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Abstract. A well-known formula for the spreading speed of a discrete-time
recursion model is extended to a class of problems for which its validity was
previously unknown. These include migration models with moderately fat tails
or fat tails. Examples of such models are given.

1. Introduction. We are concerned with the rightward asymptotic spreading speed
c∗ of a single-species discrete-time recursion

un+1 = Q[un], (1)

where Q is an order-preserving translation invariant operator which takes the family

Cβ := {u(x) : u(x) is continuous and 0 ≤ u(x) ≤ β for all x ∈ R} (2)

into itself. Here x is a coordinate on the one-dimensional habitat, Q[0] = 0, and
β > 0 is an equilibrium, so that Q[β] = β. Such recursions include integro-difference
and discrete time discrete space (stepping stone) models for ecological invasions,
but can also be used to study reaction-diffusion models by letting Q be the time-τ
solution operator of the initial value problem for some fixed value of τ .

We shall assume that the recursion (1) is monostable in the sense that if u0 ≡ α
for some constant α with 0 < α ≤ β, then the sequence of constants un defined by
(1) converges to β. It is known that under mild restrictions on Q, such problems
have a rightward spreading speed c∗. An explicit formula for c∗ is only known under
special circumstances. In particular, one needs to know that the operator Q has a
linearization

M [u](x) :=

∫ ∞

−∞

u(x − y)m(y; dy),

where m is a finite nonnegative measure, with the properties that

Q[u] ≤ M [u], ∀u ∈ Cβ,
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and that for every positive δ there is a positive number ǫ such that

Q[u] ≥ (1 − δ)M [u], ∀u ∈ Cǫ. (3)

The natural formula for c∗ is then

c∗ = inf
µ>0

(1/µ) ln

{
∫ ∞

−∞

eµym(y; dy)

}

. (4)

In the case of a reaction-diffusion model, this formula was given by Aronson and
Weinberger [1]. Weinberger [7, 8] showed that it holds for general recursions, pro-
vided the integral on the right is finite for all µ > 0.

A related formula for the spreading speed of the integro-differential model

u(t, x) = u0(t, x) +

∫ t

0

∫ ∞

−∞

k(s, |y|)g(u(t − s, x + y))dsdy

was found independently by Horst Thieme [6] and Odo Diekmann [2, 3]. They
showed that if one defines

A(c, µ) :=

∫ ∞

0

∫ ∞

−∞

e−µ(cs+y)k(s, |y|)dsdy,

then, under suitable assumptions on g and k,

c∗ = inf{c ≥ 0 : g′(0)A(c, µ) < 1 for some µ > 0}. (5)

Thieme pointed out that in the limiting case when k has the form k(s, |y|) =
k(|y|)δ(s − 1), where δ is the Dirac measure, the integral equation reduces to an
integro-difference equation, and the formula (5) becomes (4). Diekmann’s proof
in [3] permits the integral which defines A(c, µ) to diverge for some values of c and
µ.

The purpose of the present work is to combine Thieme’s observation with the idea
behind Diekmann’s proof to show that the formula (4) is valid even when the integral
on the right has the value +∞ for some or all positive values of µ. This permits
one to handle population models with arbitrarily fat migration kernels. Because the
formula (4) shows that the spreading speed depends only on the linearization M ,
the recursion (1) is, by definition, linearly determinate under these circumstances.
This extends a result in a recent paper of Hsu and Zhao [4], where it is shown that
the formula (4) is valid under the additional condition that the infimum in (4) is
attained at an interior point of the set where the integral in (4) is finite (see also
[5, 9]).

The extension of our results to multidimensional habitats will be discussed in
Section 4.

2. A formula for the spreading speed. Throughout this section, we impose the
following hypotheses on the operator Q in the recursion (1).

Hypotheses 2.1. (i) The operator Q is defined for all functions u(x) in the set
Cβ defined in (2), where β is a fixed positive number.

(ii) Q is order preserving in the sense that u ≤ v implies that Q[u] ≤ Q[v].
(iii) Q[0] = 0 and Q[β] = β. Together with (ii), this implies that if u ∈ Cβ , then

Q[u] ∈ Cβ .
(iv) Q is translation invariant. That is, Q[u(·)](x − a) = Q[u(· − a)](x) for any

constant a. In particular, replacing a by −x and x by zero shows that Q has
the form

Q[u(·)](x) = Q[u(x + ·)](0).



SPREADING SPEEDS 189

(v) If α is a constant with 0 < α < β, then Q[α] > α. This implies that the
equilibrium 0 of the recursion (1) is unstable and the equilibrium β is stable,
so that the recursion is monostable.

