = I(t, x) = 0, x ∈ ∂Ω.

(2.10)

Since the linear system (2.10) generates an analytic semigroup, the local stabil-
ity of the disease free equilibrium (S∗

0 , 0) can be determined by the corresponding
eigenvalues that are determined by the following system:

dS∆φ+ (k − 2νS∗
0 )φ− (β − γ − k + νS∗

0 )ψ = λφ, x ∈ Ω, t > 0,

dI∆ψ + [β − γI − νS∗
0 ]ψ = λψ x ∈ Ω, t > 0,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(2.11)

First we notice that dS∆S∗
0 + (k− νS∗

0 )S∗
0 = 0 and S∗

0 (x) > 0 for x ∈ Ω imply that
s(dS∆ + k − νS∗

0 ) = 0. It follows that

s(dS∆ + k − 2νS∗
0 ) < s(dS∆ + k − νS∗

0 ) = 0. (2.12)

Now suppose that R0 < 1 and λ is an eigenvalue with ψ 6= 0. Then ℜλ < 0 by
Lemma 2.6. If ψ = 0, then φ 6= 0 and
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dS∆φ+ (k − 2νS∗
0)φ = λφ.

Thus (2.12) yields that ℜλ < 0. Hence all eigenvalues of (2.11) have the negative
real part. This implies that (S∗

0 , 0) is locally asymptotically stable. Next suppose
that R0 > 1. Then there is a λ0 > 0 and ψ0 6= 0 such that

dI∆ψ + [β − γI − νS∗
0 ]ψ = λ0ψ.

Rewrite the first equation in (2.11) with λ = λ0 as

dS∆φ+ (k − 2νS∗
0 − λ0)φ = (β − γ − k + νS∗

0 )ψ0. (2.13)

λ0 > 0 implies that s(dS∆+k−2νS∗
0 −λ0) < 0. Hence (2.13) has a unique solution

φ0 satisfying φ0(x) = 0 for x ∈ Ω. That is, λ0 > 0 is an eigenvalue. Therefore the
equilibrium (S∗

0 , 0) is unstable.

3. The existence of endemic equilibrium. An endemic equilibrium of equation
(2.1) is a positive solution (S∗, I∗) of the following elliptic system

0 = ds∆S −
[

β S
S+I

− γ
]

I + Λ, x ∈ ∂Ω,

0 = dI∆I +
[

β S
S+I

− γ
]

I, x ∈ ∂Ω,

S(x) = I(x) = 0, x ∈ ∂Ω.

(3.1)

Here both S∗ and I∗ are strictly positive on Ω. By adding two equations in (3.1)
we obtain the equivalent system

∆(dSS + dII) + Λ(x) = 0, x ∈ Ω,

0 = dI∆I + [β
S

S + I
− γ]I, x ∈ Ω,

0 = I(x, t), x ∈ ∂Ω.

(3.2)

The first equation in (3.2) yields that S+ dI

dS
I = S0, where S0 is the unique positive

function satisfying dS∆S0 = −Λ. Thus we can express S as

S =
dSS0 − dII

dS

. (3.3)

Substituting the above equality into the second equation of (3.2) we obtain the
equation for I as

dI∆I +

[

β − γ − β
dSI

dSS0 + (dS − dI)I

]

I = 0. (3.4)

Theorem 3.1. Suppose that R0 > 1. Then (3.2) has a unique nonnegative solution
(S∗, I∗) such that S∗, I∗ ∈ C2(Ω) and I∗ > 0. Furthermore, S∗(x) > 0, and

0 < I∗(x) <
dS

dI

S0(x) for x ∈ Ω.

Proof. The proof of this Lemma is essentially the same as the proof of Lemma 3.3
in [2]. In view of (3.3), (S∗, I∗) is a positive solution of (3.2) if and only if I∗ is a

positive solution of (3.4) with I∗(x) <
dS

dI

S0(x) for x ∈ Ω and S∗ =
dSS0 − dII

∗

dS

.

So let us consider the boundary value problem

G(I) = dI∆I + If(x, I) = 0 for x ∈ Ω and I(x) = 0, for x ∈ ∂Ω, (3.5)
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where

f(x, u) = β(x) − γ(x) − β(x)
dSu

dSS0 + (dS − dI)u
, x ∈ Ω, u ∈ [0,

dS

dI

S0(x)].

