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Abstract. Type 1 diabetes (T1DM) is a chronic autoimmune disease with a
long prodrome, which is characterized by dysfunction and ultimately destruc-

tion of pancreatic β-cells. Because of the limited access to pancreatic tissue and

pancreatic lymph nodes during the normoglycemic phase of the disease, little is
known about the dynamics involved in the chain of events leading to the clinical

onset of the disease in humans. In particular, during T1DM progression there
is limited information about temporal fluctuations of immunologic abnormal-

ities and their effect on pancreatic β-cell function and mass. Therefore, our

understanding of the pathoetiology of T1DM relies almost entirely on studies in
animal models of this disease. In an effort to elucidate important mechanisms

that may play a critical role in the progression to overt disease, we propose a

mathematical model that takes into account the dynamics of functional and
dysfunctional β-cells, regulatory T cells, and pathogenic T cells. The model

assumes that all individuals carrying susceptible HLA haplotypes will develop

variable degrees of T1DM-related immunologic abnormalities. The results pro-
vide information about the concentrations and ratios of pathogenic T cells and

regulatory T cells, the timing in which β-cells become dysfunctional, and how

certain kinetic parameters affect the progression to T1DM. Our model is able
to describe changes in the ratio of pathogenic T cells and regulatory T cells

after the appearance of islet antibodies in the pancreas. Finally, we discuss the

robustness of the model and its ability to assist experimentalists in designing
studies to test complicated theories about the disease.

1. Introduction. Type 1 diabetes is an autoimmune disease, often diagnosed early
in life and characterized by destruction of the insulin-secreting cells in the pancreas.
As a consequence, patients become insulin-dependent and must follow a rigid in-
sulin regimen to survive. The overall risk for developing Type 1 diabetes in North
American Caucasian siblings, parents and offspring of individuals with Type 1 di-
abetes, ranges from 1% to 15% as compared to 0.12% in the general population
[1]. However, over 80% of cases of Type 1 diabetes occur in individuals with no
apparent family history of the disease. In the remaining percent, this disease ag-
gregates in families. The prevalence of T1DM in the United States is estimated
to be approximately 120,000 individuals age less than 20 years and approximately
300,000-500,000 individuals all ages. The incidence of T1DM is at least 30,000 new
cases each year [2]. Since T1DM is an autoimmune disease with a long pre-clinical
course [3], the predictive testing of individuals prior to the onset of the disease pro-
cess has provided a real opportunity for identification of risk markers and the design
of therapeutic intervention. The progress made in molecular immunology technol-
ogy has provided a new stage for the investigation of etiological components, either
genetic or immunologic, prior to the clinical diagnosis of T1DM.

T1DM is a chronic autoimmune disease in which β-cells are gradually destroyed
by pathogenic (autoreactive) T cells. This process is the end result of complex
interactions among genetic, immunologic, and environmental factors [4]. There is
compelling evidence in [5] suggesting that T1DM results from an altered balance
between pathogenic T cells mediating disease and regulatory T cells (Tregs) con-
trolling autoimmunity [6]. Type 1 diabetes is a polygenic disease for which there are
a small number of genes with large effects (i.e., HLA) and a large number of genes
with small effects [7, 8]. Risk of T1DM progression is mainly conferred by specific
HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302
(DR4)] [9, 10, 11]. Conversely, the DQB1*0602 allele is associated with dominant
(80%− 95%)protection from T1DM [11].
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Although autoreactive CD4+ and CD8+ T cells are required for the initiation
and progression of the disease [12, 13], the cellular dynamics leading to disease
progression are not well understood. It has been postulated that in T1DM there
is an imbalance of pathogenic (effector) T cells and regulatory T cells (Tregs) [6].
Regulatory T cells (formerly suppressor T cells) are a specialized sub-population
of T cells that suppress activation of the immune system thereby maintaining the
homeostasis and tolerance to self molecules. Tregs represent less than 2% of the
T cells in the peripheral blood. Using a number of experimental protocols, Treg
cells can be expanded in vitro and in vivo and eventually could be harnessed ther-
apeutically to treat T1DM or facilitate tolerance of transplanted pancreatic islets
[14].

The fundamental pathophysiology shared by all patients with T1DM is the pro-
gressive loss in the ability of pancreatic β-cells to secrete insulin in response to
glucose [3]. This progressive decline in β-cell function may be secondary to a defect
of regulatory T cells. A number of studies have demonstrated that any approach
aiming to achieve immune hypo-responsiveness or tolerance in established T1DM
will have to address the β-cell mass and function remaining at the time of clinical
diagnosis of T1DM to permit a recovery of a metabolically-functional mass over the
long-term [15, 16].

