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Abstract. We study an eco-epidemic model with two trophic levels in which
the dynamics are determined by predator-prey interactions as well as the vul-
nerability of the predator to a disease. Using the concept of generalized mod-
els we show that for certain classes of eco-epidemic models quasiperiodic and
chaotic dynamics are generic and likely to occur. This result is based on the ex-
istence of bifurcations of higher codimension such as double Hopf bifurcations.
We illustrate the emergence of chaotic behavior with one example system.

1. Introduction. Mathematical models are essential tools in order to understand
the mechanisms responsible for persistence or extinction of species in natural sys-
tems. In ecological models persistence is generally desired. By contrast, inves-
tigations in epidemic models usually aim at finding mechanisms that lead to the
extinction of the parasites or infections (e.g., [38]). However, it is known that dis-
eases can not only greatly affect their host populations, but can also affect other
species that their host populations interact with (e.g., [2]).

In recent decades theoretical ecologists as well as epidemiologists became in-
creasingly interested in so-called eco-epidemiology. Eco-epidemic models describe
ecosystems of interacting populations among which a disease spreads [5, 9, 14, 28,
33, 50, 56, 58, 59]. It has been shown that invading diseases tend to destabilize the
predator-prey communities [2, 18, 28, 61]. However, Hilker and Schmitz [34] show
that predator infection can also have a stabilizing effect.

Most of the existing models in eco-epidemiology consider a disease in the prey
population [5, 14, 57]. There are only a few models where the predator population is
infected [59]. Some of the latter can exhibit sustained oscillations which are absent
from the uninfected ecological model under consideration [2, 61].
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In ecology as well as in epidemiology, oscillations are associated with destabiliza-
tion because extinction of the population due to natural fluctuations becomes very
likely when the oscillation drives the population to low abundances [19, 43, 46, 55].
Such extinction events are less critical if a species is spatially separated in several
subpopulations. The subpopulations allow for a repopulation by migration after the
extinction of one subpopulation. However, in such a case synchronous dynamics be-
tween the subpopulations due to the coupling by migration can have a devastating
effect: it increases the possibility of global extinction of the whole species [30, 36]
when all subpopulations have a minimum at the same time. In epidemiology such
a synchronization of the dynamics can again be desired and induced by pulse vac-
cinations [22] in order to cause the extinction of the disease.

In some models where the prey is infected, chaotic long-term dynamics also have
been observed [13]. In contrast to oscillations, the effect of chaos on the stability in
ecological models has been a question of debate for a long time [25, 29, 49]. A popu-
lar view has been that chaos has a destabilizing effect because of the associated boom

and burst dynamics [11]. However, for a population that consists of subpopulations
as described above it has been shown that chaotic dynamics can be an advantage in
stabilizing the whole population. Although chaotic dynamics increase the number of
local extinctions of subpopulations chaos reduces the degree of synchrony between
different patches. Consequently it reduces the probability of a global extinction
[1, 48]. Therefore it seems essential that the subpopulations are chaotic in isolation
[20]. With the coupling, the subpopulations can show simpler dynamics but the
subpopulations tend to be out of phase. In this sense it can be advantageous for
the total population if the subpopulations exhibit chaotic dynamics or are close
to chaotic parameter regions. This observation may explain why some ecological
systems appear to be at the edge of chaos [53]. Further, diffusion-induced complex
dynamics have been found in continous spatial predatorprey systems [7, 44, 54]. But
also isolated populations can exhibit persistent chaotic dynamics. Benincà et al.
[10] observed chaotic dynamics of a food web in laboratory mesocosm that lasted for
more than six years. From an evolutionary point of view ecological models should
evolve into chaotic parameter regions if chaotic dynamics are an advantage for the
population persistence.

To study stabilizing or destabilizing effects, bifurcation theory is often applied
to find the parameter regions where the steady state for the ecological or epidemi-
ological model is stable with respect to perturbations. These analyses are based on
specific models describing the relevant processes in the form of ordinary differential
equations (ODEs). Recently another approach has been developed that is based on
generalized models where the exact mathematical form of the processes entering the
right hand side of the ODEs is not specified [27]. In spite of the fact that the math-
ematical functions are not known in detail, it is possible to analyze the stability
properties of the steady state and draw conclusions about possible destabilization
mechanisms of the steady state, as well as the emergence of chaotic dynamics [25],
when a system parameter is varied [26]. .