(vi) If un(x) converges to u(x) uniformly on each bounded interval, then Q[un](x)
converges to Q[u](x) uniformly on each bounded interval. That is, Q is con-
tinuous in the topology of uniform convergence on bounded sets.

(vii) There is a bounded linear operator M on the set of bounded continuous func-
tions with the following properties:
(a) M is translation invariant and order-preserving, and hence can be written

in the form

M [u](x) =

∫ ∞

−∞

u(x − y)m(y; dy),

where m is a finite nonnegative measure.
(b) For every positive δ there is a positive number ǫ such that Q[u] ≥ (1 −

δ)M [u] for all u ∈ Cǫ.
(c) Q[u] ≤ M [u] for all u ∈ Cβ .

It is shown in [8] that if Q satisfies the first six of these hypotheses, then there
is a rightward spreading speed c∗ ∈ (−∞,∞], which can be characterized in the
following manner.

Definition 2.1. c∗ is called the rightward asymptotic spreading speed of the re-
cursion (1) if the solutions of the recursion (1) have the following properties:

(i) If u0 ∈ Cβ, u0(x) = 0 for all sufficiently large x, and u0 is bounded away from
β, then for any c > c∗

lim
n→∞

sup
x≥cn

un(x) = 0. (6)

(ii) If u0 ∈ Cβ and lim infx→−∞ u0(x) > 0, then for any c < c∗

lim
n→∞

sup
x≤cn

[β − un(x)] = 0. (7)

The Corollary on page 371 of [8] shows that if
∫ ∞

−∞ eµym(y; dy) converges for all

µ, then c∗ can be found from the formula (4). We shall show that this formula is
still valid when the integral diverges for some or all positive µ, provided we assign
the value +∞ to the integral when this happens. We first treat the case where there
is at least one positive value of µ at which the integral is finite.

Theorem 2.1. Suppose that
∫ ∞

−∞
eµym(y; dy) converges for at least one positive

value of µ. Then the formula (4) is valid, with the infimum taken only over the µ
for which the integral converges.

The following result says that the formula (4) is still correct when
∫ ∞

−∞
eµym(y; dy)

= +∞ for all positive µ, so that the infimum is +∞. When c∗ = +∞, statement
(i) of Definition 2.1 is vacuous, but statement (ii) holds for every real number c.

Theorem 2.2. The spreading speed c∗ of the recursion is +∞ if and only if
∫ ∞

−∞ eµym(y; dy) = +∞ for all positive µ.

We shall present the proofs of these theorems in the next section, but we first
present some examples to illustrate their applications.



190 HANS F. WEINBERGER AND XIAO-QIANG ZHAO

Example 2.1. Consider the integro-difference model

un+1(x) =

∫ ∞

−∞

k(y){(1 + β)un(x − y)/[1 + un(x − y)]}dy,

where k(z) is the probability density

k(z) =

[
∫ ∞

−∞

{e−|y|/[1 + (y − 1)4]}dy

]−1

e−|z|/[1 + (z − 1)4],

and β > 0 is the positive equilibrium. The linearization of the operator Q on the
right of the recursion is

M [u](x) = (1 + β)

∫ ∞

−∞

k(y)u(x − y)dy,

so that m(y; dy) = (1 + β)k(y)dy. Then
∫ ∞

−∞

eµym(y; dy) = (1 + β)K(µ),

where

K(µ) =

[
∫ ∞

−∞

{e−|y|/[1 + (y − 1)4]}dy

]−1 ∫ ∞

−∞

{e(−|y|+µy/[1 + (y − 1)4]}dy,

which converges for |µ| ≤ 1 but diverges for |µ| > 1. To locate the point where the
infimum in (4) is attained, we define

Φ(µ) := (1/µ) ln

{
∫ ∞

−∞

eµym(y; dy)

}

,

and calculate

Φ′(1) = − ln(1 + β) − lnK(1) + [lnK]′(1). (8)

Because ln K(µ) is strictly convex (see, e.g., equation(9.7) of [8]) and vanishes at
µ = 0, the mean value theorem shows that the sum of the last two terms on the
right of (8) is strictly positive. Thus, Φ′(1) decreases from a positive number to
−∞ as β increases from 0 to ∞. When β is so small that Φ′(1) > 0, the infimum
of Φ is attained at an interior point of the interval (0,1], and the results of [4]
give the formula (4). If, on the other hand, β is so large that Φ′(1) ≤ 0 so that
the infimum is attained at µ = 1, then we must use Theorem 2.1 to show that
c∗ = ln{(1 + β)K(1)}.

Example 2.2. Consider the integro-difference model

un+1(x) =

[
∫ ∞

−∞

e−|y|γdy

]−1 ∫ ∞

−∞

e−|y|γ{(1 + β)un(x − y)/[1 + un(x − y)]}dy

with 0 < γ < 1. The linearization of the operator Q on the right is given by

M [u](x) = (1 + β)

[
∫ ∞

−∞

e−|y|γdy

]−1 ∫ ∞

−∞

e−|y|γu(x − y)dy.