Convincing findings from prospective studies in first degree relatives of T1DM
probands have shown a long latent period between the first appearance of circu-
lating autoantibodies directed against islet autoantigens and clinical onset [17, 18].
In T1DM a long prodrome offers a wide window of opportunities for identifying
individuals at risk and conducting intervention to delay or even prevent the clinical
onset of the disease. Algorithms based on immunologic and metabolic measure-
ments have been developed in an effort to improve prediction of type 1 diabetes.
However, during the natural history of the disease the mechanisms determining the
imbalance between pathogenic T cells and regulatory T cells and are far from been
resolved. Thus, in the following sections, we model their fluctuations occurring dur-
ing the progression to disease onset. We pose questions about dynamic changes in
the number and function of pathogenic (effector) and regulatory T cells in relation
to pancreatic β-cell mass and function. These conjectures will lay the groundwork to
identify gaps in the current knowledge of the pathoetiology of T1DM. Once these
knowledge gaps during disease progression are identified, their dynamics can be
further explored by formulating and evaluating hypotheses which may lead to the
design of new experimental approaches with the potential to dramatically enhance
our understanding of the disease process and interventions that prevent progression
of T1DM.

2. Model development. Mathematical modeling has played a critical role in our
understanding of various pathogenic aspects of human diseases, such as infectious
diseases [19, 20, 21, 22], cancer [23, 24], cardiac arrhythmias [25], and diabetes
[26, 27]. Modeling in diabetes has looked at the kinetics of glucose-induced insulin
secretion and sensitivity [28, 29, 30, 31, 32, 33], bursting properties of pancreatic
β-cells [34, 35] and glucose-calcium oscillations in β-cells [36]. Only recently has
mechanistic modeling begun to explore specific pathways associated with the effects
of T cells in autoimmune diabetes [37] or in the chain of events causing β-cell
destruction that leads to T1DM [38]. Work by Wang et al. studied the heterogeneity
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between young- and adult-onset type 1 diabetes [39], and Entelos Inc. developed a
large scale model of a virtual NOD mouse [40].

The NOD mouse represents a relevant animal model of autoimmunity in T1DM.
Immunologists analyzed the effect of genes on immunity using this model of spon-
taneous diabetes and they generated numerous transgenic mice on the NOD back-
ground to address specific immunologic questions. Although these models provided
important clues in understanding the mechanisms of autoimmunity in T1DM dia-
betes, they have significant limitations such as numerous differences in the structure
of the immune system between mouse and man, which likely result in discrepancies
on how the immune system responds to physiologic and pathologic stimuli [41]. A
large number of immunomodulatory strategies were and are currently applied to
prevent diabetes in animal models of the disease, such as the NOD mouse [42, 43]
and the BB rat [44, 45]. Although a large number of these therapeutic strategies
may delay or prevent diabetes in NOD mice, the most promising ones are now being
tested in humans [46, 47]. Until proven otherwise, both NOD mouse and BB rat
are the closest models of human autoimmune diabetes and, most of the time, these
are the only tools where we can test our hypotheses experimentally

A recent paper by DeGaetano et al. provided a nice review of the models used
by [48, 49]. Another work by Athanasius et al. [50] looked at the early stages
of T1DM in mice and assumed that macrophages act more slowly in NOD mice
than in normal mice and that this may lead to secondary necrosis of β-cells which
can trigger autoimmunity. Our model does not consider macrophages but instead
considers other immune cells. Similarly work by [39] considers macrophages based
on the Copenhagen model developed by Freiesleben De Blasio [48]. They assume
some local insult to the β-cells causes a cascade of events that eventually leads to
β-cell destruction. They include β-cell autoantigens but do not include a T cell
response. Our model is different in two aspects. First, we do not model the β-cell
autoantigens but instead consider the islet marker antibodies. These antibodies,
produced by B cells, are in response to these autoantigens but, very importantly,
can be measured and used as a predictive tool. Our model implicitly allows for the
appearance of these antibodies at specific time points during the disease. We assume
in our model that their appearance will correlate with the beginning of the auto
immune response. We should note that we cannot provide the specific means for
the appearance of these antibodies. Do they come from a viral infection, oxidative
stress, normal tissue remodeling, or from an unfolded protein response is not known.
We are considering a multiscale model that does look at the possibility that the
initial trigger for autoimmunity is coming from the unfolded protein response.