In this paper we use the concept of a generalized model to study the impact of a
disease of the predator on the dynamics of a predator-prey system. To this end we
couple a generalized ecological model with an epidemic one and study the stability
properties of the steady state. The advantage of the method is that our results are
not restricted to a particular model but apply to certain classes of models since
we use parameters encoding the shape of predator-prey functional responses and
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incidence functions as bifurcation parameters. We find that the coupling of both
models introducing a disease in the predator population leads to complex dynamics
such as quasiperiodic and chaotic motion. These complex dynamics are solely based
on the interplay of demographic and epidemic modeling since the demographic and
the epidemic model alone are not capable of exhibiting chaotic motion. As a result
we show that chaos is generic and prevalent for certain classes of eco-epidemic
models.

The paper is organized as follows: In Section 2 we discuss the demographic as
well as the epidemic model and introduce the eco-epidemic model. Furthermore,
we normalize the model and discuss the possible emergence of bifurcations for the
steady state. In Section 3 we analyze the stability properties of the steady state for
the predator-prey model with and without the disease in the predator population
and compare the results. As a conclusion we obtain classes of systems in which we
expect to find quasiperiodic and chaotic behavior. Since these findings are based on
mathematical theorems we can only state the existence of parameter regions where
the dynamics are chaotic. To determine the size of these parameter regions, and
hence their relevance for the dynamics of the eco-epidemic model, we investigate a
specific model in Section 4 to show explicitly the emergence of chaotic dynamics.
Finally we summarize the results in Section 5.

2. The generalized eco-epidemic model. Before we begin our analysis we will
briefly outline the construction of one of the simplest predator-prey models and one
of the most elementary epidemic models, which together form the building blocks
for the more general eco-epidemic model we would like to consider.

The basic demographic model in general accounts for two interacting species.
The nature of interactions can be of competing, predator-prey, or symbiotic nature.
A typical formulation for a predator-prey model is given by

Ẋ = SX − MXX2 − G(X)Y,

Ẏ = EG(X)Y − MY Y ,
(1)

where S is the specific growth rate of the prey X . Apart from predation the growth
of the prey is limited by intraspecific competition assumed to increase quadratically
in X with the coefficient MX thereby giving a logistic evolution for the prey dy-
namics. The predation is expressed by the so-called per capita functional response
G(X). The efficiency of biomass conversion is given by the yield constant E. MY

is the mortality rate of the predator population.
This simple model structure has been analyzed for a variety of different functional

responses G(X) describing the prey-dependent predation rate (e.g., [35]). However,
in our case the function G(X) is not specified to keep the model more general. In
Section 3 we will discuss some properties of this underlying ecological model.

Classical epidemic models partition the population into several epidemiological
classes, for a thorough review see [32]. The population, in our case the predator
population Y , is usually split into susceptibles YS , infected YI , and recovered YR.
The latter may be thought of as being immunized, at least for a period of time,
after which they return into the class of susceptibles. Following this population
division, in absence of vital dynamics, i.e., demographic terms to account for births
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and natural deaths, a simple SIRS model would be written as

ẎS = −λ(YS , YI) + δYR

ẎI = λ(YS , YI) − γYI

ẎR = γYI − δYR

(2)

assuming linear transition rate γ from the infected to the recovered class. The
recovered become susceptible again with a fixed rate δ.

In general, pathogen transmission is expressed by interactions among individ-
uals. The latter are modeled by the incidence function λ(YS , YI), for which the
most common approaches are the mass action λ(YS , YI) = bYSYI and the so-
called standard incidence function or frequency-dependent transmission λ(YS , YI) =
bYSYI/(YS + YI). In both cases susceptibles YS and infected YI are assumed to be
well-mixed and hence, to interact randomly. However, it is not clear if the assump-
tion of random interactions and an equal distribution of infected and uninfected is
appropriate to describe pathogen transmission in wild populations. Both, small-
scale experiments as well as observed disease dynamics give evidence that simple
mass action is not an adequate model in many situations [42]. The simplest ar-
gument for an asymmetry of the incidence function is that due to a patchiness in
the disease, on average each infected individual is more likely to have an infected
neighbor. The more biological details are taken into account, the more complex
the incidence function may be. For instance, Capasso and Serio [12] introduced
a saturated incidence function. Such a saturation can be caused by crowding ef-
fects at high infection levels or by protection measures the susceptible individuals
take. Liu et. al. [39] proposed a more general incidence function of the form
λ(YS , YI) = kYSY p

I /(1 + mY p
I ). Additionally a variety of other incidence functions

have been investigated by various authors (e.g., Table 1). A universal approach has
not been found yet. However, using the generalized approach we avoid specifying
the incidence function but study more generic properties of the model class under
consideration.