Since (3.5) is a scalar equation, the existence of desirable positive solution of (3.5)
will follow if we can construct a sub-solution I and a supper-solution I such that

0 < I ≤ I ≤
dS

dI

S0. Recall that R0 > 1 implies that

λ∗ = s(dI∆ + β − γ) > 0

is the largest eigenvalue of the operator dI∆ + β − γ and the corresponding eigen-
function φ∗(x) is strictly positive for x ∈ Ω. We now show that I = ǫφ∗ and

I = dS

dI
S0 are sub-solution and super-solutions for (3.5) if ǫ > 0 is sufficiently small.

Note that dI∆φ
∗ + [β − γ]φ∗ = λ∗φ∗. Upon a direct substitution we obtain

G(I) = dI∆(ǫφ∗) + ǫφ∗f(x, ǫφ∗)

= ǫ
[

dI∆φ
∗ + φ∗(β − γ) − ǫβ

dS [φ∗]2

dSS0 + ǫ(dS − dI)φ∗

]

= ǫφ∗
[

λ∗ − ǫβ
dS [φ∗]2

dSS0 + ǫ(dS − dI)φ∗

]

.

(3.6)

λ∗ > 0 immediately implies that G(I) > 0 if ǫ is small enough, so that I gives a
sub-solution of (3.5). Next, since

G(I) = dI∆(I) + If(x, I)

= dI∆(I) + I

[

β(x)

(

1 −
dSI

dSS0 + (dS − dI)I

)

− γ(x)

]

= −Λ(x) − γI

is negative on Ω, and I(x, t) = 0 on ∂Ω, it follows that I is a super-solution of (3.5).
Also, it is obvious that I ≤ I on Ω if ǫ is chosen sufficiently small. We conclude
from the above remarks that there must be an I∗, with I < I∗ < I, satisfying (3.5).
This proves the existence of positive solution (S∗, I∗) of (3.2).

Observe that f(x, u) is strictly decreasing with respect to u for u ∈ [0,
dSS0(x)

dI

].

Thus, the uniqueness of the positive solution of equation (3.2) can be proved fol-
lowing exactly the same argument given in the proof of Lemma 3.3 in [2].

Although we have showed the existence of a unique endemic equilibrium for
equation (2.1) when R0 > 1, the analysis of the stability of endemic equilibrium is
far from trivial, even for the local stability. For equation (2.7), it is possible to prove
the existence of an endemic equilibrium if the corresponding reproductive number
R0 > 1. The uniqueness of the endemic equilibrium remains unsolved if the diffusion
coefficients dS and dI are not equal. However, when the diffusion coefficients dS

and dI are identical, we can show that the endemic equilibrium actually is globally
stable for both equation (2.1) and equation (2.7).

In the rest of the paper we are going to establish the following theorem.

Theorem 3.2. For equation (2.1) or equation (2.7), if dS = dI and the corre-
sponding reproductive number R0 > 1, then all positive solutions converge to a
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unique endemic equilibrium (S∗, I∗) as time goes to infinity. That is, the endemic
equilibrium (S∗, I∗) is globally stable.

We shall prove this theorem only for equation (2.7). The proof for equation (2.1)
will be more straightforward than the proof for equation (2.7) because (2.1) can be
transformed to a monotone system. Now in equation (2.7) let d = dS = dI and
N(t, x) = S(t, x) + I(t, x). Then N(t, x) and I(t, x) satisfy the system

∂N

∂t
= d∆N +N(k − νN), x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

[

β − γ − νN − β
I

N

]

I, x ∈ Ω, t > 0,

N(t, x) = I(t, x) = 0, x ∈ ∂Ω, t > 0.

(3.7)

Notice that (3.7) is not a monotone system if the constant ν is large. Also
Dirichlet boundary condition makes the solution vanishes in the boundary, the
comparison principle is not immediately valid for our case. Instead, we must use a
more sophisticated comparison argument motivated by the ideas in [6]. We need a
few auxiliary results before proceeding to the proof of this theorem.

Notice that, for a nonnegative solution (S(t, x), I(t, x)) of equation (2.7), if I(0, x)
is positive, then the solution is strictly positive for all t > 0 and x ∈ Ω by strong
maximum principle. Hence, if (N(t, x), I(t, x)) is solution of equation (3.7) with
0 < I(0, ·) ≤ N(0, ·), then

0 < I(t, x) < I(t, x) + S(t, x) = N(t, x)

for all t > 0 and x ∈ ∂Ω.