Our intention is to study the relationship between immune cells and regulatory T
cells by specifically looking at the ratio of pathogenic T cells and regulatory T cells,
to determine the level of β-cell decrease after the appearance of islet antibodies in
the pancreas, and to make predictions about the key parameters that are controlling
this behavior prior to the clinical onset of T1DM. We do so by developing a model
that accounts for glucose, insulin, functioning β-cells, dysfunctional β-cells, normal
regulatory T cells, defective regulatory T cells, IL-2, and pathogenic T cells. The
key components of this model, which make it unique compared to earlier works, are
its ability to track the concentration and functionality of both the β-cells and the
regulatory T cells and to quantify the concentration of β-cells with the islet marker
antibodies. Both of these aspects are critical if we wish to find a way to better
control this disease or even reverse it.
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2.1. Glucose and insulin. Insulin and glucagon are hormones that control the
glycemic levels and are secreted in the pancreas by functioning β-cells and α-cells,
respectively. Hence, tracking insulin (I) and glucose (G) can provide information
about the correlation between their measured concentrations in the plasma and the
assumed concentration of functioning β-cells in the pancreas. Previous models have
successfully shown a sigmoidal relationship for glucose concentration and activity
in the pancreas [51] and this information was used by Topp et al. [26] in their paper
that modeled insulin production as a function of β-cells and glucose. Topp’s model
assumed that insulin and glucose act on a much faster time scale than that of the
β-cells. However, they did not distinguish between functioning and dysfunctional β-
cells. We assume the existence of two types of β-cells: a functioning class (βf ) that
produces insulin at normal levels and a dysfunctional class (βnf ) that produces no
insulin. The work by DeGaetano et al. [48] provided a nice review of Topp’s work.
From our perspective, we know the time scale for glucose and insulin are much
faster than that of the immune system or β-cells but by distinguishing between
functional and dysfunctional β-cells we have introduced non-linearities that cannot
be decoupled in a simple fashion as was done in [26]. We also allow for small
numbers of dysfunctional β-cells to regain some level of functionality and therefore
return to the insulin producing class. Hence, in our model, the insulin secretion
rate will depend on glucose concentration and only the functioning β-cells,

dG

dt
= R0 −G(Eg0 + SiI), (1)

dI

dt
=

σBfG2

α + G2
− δII. (2)

In (1), R0 is the net rate of production at zero glucose, Eg0 is the total glucose
effectiveness at zero insulin, and Si is the insulin sensitivity. Glucose effectiveness
is defined as the ability of glucose to stimulate its own uptake and inhibit its own
production; insulin’s effect on glucose uptake and production is defined as Insulin
sensitivity [52, 53]. Bergman et al. [54] provided experimental evidence for this
relationship using the glucose clamp technique. The parameter σ represents the
rate of insulin secretion due to βf cells, α represents glucose concentration where
the levels reach half saturation, and δI is the rate of removal of insulin.

2.2. β-cells. We consider two compartments for β-cells. For the functioning β-
cells we use the same source term given in [26]. Topp et al. assume that new
β-cells can be formed by the replication of pre-existing β-cells or by neogenesis, the
differentiation of new β-cells from a precursor or progenitor cell [55]. Presently, it
is very difficult to quantify rates of neogenesis or of trans-differentiation, the switch
from pancreatic ductal cells to β-cells. However, there is a body of research that
suggests, albeit indirectly, that these mechanisms make negligible contributions
to β-cell mass dynamics except during development and in response to extreme
physiological or chemically induced trauma [49, 56, 57, 58]. For these reasons,
neogenesis and trans-differentiation are not incorporated into the present model.

The first term in (3) describes the replication, r1, and apoptotic death, d0, rates
of existing β-cells. In vitro studies show that the percentage of β-cells undergoing
replication varies as a nonlinear function of glucose level in the medium [26, 59].
Replication rates for β-cells increase with increasing glucose levels; however, at
extreme hyperglycemia (> 400mg/ml), β-cell replication may be reduced at a con-
stant rate, r2 [49]. Apoptotic death has been shown to vary nonlinearly with glucose
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[60, 61]. Specifically, increasing the glucose level from very low levels to approxi-
mately 110 mg/ml in the medium surrounding cultured β-cells reduced their death
rate; however, above 110 mg/ml glucose, the rate of β-cell death either remained
low or increased.