Table 1. Different proposed functional forms for the incidence function

No. Functional form Comments Citations
1 ∼ SI mass action [3, 40]
2 ∼

SI
S+I

standard incidence [41]

3 ∼ SI(1 − CI) [62]
4 ∼ IS

1+AI
[12]

5 ∼ SpIq power relationship [39]
6 ∼ Sln(1 + BI/k) [6]

7 ∼ Sp Iq

B+Iq p > 0, q > 0 [39]

8 ∼ S I
A+I2 non-monotone incidence [60]

9 ∼ S I
A+S+I

asymptotic incidence [17, 45]

To analyze the effect of a disease in the predator population Y on the dynamics
of interaction with the prey X we combine the demographic model equation (1)
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with the SIRS epidemic model equation (2) as follows

Ẋ = SX − G(X)(YS + YR + αYI) − MXX2,

ẎS = EG(X)(YS + YR + αβYI) − MY YS + δYR − λ(YS , YI),

ẎI = λ(YS , YI) − (MY + µ)YI − γYI ,

ẎR = γYI − δYR − MY YR.

(3)

Here we assume neither vertical transmission, nor vertical immunity, i.e., that the
infected predators as well as the recovered predators reproduce only susceptibles.
Furthermore, we suppose that the disease can, in principle, influence the demo-
graphic parameters. The disease may induce a disease-related mortality rate µ and
reduce the predation and reproduction rates of the infected YI expressed by the
factors α and β respectively.

All parameters and terms denoted by Greek letters are related to the disease.
Note, that in the absence of weakening effects of the disease (i.e., α = β = 1 and
µ = 0) the combined model equation (3) reproduces the population dynamics of
the uninfected model equation (1) , with Y = YS + YI + YR. This means that the
disease could have in principle no influence on the ecological dynamics.

To analyze the dynamics of model (3) one would start by computing the steady
state and its stability with respect to perturbations. But a local stability analysis
cannot be performed since an analytical computation of the steady states is im-
possible because G(X) and λ(YS , YI) are not specified but assumed to be general
functions. However, this difficulty can be overcome using the normalization proce-
dure for the generalized models described in [27]. To use this approach we assume
that a positive steady state (X∗, Y ∗

S , Y ∗

I , Y ∗

R) exists.
We now define normalized variables x := X/X∗, ys := YS/YS

∗, yi := YI/YI
∗

and yr := YR/YR
∗. Further, we define a normalized functional response g(x) :=

G(X∗x)/G(X∗) and a normalized incidence function l(ys, yi) := λ(YS
∗ys, YI

∗yi)
/λ(YS

∗, YI
∗). Note, that in the space of normalized state variables the steady

state is by definition (x∗, ys
∗, yi

∗, yr
∗) = (X∗/X∗, YS

∗/YS
∗, YI

∗/YI
∗, YR

∗/YR
∗) =

(1, 1, 1, 1). In the same manner, we obtain l(ys
∗, yi

∗)=g(x∗)=1. Following the
normalization procedure we can rewrite equation (3) as

ẋ = ax (x − m̃xg(x)(f̃α(bys + b̃yr) + fαyi) − mxx2),

ẏs = as (esg(x)(f̃β(bys + b̃yr) + fβyi) − myys + ẽsyr − m̃yl(ys, yi)),
ẏi = ai (l(ys, yi) − yi).
ẏr = ar (yi − yr).

(4)

The details of the normalization and the definitions of the newly introduced
scale parameters ai, b, b̃, fα, f̃α, fβ, f̃β, es, ẽs, mx, m̃x, my and m̃y are given in the
Appendix. As an advantage of this approach these parameters are easy to interpret
in the biological context. The scale parameters ax, as, ai and ar for instance encode
the inverse timescales of the normalized state variables. They measure the relation
between the lifetimes of the different species. All other scale parameters are between
0 and 1 and describe weight factors of certain processes of the model at the steady
state.