Lemma 3.3. (Theorem 1.2, P.297 [6]) Let N(t, ·) be a solution of the first equation
of (3.7). If 0 ≤ N(0, ·) 6= 0, then N(t, x) → S∗(x) as t → ∞ uniformly for x ∈ Ω,
where S∗ is the unique positive solution of

d∆S + S(k − νS), x ∈ Ω, S(x) = 0, x ∈ ∂Ω.

Lemma 3.4. Let R0 be the reproductive number corresponding to equation (2.7).
If R0 > 1, then there is a c∗ > 0 such that for each c with |c| ≤ c∗, ther equation

d∆I +
[

β − γ − νS∗ + c− β
I

S∗

]

I = 0, x ∈ Ω, I = 0, x ∈ ∂Ω (3.8)

has a unique positive solution I∗c . Moreover, I∗c → I∗ as c → 0, where (S∗, I∗) is
the unique endemic equilibrium of equation (3.7).

Proof. By Lemma 2.6, R0 > 1 implies that s(d∆ + β − γ − νS∗) > 0. Hence
there is a c∗ > 0 such that s(d∆ + β − γ − νS∗ + c − νS∗) > 0 for all c with
|c| ≤ c∗. One therefore is able to show the existence of a unique positive solution I∗c
of above equation by the same argument used the the proof of Theorem 3.1. The
last conclusion follows easily from the continuity.

Lemma 3.5. Let 0 6= c ∈ [−c∗, c∗] and (N(t, x), I(t, x)) be a positive solution of
equation (3.7) such that S∗(x) − |c|/ν ≤ N(t, x) ≤ S∗(x) + |c|/ν for all t ≥ 0. Let
(Nc(t, ·), Ic(t, ·)) be a nonnegative solution of the system
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∂N

∂t
= d∆N +N(k − νN), x ∈ Ω, t > 0,

∂I

∂t
= d∆I +

[

β − γ − νS∗ + c− β
I

N

]

I, x ∈ Ω, t > 0,

N(t, x) = I(t, x) = 0, x ∈ ∂Ω, t > 0.

(3.9)

If c < 0, Nc(0, ·) ≤ N(0, ·), Ic(0, ·) ≤ I(0, ·), (respectively c > 0 and Nc(0, ·) ≥
N(0, ·), Ic(0, ·) ≥ I(0, ·), ) then

Nc(t, ·) ≤ N(t, ·), Ic(t, ·) ≤ I(t, ·), t ≥ 0.

(respectively

Nc(t, ·) ≥ N(t, ·), Ic(t, ·) ≥ I(t, ·), t ≥ 0.)

Proof. Lemma 3.5 follows easily from the comparison argument.

Lemma 3.6. (Remark in P.124, [11]) Let x0 ∈ ∂Ω and D = Ω ∩ Br(x0), where
Br(x0) is a ball of radius r > 0 and center x0. Suppose that a function

u ∈ C1([T1, T2] : C(D) ∩ C([T1, T2] : C2(D) ∩ C1(D),

and u satisfies

(i) u(T2, x0) = 0 and u(t, x) > 0 for all (t, x) ∈ [T1, T2] ×D,

(ii) d∆u − b(x)u−
∂u

∂t
≤ 0 in [T1, T2] ×D.

Then
∂u(T2, x0)

∂n
> 0,

here b(x) is continuous on Ω and n is the inward normal vector of ∂Ω at x0.

As a consequence of above lemma we immediately have the following

Corollary 3.7. For equation (3.9) with c < 0, let (Nc(t, x), Ic(t, x)) be a solution
with 0 < Ic(0, ·) ≤ Nc(0, ·). Then for any t > 0, Nc(t, x) and Ic(t, x) are positive
for all x ∈ Ω. In addition,

∂Nc

∂n
> 0,

∂Ic
∂n

> 0 for all x0 ∈ ∂Ω. (3.10)

In particular, for the positive equilibrium (S∗, I∗c ) of equation (3.9) we have

∂S∗(x0)

∂n
> 0,

∂I∗c (x0)

∂n
> 0 for all x0 ∈ ∂Ω. (3.11)

Proof. The strict positivity of Nc(t, x) and Ic(t, x) for t > 0 and x ∈ Ω follows
directly from the strong maximum principle for parabolic equations. We claim that
Ic(t, x)/Nc(t, x) ≤ 1 for all t > 0. To see this, let Sc(t, x) = Nc(t, x)− Ic(t, x). Then
Sc(0, ·) ≥ 0 and Sc(t, x) satisfies the equation

∂S

∂t
= d∆Sc−[β−γ−νS∗+c−β

Ic
Sc + Ic

]Ic+k(Sc+Ic)−νSc(Sc+Ic), t > 0, x ∈ Ω.