Because γ < 1,
∫ ∞

−∞
eµym(y; dy) diverges for all positive µ. Then Theorem 2.2

shows that c∗ = ∞ because the tail of the migration kernel is too fat.
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3. Proofs of the theorems. In this section, we give the proofs of our main results.

Proof of Theorem 2.1. In order to treat cases in which the integral in (4) diverges
for some µ, we first approximate the operator Q from below by an operator where
this does not happen. For this purpose, we introduce the continuous cutoff function

η(x) :=











1 for |x| ≤ 1

2 − |x| for 1 ≤ |x| ≤ 2

0 for |x| ≥ 2,

and define the sequence of operators

Qj [u](x) := Q[η(·/j)u(x + ·)](0).

Because the sequence η(x/j) increases to 1 uniformly on every bounded interval,
we see that for each u ∈ Cβ, Qj [u] increases to Q[u] uniformly on every bounded
interval. The linearization of Qj is clearly the operator

Mj [u](x) :=

∫ ∞

−∞

u(x − y)η(y/j)m(y; dy).

Because the function eµyη(y/j) is bounded for every µ ∈ R, the function

λj(µ) :=

∫ ∞

−∞

eµyη(y/j)m(y; dy) (9)

is well-defined and continuous, and nondecreasing in j. We define
∫ ∞

−∞
eµym(y; dy)

to be the limit

λ(µ) := lim
j→∞

λj(µ), (10)

which may be finite or +∞. For convenience, we shall also use the notations

Φj(µ) := (1/µ) lnλj(µ)

and

Φ(µ) := (1/µ) lnλ(µ),

with the convention that Φ(µ) = +∞ when λ(µ) = +∞.
A simple application of Schwarz’s inequality shows that for any finite integer j,

the function lnλj(µ) is convex in µ (see, e.g., equation (9.7) of [8]). It is easily seen
that this implies that the limit function lnλ(µ) is again convex in the sense that

lnλ((1/2)(µ1 + µ2)) ≤ (1/2)[lnλ(µ1) + λ(µ2)].

for all µ1 and µ2, even when some of the values are infinite. Because the function
1 is bounded and continuous, we see that λ(0) = M [1](0) is finite. It follows that if
the set of positive µ where λ(µ) is finite is not empty, then it is an interval of the
form (0, ∆) or (0, ∆], with 0 < ∆ ≤ ∞. Because the Corollary in [8] gives (4) when
∆ = ∞, we shall assume here that ∆ is finite.

The proof of Theorem 6.4 of [8] still shows that

c∗ ≤ inf
µ>0

Φ(µ). (11)

Because Φ(µ) < ∞ for 0 < µ < ∆, c∗ is finite.
Hypotheses 2.1 (ii), (iv), and (v) show that Q takes positive constants into pos-

itive constants. Therefore, the same is true of its linearization M . Hypothesis 2.1
(vii) (c) and the linearity of M show that for any positive constant α < β

Q[α] ≤ αM [1] = αλ(0).
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If λ(0) ≤ 1, then Q[α) ≤ α for all α. Since this would contradict Hypothesis 2.1
(v), we conclude that

λ(0) > 1.

Because λj(0) increases to λ(0), there is an integer J such that

λj(0) > 1 for all j ≥ J. (12)

It quickly follows that when j ≥ J , the operator Qj satisfies the Hypotheses 2.1
with β replaced by some βj ≤ β and M replaced by Mj . Since the function λj(µ)
is continuous for all µ, lnλj(µ) > 0 uniformly on some open interval which contains
0. Therefore, the function

ΦJ (µ) := (1/µ) lnλJ (µ)

has the limit +∞ as µ decreases to 0. The same is then true of Φj for all j ≥ J .

We wish to show that there is an integer J̃ ≥ J such that ΦJ̃(µ) > c∗ when
µ is sufficiently large. For this purpose, we observe that

∑∞
ℓ=−∞ η(y − 3ℓ) ≡ 1.

Therefore,
∫ ∞

−∞

e(∆+1)ym(y; dy) =

∞
∑

ℓ=−∞

∫ 3ℓ+2

3ℓ−2

η(y − 3ℓ)e(∆+1)ym(y; dy).

Since
∫ ∞

−∞
e(∆+1)ym(y; dy) = ∞, this series diverges. Therefore, there must be a

sequence ℓi such that

lim
i→∞

ℓi = ∞ and

∫ 3ℓi+2

3ℓi−2

η(y − 3ℓi)e
(∆+1)ym(y; dy) > 0.