The losses due to intraspecific competition relative to the total losses within
the prey are represented by the parameter mx. To be specific, if mx is close to 1
the losses of prey due to intraspecific competition preponderate. The parameter
m̃x = 1 − mx expresses losses caused by predation. fα and f̃α are the fractions
of prey consumed by infected predators and healthy predators respectively. In the
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same way b is the fraction of healthy predators that are susceptible and b̃ = 1 − b
the fraction of healthy predators that are recovered. Further, the parameter es

represents the weight factor of the natural growth terms of susceptibles due to
consumption of X . At the steady state, the fraction of gains due to recovered
predators that become susceptible again is given by ẽs = 1 − es. The natural
mortality for the predator relative to the total losses is expressed by my.

The stability of the steady state under consideration (x∗, y∗

s , y∗

i , y∗

r ) = (1, 1, 1, 1)
depends on the eigenvalues of the Jacobian. The steady state is stable if all eigen-
values have a negative real part. Consequently only two bifurcations can separate
stable from unstable parameter regions: the saddle-node type bifurcation where a
real eigenvalue crosses the imaginary axis and a Hopf bifurcation where a pair of
complex conjugate eigenvalues crosses the imaginary axis.

Because all normalized state variables and the normalized processes (l(ys, yi),
g(x)) are equal to one at the steady state, the Jacobian of the normalized model
contains, in addition to the scale parameters, only the derivatives of the normalized
processes in the steady state. We define

gx := ∂g(x)
∂x

∣

∣

∣

x∗

,

ls := ∂l(ys,yi)
∂ys

∣

∣

∣

ys
∗,yi

∗

li := ∂l(ys,yi)
∂yi

∣

∣

∣

ys
∗,yi

∗

(5)

as the generalized parameters. These parameters can be interpreted as nonlinearity
measures of the corresponding functions with respect to the variable of the deriva-
tive. If the function G(X) is linear in X the derivative of the normalized function gx

is equal to one. It is zero for a constant function and two for a quadratic function.
To be consistent with previous publications we let gx be the predator sensitivity to

prey [24, 25, 27]. In the same sense we denote by ls and li the incidence sensitivity
to susceptibles and to infected respectively.

In summary, the Jacobian consists of ten scaling parameters and three generalized
parameters. How to obtain the test functions for the above mentioned bifurcations
from the Jacobian is described in detail in [26]. These test functions enable us to
draw 3D bifurcation diagrams as described in detail in [51].

Since we are essentially interested in the influence of different mathematical ex-
pressions for the functional response and for the incidence function, we focus our
bifurcation analysis on the generalized parameters gx, ls and li. We chose the other
scale parameters according to biological reasoning. It is known that in many cases
the timescale for the lifetime of species belonging to different trophic levels slows
down with each higher trophic levels [31]. Hence, we could assume that the inverse
timescale of the susceptible predators is less than half the timescale of the prey, i.e.,
as = 0.4ax. By renormalizing the timescale we can say that ax = 1 and as = 0.4.
It is further reasonable to expect that the timescale of the infected predators is
slightly larger than the timescale of the susceptible predators since we suppose that
their overall lifetime is shorter. Let us assume ai = 0.5. Clearly, this intuitive way
is much more appropriate than guessing some abstract parameters. If we would
analyze a specific real system at the steady state we could, in principle, also gain an
appropriate value for each scale parameter by measuring the corresponding rates.
Approximating all other scale parameters, we end up with three parameters that
we consider the most interesting bifurcation parameters. These are the sensitivity
of the predator with respect to prey gx and the sensitivity of the incidence function
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Figure 1. Bifurcation diagram of a generalized predator-prey
model. A surface of Hopf bifurcations (dark) and two surfaces of
saddle-node type bifurcations (transparent bright) are shown. The
bifurcation parameters are the prey sensitivity gx, the timescale of
the predator ay and the competition mx (intraspecific competition
of the prey).

with respect to susceptibles ls and infected li. The computation of 3D bifurcation
diagrams allows us to discuss the stability properties of the eco-epidemic model
depending on the mathematical form of the functional response G(X) and the in-
cidence function λ(YS , YI).