In addition to death by apoptosis, cells can be lost from the functioning β-cell
pool by losing the ability to produce insulin [62]. This feature was not considered
in [26] but is a key feature of our model. Functioning β-cells may lose the ability
to produce insulin as a result of CD4+ T cell infiltration and their subsequent
production of harmful cytokines and cytotoxins, such as IL-1 and TNF-α leading
to iNOS [63]. This process is accounted for in the second term in (3) by assuming
pathogenic T cells Tb are directly affecting the β-cells and causing a switch from
functional to non-functional. The maximal rate at which this happens is a1 and k1

represents the half-saturation constant. With this we have,

dBf

dt
= (r1G− d0 − r2G

2)Bf −
a1TbBf

k1 + Tb
+ εBnf . (3)

An important feature of (3) is the loss of functioning β-cells does not occur at a
constant rate; instead, their loss of function and death rate will depend on the
presence of pathogenic T cells. Pathogenic T cells.

The observation that actual death/loss of β-cells may occur in phases is con-
sidered through the saturation term in (3) which transitions functioning β-cells to
the dysfunctional β-cell class as seen in (4). Once β-cells are no longer capable
of producing insulin, they either undergo apoptosis or necrosis at an elevated, but
glucose independent rate, d1, or are directly destroyed by cytotoxic T-cells which we
account for by the scaling term, γT . This term simply increases the rate of removal
of cells from this class. In the results that follow, we will show the model’s ability
to provide clues to the significance of this result. For instance, we will consider the
possibility that the β-cells that become dysfunctional may actually, at some future
time, be able to reverse this effect and hence begin to produce some levels of insulin.
We incorporate this result with a simple linear term εBnf ;

dBnf

dt
=

a1TbBf

k1 + Tb
− γT d1Bnf − εBnf . (4)

Together, (3) and (4) model the rate of change in the total β-cell mass. In this way,
the fraction of functioning β-cells is not constant, rather it is dynamically varying.

2.3. Immune cells. T cells possess the ability to directly destroy β-cells in a cy-
totoxic manner and by directly influencing β-cell destruction through the release
of cytotoxic molecules such as cytokines and perforin. In type 1 diabetes, there is
evidence that when the immune system is unbalanced, favoring islet inflammation
and pathogenicity, the system is prone to islet autoimmunity development. This
situation can also occur if there is a defect in regulation.

We can test this hypothesis by allowing our model to account for two classes of
regulatory T cells: normal regulatory T cells, R, and a second class that represents
regulatory T cells that have lost some form of functionality, Rb. Regulatory T
cells are a specialized component of the immune system that police the immune
system in order to maintain homeostasis and tolerance to self-antigens. The exact
way regulatory T cells are derived from precursor T cells is unknown, however it
is thought that it is due to their affinity to self peptide MHC complexes. For a
nice review of regulatory T cells please see [64]. Hence, regulatory T cells are
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responsible for regulating the immune response, specifically controlling any response
that is directed at self antigens. We hypothesize in the paper that a change in
regulatory T cells leads to an ”unregulated” immune response, due to a class of
pathogenic T cells (sometimes referred to as effector T cells, Teffs), that affects the
characteristics of insulin-producing β-cells by reducing their numbers or changing
their functionality. To test this hypothesis we consider two components of the
immune response: regulatory T cells and the cells which are being regulated. The
regulated cells are considered to be pathogenic T cells, Tb, which have migrated
to the pancreas from the thymus and are unresponsive to the regulatory T cells
(see Fig. 1). As discussed earlier, there are many possible mechanisms for the
introduction of these pathogenic T cells. Our model is focused on the characteristics
of β-cells and regulatory T cells, hence we assume that the appearance of pathogenic
T cells correlates with the appearance of the islet marker antibodies which will be
given by the function S(t) later.

Taking the information above, we are able to generate the next set of equations
used to describe the immune response that play a key role in the progression to
T1DM. We recognize regulatory T cells (R) and a compartment of pathogenic T cells
(Tb) which are considered to be dangerous effector T-cells and become increasingly
resistant to control from regulatory T cells. Evidence shows that infiltration of
these dangerous pathogenic T cells is gradual initially and directly relates to the
two-phase loss of β-cell mass [65];

dTb

dt
= S(t) +

a3Tb

k4 + Tb
(1− Tb + R + Rb + Bf + Bnf

Kp
)− d3Tb − δTbR, (5)

dR

dt
=

a4RI2

k2 + I2
(1− Tb + R + Rb + Bf + Bnf

Kp
)− d2R− αR. (6)

Of note that in (6) the proliferation rate of regulatory T cells depends on the
amount of I2 available in the pancreas, which is assumed to vary according to
dI2
dt = ρ1I2R

k4+R − µI2. The rate of production of the pathogenic T cells, however,
correlates with the presence of certain types of islet autoantibodies, S(t), that are
produced by B cells. Kp represents the carrying capacity in the pancreas of both
immune cells and β-cells, di is the death rate of immune cells, δ is the rate at which
regulatory T cells can kill pathogenic T cells, and the ki’s are the half-saturation
constants that control the rate of increase of cells in the pancreas.