With the use of maximum principle, together the positivity of Ic(t, x) and c < 0 one
easily concludes that Sc(t, x) > 0 for all t > 0 and x ∈ Ω. Hence Ic(t, x)/Nc(t, x) ≤ 1
for all t > 0 and x ∈ Ω. Now for any 0 < T1 < T2, by the regularity,

Nc, Ic ∈ C1([T1, T2] : C(Ω) ∩ C([T1, T2] : C2(Ω) ∩ C1(Ω).
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Since
Ic(t, x)

Nc(t)
≤ 1 and S∗(x) is bounded, we can pick a sufficiently large number α

such that

α+ β − γ − νS∗ − β
Ic(t, x)

Nc(t, x)
> 0, x ∈ Ω. (3.12)

(3.12) yields that

d∆Ic − αIc −
∂Ic
∂t

= −
[

α+ β − γ − νS∗ − β
Ic
Nc

]

Ic < 0, x ∈ Ω.

Therefore, the above inequality and Lemma 3.6 yield that

∂Ic
∂n

> 0, x0 ∈ ∂Ω.

The proof for the function Nc(t, x) is the same.

Lemma 3.8. Consider the equation

∂u

∂t
= d∆u+ µu+ h(t, x) x ∈ Ω,

u(t, x) = 0, x ∈ Ω,

(3.13)

where µ(x) is continuous on Ω, h(t, x) is continuous and bounded on [0, t0]× Ω for
some positive constant t0. Suppose that s(d∆ + µ) = 0 and let φ∗ be the strictly
positive eigenfunction corresponding to the zero eigenvalue of the operator d∆ + µ.
If

h(t, x) ≥ 0, t ∈ [0, t0], x ∈ Ω,

and u(t, x) is a solution of (3.11) with u(0, ·) = φ∗, then

u(t, ·) ≥ u(0, ·), t ∈ [0, t0].

Proof. Let T (t) be the semigroup generated by the corresponding linear system

∂v

∂t
= d∆v + µv, x ∈ Ω,

v(t, x) = 0, x ∈ Ω.

(3.14)

Then it is known that T (t)φ∗ = φ∗ for all t ≥ 0 and T (t) is a positive operator.
That is, T (t)η ≥ 0 if η ∈ L2(Ω) is nonnegative. Applying the variation-of-constant
formula to (3.13) we obtain that

u(t, ·) = T (t)φ∗ +

∫ t

0

T (t− s)h(s, ·)ds

≥ φ∗, t ∈ [0, t0].

Recall that R0 > 1 implies

s(d∆ + β − γ − νS∗) > 0.

Moreover we have assumed

s(d∆ + k) > 0.

Hence it is evident that there are two positive constants α1 and α2 such that

s(d∆ + k − α1) = 0, s(d∆ + β − γ − νS∗ − α2) = 0. (3.15)
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We let φ∗1 and φ∗2 be strictly positive eiegnfunctions corresponding to the zero ei-
genvalue of the operator d∆ + k − α1 and d∆ + β − γ − α2, respectively. That
is,

d∆φ∗1 + (k − α1)φ
∗
1 = 0, d∆φ∗2 + (β − γ − νS∗ − α2)φ

∗
1 = 0.

Lemma 3.9. Let c < 0 be fixed and let (Nc(t, x), Ic(t, x)) be a solution of equation
(3.9) with 0 < Ic(0, ·) ≤ Nc(0, ·). Then for any fixed t > 0, there exist positive
constants a1 and a2 such that

Nc(t, x)

φ∗1(x)
> a1,

Ic(t, x)

φ∗2(x)
> a2, x ∈ Ω,

where φ∗1 and φ2∗ are positive eigenfunctions defined above.

Proof. For a fixed t > 0, from Corollary 3.7, the continuity of
∂Nc(t, x)

∂xj

and
∂φ∗(x)

∂xj

on Ω, j = 1, · · · ,m, and compactness of ∂Ω it follows that there exist positive
constants M1, M2 such that

M1 <
∂Nc

∂n

/∂φ∗1(x0)

∂n
< M2, x0 ∈ ∂Ω. (3.16)

Moreover, we have
Nc(t, x)

φ∗1(x)
> 0, x ∈ Ω. (3.17)

In addition, Nc(x0) = φ∗1(x0) = 0 for x0 ∈ ∂Ω implies that

lim
x∈Ω,x→x0

Nc(t, x)