3. Stability of the steady state: From local to global bifurcations.

3.1. Absence of diseases. Before we analyze the effect of an infection on the
predator-prey interactions, we take a look at the generalized predator-prey model
in the absence of infected individuals. It is known that the predator-prey system
equation (1) can exhibit self-sustained oscillations if the functional response G(X)
is nonlinear in X for instance a Holling type II function [35]. A typical example
would be the Rosenzweig-McArthur model [47]. These oscillations appear due to
a supercritical Hopf bifurcation. Figure 1 shows the bifurcation diagram of the
generalized predator-prey model given by equation (1). As mentioned above ax is
set to be one so that ay corresponds to the relative inverse timescale. We see two
saddle-node type bifurcation surfaces (blue) and one Hopf bifurcation surface (red).
The steady state is stable in the top volume of the diagram. If one of the bifurcation
surfaces is crossed due to a parameter variation the steady state becomes unstable.



862 DIRK STIEFS, EZIO VENTURINO AND ULRIKE FEUDEL

The only biologically sound parameter range for the scale parameters ay and mx lies
between [0,1] since both parameters express some kind of weight factor measured
in relation to other scale factors.

First note that such a destabilization never occurs for a variation of ay. The
timescale has therefore no influence on the stability of the steady state in this
model class.

Second, the Hopf bifurcation surface exceeds the biologically relevant parameter
range for gx ≥ 1. For this reason, Hopf bifurcations cannot be found in this model
class if g(x) and therefore G(X) are linear functions (gx = 1). This situation
corresponds to the Lotka-Volterra model coupled with logistic growth. However,
from a biological perspective, models should allow lower values of the sensitivity to
prey, i.e., gx < 1. Due to a limited consumption of prey the functional response
G(X) should saturate at high amounts of prey. Since saturation is related to low
values of gx, Hopf bifurcations should likely occur in biological realistic models.

Even, lower values of the sensitivity to prey, i.e., gx ≤ 0, are rather unlikely
and occur only in systems with non monotonic functional responses. Biologically
this region where the predation decreases with increasing prey can be related to
inhibition effects or group defense techniques of the prey [4, 21]. At gx = 0 we find
that the Hopf bifurcation ends at the lower saddle-node type bifurcation surface
at gx = 0 in a codimension-2 Takens-Bogdanov line. On this line the Jacobian
has a double zero eigenvalue. In addition to the saddle-node type bifurcation and
the Hopf bifurcation a homoclinic bifurcation emerges from the Takens-Bogdanov
bifurcation line. This bifurcation is in general difficult to detect and can ecologically
be related to sudden population bursts. In the model class under consideration a
Takens-Bogdanov bifurcation can only be observed in systems with non monotonic
functional response G(X). This property is necessary to enable negative values of
gx and therefore it is also necessary to cross the Takens-Bogdanov bifurcation at
gx = 0.

Another way to achieve a destabilization of the steady state due to a Hopf bifur-
cation is to decrease the competition parameter mx. This effect is rather counter-
intuitive since decreasing the competition means ecologically to improve the food
conditions for the predators. Such behavior of the model can be strongly related to
the paradox of enrichment [46].

3.2. Disease in the predator population. We now investigate the impact of a
disease in this two trophic food chain as described by equation (3). In contrast to the
normalized predator-prey model the normalized eco-epidemic model has not three
but thirteen parameters that may all more or less influence the stability of the steady
state. Thoroughly analyzing and discussing these parameter variations is beyond
the scope of this work. Instead we focus only on bifurcations that give evidence
for more complex dynamics. Such complex behavior like quasiperiodic or chaotic
dynamics occur usually in the neighborhood of global bifurcations or bifurcations
of higher codimension, which can be found for a lot of different parameter sets
in the model class under consideration. It is important to note that though the
whole bifurcation analysis presented is based on local stability properties of the
steady state, we are able to detect easily higher codimension bifurcations since
they correspond to intersections of different bifurcation surfaces like the Takens-
Bogdanov line discussed in the previous subsection.

For our analysis we chose gx, ls and li as the most important bifurcation pa-
rameters. For most of the common incidence functions (cf. Table 1) li ≤ 1 due to
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saturation effects with respect to the number of infected. The sensitivity to prey
gx is for the same reason also confined to this range gx ≤ 1.