S(t) = (α1H(t− τ1) + α2H(t− τ2) + α3H(t− τ3) + α4H(t− τ4))
t3

K + t3
, (7)

where H(ω) is the heaviside function. A unique aspect of our model is the function
S(t) which will allow for the inclusion of the autoantibodies ICA, GAD65, IAA
and IA2, which are well known to appear many years before the clinical onset of
T1DM [66]. The immune cells produce these autoantibodies against self-antigens
in response to the damage of the β-cells. We assume that due to some unknown
event, the pathogenic T cells begin to attack the β-cells, which leads to the release
of islet autoantibodies, given by τi in (7), and an increased level of proliferation of
pathogenic T cells. Hence, S(t) represents the hidden interactions that occur be-
tween β-cells and pathogenic T cells, without requiring us to introduce more equa-
tions into the system. The complexities associated with the islet marker antibodies
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Figure 1. Diagram presenting the basic features of our model.
The left side shows a normal individual and the right side shows a
T1DM patient. For a normal individual there exists a healthy bal-
ance between the regulatory T cells, immune cells and functioning
β-cells. The functioning β-cells produce insulin which then controls
the levels of glucose. IL-2 is produced by the immune cells. The
path to T1DM is shown on the right were we introduce two com-
partments, Rb and Tb, that show the model’s ability to track the
changes in functionality and concentration of functioning β-cells,
Bf , and regulatory T cells, R. We also show the islet autoanti-
bodies which we hypothesis correlates in time with an increase in
pathogenic T cells, Tb, that are attacking the functioning β-cells.
Notice the resulting changes in the level of glucose and insulin.

are critical for finding a cure to this disease and during the past decade, the molecu-
lar characterization and cloning of a number of autoantibodies to islet antigens has
allowed major advances in prediction studies [17, 46, 67, 68, 69, 70, 71, 72, 73, 74, 75].
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These studies, including ours, have suggested that the use of a combination of hu-
moral immunological markers to these islet antigens, rather than a single test, gives
a higher predictive value for T1DM in first degree relatives, and greater sensitivity
without significant loss of specificity [17, 68, 70, 73, 74]. The measurement of an-
tibodies to GAD65, IA-2 is now a clear prerequisite in screening for individuals at
risk of developing insulin requirement. We found that the presence of two or more
of these autoantibodies to islet antigens (such as insulin and/or GAD65 or IA-2, or
insulin or ICA) are currently used as entry criteria for intervention trials aimed at
preventing Type 1 diabetes [46, 75].

The complexities presented above are enormous and our current model allows us
to focus on the dynamics of regulatory T cells and β-cells after the appearance of
the marker antibodies. We are working on a new model that allows more specificity
for the function S(t) but for now will consider this function to be time-dependent
in a manner that allows us to introduce the antibodies in the system at specific
times over the course of a patient developing T1DM. We can also use a hyperbolic
tangent function which allows for a more continuous dynamic but both functions
show similar results. Hence, S(t) allows us to focus on the dynamics of β-cells
and regulatory T cells without adding additional complications as to why the auto
immunity starts. We are in essence saying that there is some unknown event that
leads to pathogenic T cells attacking β-cells and after this event our model can
predict what occurs during the progression to T1DM. We are currently focusing on
this event in separate work.

Finally, we consider the inclusion of a class of non-functioning regulatory T cells
(Rnf ). Evidence suggests that there is a gradual switch between functioning and
non-functioning regulatory T cells [76]. By modeling this class of regulatory T cells
we are able to suggest possible pathways for disease progression that have yet to be
considered. The rate of transition from functioning to non-functional regulatory T
cells is given by F1(R,Rb, Tb) = αR,

dRb

dt
= αR− δRRb. (8)

3. Results. The results presented here provide evidence of the model’s ability to
study the dynamics of T1DM. For each figure, we assume specific values for the
disease parameters and the results are based on these assumptions. In all cases, we
can find and will show variations in these results by simply changing one or two of
the key parameters. The simulations were completed using Matlab’s ode45 solver.