φ∗1(x)
=
∂Nc(x0)

∂n

/∂φ∗1(x0)

∂n
. (3.18)

(3.16)-(3.18) therefore yield that

a1 ≤
Nc(t, x)

φ∗1(x)
, x ∈ Ω (3.19)

for some positive constant a1. Arguing in the same way we deduce that there is a
positive constant a2 such that

a2 ≤
Ic(t, x)

φ∗2(x)
, x ∈ Ω. (3.20)

Lemma 3.10. For each fixed c < 0 with |c| < c∗, there is an ǫ∗ > 0 such that
for any ǫ ∈ (0, ǫ∗), the solution (N ǫ

c (t, x), Iǫ
c(t, x)) of equation (3.9) with the initial

condition

N ǫ
c (0, ·) = ǫφ∗1, Iǫ

c(0, ·) = ǫ2φ∗2

is monotone increasing with respect to t.

Proof. Let αi, i = 1, 2, be the positive numbers defined in (3.15). Then s(d∆+ β−
γ − νS∗ − α2) = 0 and s(d∆ + β − γ − νS∗ + c) > 0 imply that α2 + c > 0. Hence
it is apparent that there are positive constants ǫ∗ and δ > 0 such that

[α1 − νǫ∗φ∗1(x)] > δ,
[

α2 + c− ǫ∗β(x)
φ∗2(x)

φ∗1(x)

]

> δ, x ∈ Ω. (3.21)
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Now let ǫ ∈ (0, ǫ∗] and let (N ǫ
c (t, x), Iǫ

c(t, x)) be defined as above. Then, since
φ∗i ∈ C2

0 (Ω),

(N ǫ
c (t, x), Iǫ

c (t, x)) → (ǫφ∗1(x), ǫ
2φ∗2(x)) as t→ 0

uniformly for x ∈ Ω. Hence from the continuity and the inequality (3.21) it follows
that there is a t1 > 0 such that

[α1 − νN ǫ
c (t, x)] > δ1, (t, x) ∈ [0, t1] × Ω,

[

α2 + c− β(x)
Iǫ
c(t, x)

N ǫ
c (t, x)

]

> δ1, (t, x) ∈ [0, t1] × Ω

(3.22)

for some positive constant δ1. By rewriting equation (3.9) we can check that N ǫ
c

and Iǫ
c satisfy the system

∂N

∂t
= d∆N + (k − α1)N + h1(t, x), x ∈ Ω, t > 0,

∂I

∂t
= d∆I + [β − γ − νS∗ − α2]I + h2(t, x), x ∈ Ω, t > 0,

N(t, x) = I(t, x) = 0, x ∈ ∂Ω, t > 0,

(3.23)

where
h1(t, x) = [α1 − νN ǫ

c (t, x)]N ǫ
c (t, x),

h2(t, x) =
[

α2 + c− β
Iǫ
c(t, x)

N ǫ
c (t, x)

]

Iǫ
c(t, x).

The inequality (3.22) yields that both h1(t, x) and h2(t, x) are positive for (t, x) ∈
[0, t1] × Ω. Therefore by Lemma 3.8 we conclude that

N ǫ
c (t, ·) > N ǫ

c (0, ·), Iǫ
c(t, ·) > Iǫ

c(0, ·), t ∈ (0, t1]. (3.24)

It is clear that equation (3.9) is a monotone system. Let

Z(t, Z0) = (Nc(t, ·), Ic(t, ·))

be the solution of (3.9) with Z(0, Z0) = Z0 = (Nc(0, ·), Ic(0, ·)) and let Zǫ
0 =

(N ǫ
c (0, ·), Iǫ

c(0, ·)). Then (N ǫ
c (t, ·), Iǫ

c (t, ·)) = Z(t, Zǫ
0). For for any s > 0, there are

a positive integer m and a positive constant σ ∈ (0, t1] such that s = mσ. Now
Z(σ, Zǫ

0) > Zǫ
0 by (3.24). Hence the monotonicity of the flow yields that

Z(t+ σ, Zǫ
0) = Z(t, Z(σ, Zǫ

0)) ≥ Z(t, Zǫ
0).

By induction, we obtain that

Z(t+ s, Zǫ
0) = Z(t+mσ,Zǫ

0) ≥ Z(t+ (m− 1)σ, Zǫ
0) ≥ · · · ≥ Z(t, Zǫ

0)

for all t ≥ 0 and s > 0. So that (Nǫ(t, ·), Iǫ(t, ·)) is monotone increasing.