For the scaling parameters we assume now that 90 percent of the losses of prey
are caused by predation, which means a relative competition mx = 0.1. We as-
sume further that 95 percent of the predation is caused by healthy predators, i.e.,
susceptibles plus recovered, (f̃α = 1 − fα = 0.95) and that half of the healthy
predators are susceptible (b = 0.5). The gain of susceptible predators results for 95
percent from biomass conversion (es = 0.95) and only 5 percent from the recovering
(ẽs = 1 − es = 0.05). The natural mortality of the healthy predators is assumed to
be relatively low compared to losses due to infection (my = 0.1).

Using the parameter settings mentioned above we compute the stability of the
steady state as shown in Figure 2. We find as in the model without disease a
surface of saddle-node type bifurcations (transparent blue) and a surface of Hopf
bifurcations (red). But now the Hopf bifurcation surface possesses a rather compli-
cated shape. This shape corresponds to a Whitney umbrella, a bifurcation situation
which is rarely found in applications. Other examples of a Whitney umbrella are
presented in [23, 51]. In this bifurcation scenario the Hopf bifurcation surface is
twisted around a codimension-3 1:1 resonant double-Hopf point characterized by
two identical pairs of complex conjugate eigenvalues. As Figure 2 shows, a line of
codimension-2 double-Hopf bifurcations emerges from this point. At this line where
the Hopf bifurcation surface intersects itself, two pairs of purely imaginary complex
conjugate eigenvalues can be found.

Additionally we observe two intersection lines of the Hopf bifurcation surface with
the saddle-node type bifurcation surface. One is again a Takens-Bogdanov bifur-
cation and the other one is a Gavrilov-Guckenheimer bifurcation line that emerges
from a so-called triple point bifurcation on the Takens-Bogdanov bifurcation line
[37]. On this Gavrilov-Guckenheimer line the Jacobian has a zero eigenvalue in ad-
dition to a pair of purely imaginary complex conjugate eigenvalues. In contrast to
the Takens-Bogdanov bifurcation the Hopf bifurcation surface does not end on the
Gavrilov-Guckenheimer bifurcation. The existence of the Gavrilov-Guckenheimer
bifurcation indicates that quasiperiodic and chaotic dynamics are likely to occur in
the neighborhood of this bifurcation. The double-Hopf bifurcation line instead is a
clear evidence for the existence of chaotic parameter regions [37]. Therefore we can
conclude that the consideration of the vulnerability of the predator population to
a disease can lead in general to complex dynamics in eco-epidemiological systems.

Unfortunately we have no information about the size of the chaotic parameter
region since our analysis is based on mathematical theorems. In the following section
we investigate a specific model that allows us to translate the generalized parameters
to specific system parameters and vice versa. This specific example allows us not
only to explicitly compute the chaotic parameter regions but also gives insights into
the route to chaos.

4. Chaos in a specific eco-epidemiological system. To demonstrate the the-
oretical implications of the existence of a Whitney umbrella bifurcation situation
in a specific model, we need to choose specific mathematical functions for the gen-
eralized processes. This means that we construct an example of a specific model
that compares to the generalized parameter set of the bifurcation diagram shown
in Figure 2.
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Figure 2. Bifurcation diagram of the generalized eco-epidemic
model. A surface of Hopf bifurcations (dark) and a surface of
saddle-node type bifurcations (transparent bright) are shown. The
intersection lines are a Takens-Bogdanov bifurcation line (TB), a
Gavrilov-Guckenheimer bifurcation line (GG), and a double-Hopf
bifurcation line (DH). The double-Hopf bifurcation line ends in
a 1:1 resonant double-Hopf bifurcation point (1:1 DH) and the
Gavrilov-Guckenheimer bifurcation line ends in a triple point bifur-
cation at the Takens-Bogdanov line. The bifurcation parameters
are the generalized parameters gx, ls and li, which are strongly
related to the functional form of the underlying processes, namely
the per capita functional responce g(x) and the incidence function
l(ys, yi) respectively. The fixed parameters are scale parameters
ax = 1, as = 0.4, ai = 0.9, ar = 0.25, fα = 0.05, b = 0.5, es =
0.98, mx = 0.1 and my = 0.1.

Since the generalized parameters represent the derivatives of the generalized pro-
cesses, we need to choose functions according to the parameter range of the higher
codimension bifurcations. As stated above, in ecology and epidemiology a large
pool of proposed functional responses G(X) and incidence functions λ(YS , YI) ex-
ists. Since the double-Hopf bifurcation line appears for gx lower than 1, which means
an increase of g(x) slower than linear in x, a functional response with saturation is
necessary to obtain the double-Hopf bifurcation line.