We first model immunologic fluctuations which may occur during the progression
to clinical T1DM. These assumptions may explain the stepwise decline in β-cell mass
and function that occurs after the appearance of multiple autoantibodies which are
strong predictors of disease development (see Fig. 2). The model assumes all indi-
viduals carrying a disease-prone HLA genotype (i.e. DRB1*03-DQB1*0201 (DR3)
or DRB1*04-DQB1*0302 (DR4)] will develop a degree of islet autoimmunity. The
pathogenic phenotype can be viewed as a spectrum with destructive autoimmunity,
loss of β-cell mass, multiple autoantibodies and clinical disease observed at one
end, and non-destructive autoimmunity, preservation of β-cell mass, and generally
absence of islet autoantibodies, at the opposite end of the spectrum. In the initial
phase of the disease, the number of pathogenic T cells is controlled by an increase
in number of functional regulatory T cells. As the disease process becomes more
prominent, autoreactive effector (pathogenic) T cells that mediate disease exceed
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the number of regulatory T cells, which no longer suppress pathogenic autoimmune
responses and in turn lose their ability to actively control unwanted immunity even
after the onset of pathological manifestations.

3.1. Relationship between islet autoantibodies, ratio of pathogenic T cells
to regulatory T cells, and β-cell mass. The discovery of islet cell antibodies
(ICA) was the prelude to the understanding that type 1 diabetes mellitus (T1DM)
is a chronic autoimmune disease [77]. We previously [66] summarized the current
evidence for multiple islet autoantibodies as predictive markers for T1DM progres-
sion. We incorporated these islet autoantibodies into our model for T1DM to study
the dynamics and progression of the disease for individuals considered to be low
risk, i.e., present less than three islet autoantibodies, or high risk, i.e., greater than
two islet autoantibody markers.

Our results (see Fig. 3 through Fig. 5) show the model’s prediction, over a 20-30
year period of time, for the concentration of functioning β-cells and for the ratio
of pathogenic T cells to regulatory T cells. In each simulation we allow for the
appearance of one islet antibody every five years from the start of our simulation,
i.e., in (7) τ1 = 5 years, τ2 = 10 years, and τ3 = 15 years. It must be emphasized
that this is just one test case and that we can consider an infinite number of others.
For instance, the appearance of certain islet antibodies can occur in as early as 5
months in young kids or over 20 years in the elderly. Each of these scenarios can
be tested with our model, by varying τi in (7), but we only present the case here
where they occur every 5 years. Our initial results, which we vary αi and K in
(7), suggest that the β-cells receive most of their damage during the first attack by
the pathogenic T cells, i.e., which coincides with the appearance of the first islet
autoantibody. We found roughly a 12% (see Fig. 3) to 28% (see Fig. 5) decrease
in the level of functioning β-cells. However, after the appearance of the second
antibody we find a smaller reduction in the β-cells. This result is contrary to some
current beliefs and by varying the parameter values, we can describe events where
the β-cell decrease is more gradual over time, instead of a more rapid reduction,
proving the robustness of our model (see Fig. 8.)

What happens next depends on the assumption that either a third islet autoanti-
body will appear or not. If we assume no more islet autoantibodies appear then the
individual is predicted to stay in a pre-diabetic state, i.e., the level of functioning
β-cells is decreased but settles to a level that is lower than what is seen in a normal
individual (Fig. 3 top left blue line). These results can be dramatically different if
we change the values of αi in (7) and in fact, we can show the biggest decrease in
functioning β-cells can occur after the appearance of the second islet autoantibody
and not the first (results not shown). When we compared these results with the
ratio of pathogenic T cells to regulatory T cells (Fig. 3 top right blue line) we find
damped oscillations that occur for a few months after initiation of the pathogenic
T cells attack of the β-cells. This leads us to believe that the pathogenic T cells
are trying to overtake the system but the regulatory T cells are able to maintain
control. Another theory is that an environmental factor, such as a virus, can trigger
pathogenic T cells, which can destroy insulin secreting cells. We discuss this more
in the future work section.