Because η ≥ 0, this inequality implies that
∫ 3ℓi+2

3ℓi−2

η(y − 3ℓi)m(y; dy) > 0.

When ℓi ≥ 1, the inequality |y − 3ℓi| ≤ 2 implies that 0 ≤ y ≤ 3ℓi + 2. Thus,
η(y − 3ℓi) ≤ η(y/(3ℓi + 2)) when ℓi ≥ 1. Therefore,

λ3ℓi+2(µ) =

∫ ∞

−∞

η(y/(3ℓi + 2))eµym(y; dy)

≥

∫ 3ℓi+2

3ℓi−2

η(y − 3ℓi)e
µym(y; dy)

≥ eµ(3ℓi−2)

∫ 3ℓi+2

3ℓi−2

η(y − 3ℓi)m(y; dy).

Thus, we find that
lim inf
µ→∞

Φ3ℓi+2(µ) ≥ 3ℓi − 2.

We choose an integer ĩ so large that

3ℓĩ − 2 > c∗ and 3ℓĩ + 2 ≥ J,

and define
J̃ := 3ℓĩ + 2.

Then ΦJ̃(µ) > c∗ for µ both near 0 and near infinity. Thus, there is an interval
[a, b] with 0 < a < b such that ΦJ̃(µ) > c∗ outside this interval.

Because Φj is nondecreasing in j, we conclude that

Φj(µ) > c∗ outside the interval [a, b] when j ≥ J̃ .
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Let c∗j be the spreading speed of the recursion (1) with Q replaced by Qj . The
definition of spreading speed and the fact that Qj ≤ Q show that c∗j ≤ c∗. Moreover,

the Corollary in [8] shows that Φj(µj) = c∗j ≤ c∗ for some µj ∈ (0,∞). Therefore,

µj ∈ [a, b] for all j ≥ J̃ . By using the monotonicity of the Φj , we see that if

k ≥ j ≥ J̃ , then
Φj(µk) ≤ Φk(µk) = c∗k ≤ c∗. (13)

Because all the µk lie in the closed and bounded interval [a, b], the Bolzano-Weier-
strass theorem implies that they have at least one point of accumulation µ̂ ∈ [a, b].
That is, there is a sequence µki

which converges to µ̂ as i goes to infinity. We
replace k by ki in (13), let i approach infinity, and use the continuity of Φj to see
that

Φj(µ̂) ≤ c∗ for all j ≥ J̃ . (14)

Now we let j approach infinity to obtain the inequality Φ(µ̂) ≤ c∗. We combine this
inequality with (11) to see that

c∗ ≤ inf
µ>0

Φ(µ) ≤ Φ(µ̂) ≤ c∗.

This clearly shows that c∗ = infµ>0 Φ(µ), which is the statement of Theorem 2.1.

Proof of Theorem 2.2. Suppose that Φ(µ) = ∞ for all µ > 0. Assume for the
sake of contradiction that c∗ is finite. Then the above proof of Theorem 2.1 still
leads to the inequality (14) for all j ≥ J̃ . Since Φ(µ̂) = ∞, the left-hand side can be
made arbitrarily large, and, in particular, larger than the right-hand side, by taking
j sufficiently large. Thus, the assumption that c∗ is finite leads to a contradiction.
This shows that if Φ(µ) = ∞ for all µ > 0, then c∗ = ∞.

To obtain the converse, we note that if Φ(µ) is finite for some µ > 0, then the
inequality (11) shows that c∗ is also finite. Therefore, c∗ = ∞ only if Φ(µ) = ∞ for
all µ, and Theorem 2.2 is proved.

4. Discussion. We have extended the validity of the formula (4) to a class of
recursions with fat tails in a one-dimensional habitat. The Corollary of [8] shows
how to apply such a result to a recursion in a multi-dimensional habitat. For each
unit direction vector ξ in the habitat, one defines the spreading speed c∗(ξ) as
the rightward spreading speed of the recursion with the one-dimensional habitat
operator

Qξ[u(·)](x) := Q[u(ξT {xξ + ·})](0).

The spreading behavior is then described in terms of the convex set

S := {x : ξ · x ≤ c∗(ξ) for all ξ}.

The formula (4) becomes

c∗(ξ) = inf
µ>0

(1/µ) ln{M [e−µξT
x](0)}.

It is shown in the proof of Theorem 6.4 of [8] that S contains the drift velocity V,
whose ith coordinate is given by

Vi :=

∫

xim(x; dx)
∫

m(x; dx)
,

and that, with the exception of trivial cases, V is an interior point of S.
When the habitat is one-dimensional, the unit vectors are 1 and -1. Then c∗(1)

is the rightward spreading speed, and c∗(−1) is the leftward spreading speed.
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