Instead of defining a specific model and normalizing it, we construct an already
normalized specific model for the sake of simplicity. We choose a Holling type III
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function g(x) = ax2/(1+ bx2) as the functional response. Due to the normalization
we need g(1) = 1. Therefore we define a := (1 + b). The relation between b and gx

is then gx = 2/(1 + b). In a similar way we allow values of ls and li lower than 1
as well. We use the asymptotic incidence function l(ys, yi) = cysyi/(1 + dys + eyi)
[17, 45]. In order to satisfy l(1, 1) = 1 we define c := (1 + d + e). We find the
relations ls = 1 + e/(1 + d + e) and li = 1 + d/(1 + d + e).

Now we have a specific model that allows a translation of the parameter set of
the generalized model into the parameters of the specific model. This enables us
to analyze the dynamics of the system. As discussed in the previous section the
double-Hopf bifurcation indicates the emergence of chaotic parameter regions. In
order to find these parameter regions we compute the Lyapunov exponents of the
specific system for a grid of points in the generalized parameter space close to the
double-Hopf bifurcation.

The result is shown in Figure 3. The two solid lines are Hopf bifurcation lines that
intersect in a double-Hopf bifurcation. Within the white area the steady state (1,1)
is stable. In the light grey area the system exhibits periodic long-term dynamics.

In addition to the two Hopf bifurcation lines we find numerically other bifurca-
tion lines (two dashed, one dotted) using pathfollowing methods implemented in
MATCONT [16]. The dashed lines are Neimark-Sacker bifurcations where a limit
cycle becomes unstable and a stable quasiperiodic motion on a torus emerges. This
behavior can be found in the dark grey parameter regions. In the black regions
the largest Lyapunov exponent is positive and hence, the dynamics is chaotic. The
dotted line is a period doubling bifurcation. For small values of ls we find first the
transition to quasiperiodic motion on a torus with a subsequent transition to chaos.
For larger values of ls the periodic solution undergoes first a period doubling before
the torus or Neimark-Sacker bifurcation occurs. While the transition to chaos al-
ways involves a transition from quasiperiodicity, the chaotic attractor looks different
for small and large values of ls since the Neimark-Sacker bifurcation and the period
doubling swap places. Both routes to chaos are illustrated in Figure 4.

The population dynamical system alone (equation (1)) as well as the epidemio-
logical system alone (equation (2)) do not exhibit complex dynamics. Only if both
are coupled to form an eco-epidemiological system with an infected predator, can
the dynamics be quasiperiodic or chaotic. Our generalized analysis shows that chaos
is generic in this class of models.

5. Discussion. We have studied a generalized eco-epidemic model that couples
the behavior of a predator-prey system to the dynamics of a disease that can infect
the predator. The advantage of investigating generalized models lies in the fact
that the exact mathematical form of the interaction processes like predator-prey or
infection interactions does not have to be specified. This allows for rather general
conclusions about the stability of the positive steady state which will be reached in
the long-term limit. Moreover, this generalized approach can give insight into the
global dynamics of the system though only a local stability analysis is performed.
Due to the use of generalized models our results apply to certain classes of models.

The eco-epidemic model is based on two often used generalized models that ex-
hibit only stationary points or periodic behavior when studied separately. Examples
for specific versions of the predator-prey system (equation (1)) are the Rosenzweig-
MacArthur system and related versions possessing different nonlinear functional
responses [8, 15, 47, 52]. The epidemic model used as a basis is the well-known
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Figure 3. Dynamics of a specific model close to the double-Hopf
bifurcation. The steady state is stable in the white area between the
two Hopf bifurcation lines (solid lines). Beyond the Hopf bifurca-
tion lines (1.) the system exhibits stable periodic dynamics (bright
grey). Both Hopf bifurcation lines intersect in a codimension-2
double-Hopf bifurcation. This double-Hopf bifurcation is the start-
ing point of a Neimark-Sacker bifurcation line (dashed). At the
Neimark-Sacker bifurcation line a stable Torus emerges (2.) and
the system exhibits quasiperiodic dynamics (dark grey). The dot-
ted line is a period doubling bifurcation line. Beyond this line
where the system oscillates on a period 2 orbit (3.) we find another
Neimark-Sacker bifurcation (dotted-dashed line). In the black re-
gion we find chaotic dynamics (4.,5.).