If we allow for a third attack by pathogenic T cells (shown by the appearance
of a third islet autoantibody at 15 years), we find this control is only temporary
as seen in Fig. 3 (top right red line) when after a third marker becomes present
(high risk) the oscillations become larger and in fact for the first time, the ratio
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Figure 2. During T1DM progression there is an imbalance be-
tween the degree of epitope spreading, the cytotoxic potential of
autoreactive T cells, the efficiency of regulatory responses and, pos-
sibly, the rate of regeneration of β-cells in response to immune-
mediated β-cell destruction. These immunologic responses are
cyclic and if autoreactive T cells (Teffs or as we refer to them
in the text; pathogenic T cells) exceed in number and/or func-
tion Tregs or there are functional defects in Tregs (top panel left),
which would no longer counteract the cytotoxic potential of Teffs,
this leads to β-cell dysfunction and ultimately destruction. This
destructive process may take years, as for childhood type 1 diabetes
or decades (top panel right), or for instance in Latent Autoimmune
Diabetes of the Adulthood (LADA). Islet autoantibodies manufac-
tured by the immune system are directed against one of more of
hosts self-proteins and they serve as reliable surrogate predictive
markers of disease. The bottom panel shows cyclic variations of
Teffs and Tregs in individuals with low risk or no risk of T1DM
progression, such as those with single islet autoantibody responses.
In this case there is a compensatory regulatory response counter-
acting effectively the cytotoxic potential of autoreactive T cell re-
sponses.
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Tb/R becomes greater than one. This result shows comparable dynamics with the
experimental evidence presented in Fig. 2 (panel C).

We ran a second test that studies the impact of assuming that the pathway for
dysfunctional β-cells to return to a functioning state no longer exists, i.e., ε = 0 in
(3) and (4). Hence we assume that once a β-cell becomes dysfunctional that they
remain dysfunctional. When we run these simulations we find similar results to the
above case when we consider a low risk individual (less than 3 islet autoantibodies)
Fig. 3 (bottom plots, blue lines). However when we consider a high risk individual
we find an interesting result: the time it takes for the β-cells to rapidly decline to
zero is only one year instead of three years, however, the pathogenic T cells do not
fluctuate as much as the case when ε > 0 (see Fig. 3 bottom plots red lines) and in
fact show that the disease appears to be more severe but while we would expect the
ratio of Tb/R to be greater than in the previous example, we find a non-intuitive
result that shows the ratio to be 32% less than the previous case.

As mentioned above, by varying the rates αi, τi, and K we can see quite differ-
ent dynamics. For instance, in Fig. 3 we found that after the appearance of the
third islet autoantibody, the individual will experience a significant reduction of
functioning β-cells within a few years. However, this may not be the case in all in-
dividuals and if we allow for slight changes in αi and K we find that the individual
can actually maintain some level of functioning β-cells for between 12 years (Fig. 4)
to 30 years (Fig. 5) after the third autoantibody is present. During this time, the
ratio of pathogenic T cells to regulatory T cells shows some rapid, large amplitude
oscillations, with pathogenic T cells exceeding regulatory T cells in number, show-
ing a highly dynamic process between these two immune cells. In fact, we find that
even though the β-cells maintain some level of function, the ratio of Tb

R is much
larger than the case when the patient experiences a nearly complete annihilation of
functioning β-cells.

4. Describing the number and function of regulatory T cells and β-cells.
Our model allows for the transition of β-cells from functioning to dysfunctional as
seen in (3) with the saturation term a1TbBf

k1+Tb
. In the previous results we allowed

for a1 = 8 per day. This term is the source of the dysfunctional β-cells as seen
in (4) and can change the model’s description. As seen in Fig. 6 our model can
account for various declines in functioning β-cells by varying the rate at which they
switch over, a1. In the following graph we provide three simulations that allow for
one (Fig. 6 top panel), two (Fig. 6 middle panel) or three islet antibodies (Fig. 6
bottom panel). In each figure we start a1 = 8 per day and then double it and then
triple it. As the value for a1 increases, the level of β-cells begins to decrease and
we found that when there are three islet antibodies that if a1 > 18 per day then
the level of functioning β-cells drops to zero. Comparing Fig. 3 and Fig. 6 we found
similar results showing the decline of β-cells occurs either through an increase of
the rate of switch from functioning to dysfunctional or if we keep this rate fixed,
through a change in the level of dysfunctional β-cells returning to the functional
class. This provides direct evidence for the importance of the rate at which this
occurs.