Lemma 3.11. Let c > 0 be fixed. For any σ > 1 with σk > c, let (NM
c (t, ·), IM

c (t, ·))
be a solution of (3.9) with

(NM
c (0, x), IM

c (0, x)) ≡ (
σk

ν
,
σk

ν
), x ∈ Ω.

Then (NM
c (t, ·), IM

c (t, ·)) is decreasing with respect to t.
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Proof. It is known that (NM
c (t, ·), IM

c (t, ·)) is a classical solution for t > 0. By
applying the maximum principle one can easily verify that

NM
c (t, x) ≤

σk

ν
, IM

c (t, x) ≤
σk

ν

for all t > 0 and x ∈ Ω. The monotone decreasing property of (NM
c (t, ·), IM

c (t, ·))
therefore follows the same argument used in the proof of Lemma 3.10.

We are now in the position to prove Theorem 3.2 for equation (3.7).

Proof. Let (N(t, x), I(t, x)) be a solution of (3.7) with the initial value satisfying
0 < I(0, ·) ≤ N(0, ·). Then (N(t, x), I(t, x)) is strictly positive for t > 0. By Lemma
3.3 N(t, ·) → S∗ as t → ∞. Hence any c < 0 with |c| < c∗, there is a t∗ > 0 such
that N(t, ·) ≥ S∗ + c/ν for all t ≥ t∗. Lemma 3.9 implies that

N(t∗, x)

φ∗1(x)
≥ a1,

I(t∗, x)

φ∗2(x)
≥ a2, x ∈ Ω

for some positive constants a1, a2. Let

0 < ǫ < min{ǫ∗, a1, a2, 1},

where ǫ∗ is defined in Lemma 3.10. Then ǫ < ǫ∗ and

ǫφ∗1 ≤ N(t∗, ·), ǫ2φ∗2 ≤ I(t∗, ·). (3.25)

Let (N ǫ
c (t, ·), Iǫ

c(t, ·)) be the monotone increasing solution of equation (3.9). Lemma
3.5 yields that

(N ǫ
c (t, ·), Iǫ

c(t, ·)) ≤ (N(t∗ + t, ·), I(t∗ + t, ·)), t ≥ 0. (3.26)

Hence the monotonicity of the (N ǫ
c (t, ·), Iǫ

c(t, ·)) and the uniqueness of positive equi-
librium (S∗, I∗c ) of equation (3.9) imply that

I∗c ≤ lim
t→∞

inf I(t, ·). (3.27)

Next we pick σ > 1 sufficiently large such that

N(t∗, ·) ≤
σk

ν
, I(t∗, ·) ≤

σk

ν
.

Then

(N(t∗ + t, ·), I(t∗ + t, ·)) ≤ (NM
|c| (t, ·), I

M
|c| (t, ·)), t ≥ 0 (3.28)

where (NM
|c| , I

M
|c| ) is the monotone decreasing solution of equation (3.9) with c = |c|.

It follows that

lim
t→∞

sup I(t, ·) ≤ I∗|c|. (3.29)

It is obvious that

I∗c → I∗, I∗|c| → I∗ as c→ 0. (3.30)

Noticing that N(t, ·) → S∗ as t → ∞, By (3.27), (3.29) and (3.30) we immediately
deduce that

(N(t, ·), I(t, ·)) → (S∗, I∗) as t→ ∞.
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4. Conclusion. For the model (2.1) we have shown that the reproductive number
R0 plays a key role in the control of disease spread. That is, the disease dies out
when R0 < 1 and persists if R0 > 1. For the model (2.7) in which the growth
rate depends on the population size, we have only proved the local stability of
disease free equilibrium if R0 < 1. We conjecture that the disease free equilibrium
is globally stable. In the case where R0 > 1 we have showed the existence and
uniqueness of endemic equilibrium for the model (2.1). For the model (2.7), we still
are able to prove the existence of an endemic equilibrium if R0 > 1 by using a global
bifurcation technique. However, it is unclear whether the endemic equilibrium is
unique. For the special case when the two populations have the same diffusive
rate, we have shown the global stability of endemic steady state for both models
if R0 > 1. The situation becomes more complicated if the diffusion coefficients
of two populations are not identical. For this case it is even unclear whether the
endemic equilibrium, whenever it exists, is locally stable. All unsolved problems
mentioned above deserve further studies. In particular, it will be very important to
understand how the magnitude of diffusion coefficients affects the dynamics of the
disease transmission.
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