SIRS (susceptibles-infected-recovered-suspectibles) model (equation (2)). Specific
versions of this model use different nonlinear incidence functions [2, 12, 39, 41].

We have shown that the coupling of an ecological and an epidemiological model
can lead to classes of systems exhibiting complex dynamics like quasiperiodic and
chaotic behavior. Our result is based on the detection of higher codimension bi-
furcations like double-Hopf bifurcations, triple points, and Gavrilov-Guckenheimer
bifurcations. In the neighborhood of such bifurcations there exist parameter re-
gions where quasiperiodic and chaotic behavior can be found. This mathematical
finding based on bifurcation theory is illustrated with a specific model where the
interaction functions are specified in order to be able to use numerical methods like
path-following of bifurcations and the computation of Lyapunov exponents. As a
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Figure 4. Simulations in 5 different dynamical regimes of Figure
3. We see a limit cycle at gx = 0.614, ls = 0.48 (1.), a torus at
gx = 0.6025, ls = 0.456 (2.), a limit cycle with doubled period
at gx = 0.613, ls = 0.5 (3.) and two chaotic attractors at gx =
0.6, ls = 0.47 (4.) and gx = 0.608, ls = 0.51 (5.).

result we can demonstrate that the chaotic parameter regions are not small and
therefore not negligible, but rather large and hence, important for the dynamics of
the system.

Finally we note that we were not able to find complex dynamics in the eco-
epidemic model using a SIS instead of a SIRS model. Therefore it seems to be
essential that we introduce the class of recovered predators for the occurrence of
complex dynamics.

To our knowledge this is the first example where chaotic behavior has been found
in an eco-epidemic model system with a disease in the predator population. Based
on the generalized approach we can state that the emergence of chaos is generic for
certain classes of eco-epidemic models and thus likely to be found.
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Appendix.

Normalization of the eco-epidemic model. By substitution of the normalized
state variables x := X/X∗, ys := YS/YS

∗, yi := YI/YI
∗ and processes g(x) :=
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G(X∗x)/G(X∗), l(ys, yi) := λ(YS
∗ys, YI

∗yi)/λ(YS
∗, YI

∗) into equation (3) we ob-
tain

ẋ = 1
X∗

(SX∗x − G(X∗)g(x)(YS
∗ys + YR

∗yr + αYI
∗yi) − MXX∗2x2),

ẏs = 1
YS

∗ (EG(X∗)g(x)(YS
∗ys + YR

∗yr + αβYI
∗yi) − MY YS

∗ys

+δYR
∗yr − λ(YS

∗, YI
∗)l(ys, yi)),

ẏi = 1
YI

∗ (λ(YS
∗, YI

∗)l(ys, yi) − (MY + µ)YI
∗yi − γYI

∗yi),

ẏr = 1
YR

∗ (γYI
∗yi − (MY + δ)YR

∗yr)

(6)

Observing this ODE in the steady state yield the conditions

ax := S = MXX∗ + G(X∗)(YS
∗+YR

∗+αYI
∗)

X∗
,

as := MY + λ(YS
∗,YI

∗)
YS

∗
= 1

YS
∗
(EG(X∗)(YS

∗ + YR
∗) + δYR

∗),

ai := MY + µ + γ = λ(YS
∗,YI

∗)
YI

∗ ,

ar := MY + δ = γYI
∗

YR
∗

.

(7)

By defining the scale parameters as

fα := αYI
∗

YS
∗+YR

∗+αYI
∗
, f̃α := YS

∗+YR
∗

YS
∗+YR

∗+αYI
∗

= 1 − fα,

b := YS
∗

YS
∗+YR

∗ , b̃ := YR
∗

YS
∗+YR

∗ = 1 − b,

mx := MXX∗

ax
, m̃x := G(X∗)(YS

∗+YR
∗+αβYI

∗)
axX∗

= 1 − mx,

es := EG(X∗)(YS
∗+YR

∗)
asYS

∗ , ẽsδ := δYR
∗

asYS
∗ = 1 − es,

my := MY X∗

as
, m̃y := λ(YS

∗,YI
∗)

asYS
∗

= 1 − my,

mx := MXX∗,
(8)

we can rewrite equation (6) in the normalized form equation (4).
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