5. Islet antibodies and describing onset of T1DM. Finally, we consider ap-
plying the model to a generated random set of data points showing the gradual
decline of functional β-cells over a 30 year period of time. We were able to keep
the model parameters fixed from before and focus on the timing in which the islet
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Figure 3. Important figure showing the model’s capabilities of
simulating T1DM results. The mathematical model presented in
this paper accounts for the functionality and concentration of reg-
ulatory T cells. The top two panels show the decline of functioning
β-cells (left) and the ratio of pathogenic T cells to regulatory T
cells (right) when we allow for the dysfunctional β-cells to regain
some of their functionality (ε > 0). What we find is for low risk
individuals (≤ 2 islet autoantibodies) that the β-cells decline be-
tween 10− 15% over a 20 year period and the person remains in a
pre-diabetic state. However if the person moves to high risk, i.e.,
> 2 islet autoantibodies, the β-cells begin to significantly decline
and with-in three years drop to zero. The right panel shows the
ratio of Tb vs R and how the regulatory T cells are trying to control
the pathogenic T cells (through the quickly damped oscillations)
but become too stressed after the third antibody appears (as seen
by the larger oscillations). The bottom set of panels show the same
dynamics but when we do not allow for the return of dysfunctional
β-cells (ε = 0). The significant difference we find is that after the
appearance of the third antibody the β-cells decline with-in one
year instead of three years but they do so while the regulatory T
cells seem to be still controlling the pathogenic T cells (as seen by
the ratio of Tb to R being less than one and hence the concentration
of R is greater than Tb).
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Figure 4. In this figure we provide an example that allows for the
appearance of three islet autoantibodies but different from Fig. 3
we see that the patient responded with only a 10% decrease in func-
tioning β-cells after the first islet autoantibody appeared, however,
after the third autoantibody, the level of functioning β-cells main-
tains a level that is only reduced by 20% and maintains this level
for over 12 years. This dynamic is very different than the one pre-
sented in the previous figure. All the model parameters were kept
the same except for the ones that control the S(t). In fact, the
change in dynamics seen in this figure are due to a doubling of αi

and a two order of magnitude change in K, showing the robustness
of our model and the critical need for data to validate our results.

antibodies appear in the pancreas. They appear at 5, 10, 15 and 20 years post
start of the simulation, and we are able to describe, using a Monte Carlo algorithm,
the level of response needed by the pathogenic T cells in order to fit the data. For
this simulation we set S(t) = (α1H(t− 1825) + α2H(t− 3650) + α3H(t− 5475) +
α4H(t−7300)) t3

K+t3 , where the H represents the heaviside (step) function and time
is in days. From our data set, which we generated based on evidence about the de-
cline of β-cells taken from the literature [78], we were able to show an increase in the
response of pathogenic T cells after each islet antibody entered. As seen in Fig. 7
we used α1 = 10, α2 = 50, α3 = 100, and α4 = 150. With the future application
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Figure 5. Figure similar to Fig. 4, except we change the values
of αi and K by 20%, showing that the functioning β-cells can be
predicted by the model to maintain a reduced level for over 20
years after we see the third islet autoantibody. Again, showing the
model’s robustness to describe a wide variety of dynamics.

of real data, we feel we can make significant contributions to the understanding of
T1DM and improve the clarity of the need for future work.

6. Discussion. One of the common characteristics of chronic autoimmune disor-
ders, such as lupus, rheumatoid arthritis and T1DM, is their relapsing-remitting
nature, which implies a cyclic process of their autoimmune responses. The inten-
sity and duration of cyclic variations of pathogenic immune responses and pro-
inflammatory cytokines can cause flare ups of rheumatoid arthritis or T1DM. The
fundamental pathophysiology shared by all patients with type 1 diabetes is the
progressive loss in the ability of the β-cells in the pancreas to secrete insulin in
response to glucose and the progressive decline in β-cell mass. As autoimmunity in
type 1 diabetes progresses from initial activation to a chronic state, there is an in-
crease in number of islet autoantigens targeted by T cells and autoantibodies which
precede the onset of clinical disease. Multiple antibodies reacting with these au-
toantigens (i.e., insulin, glutamic acid decarboxylase (GAD65) and the islet antigen
IA-2), are detected in the majority of newly diagnosed T1DM patients and their
presence is highly predictive of disease progression in otherwise healthy first-degree
relatives of T1DM probands. Islet autoantibodies serve as surrogate markers for
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Figure 6. Model describing β-cell resilience where the functional
form for their transformation to dysfunctional β-cells is given by
a1TbBf

k1+Tb
and hence is considered to be dependent solely on the T

cells that have become resistant to regulator T cell responses. The
panels allow for one (top) islet autoantibody, two (middle), and
three (bottom). In each case we set a1 = 8 per day and then double
it and then triple its value. In all cases, the level of functioning β-
cells decreases as a1 increases and in fact, there exists a dramatic
drop when we allow for three islet antibodies and let a1 > 18 as
seen in the bottom panel.
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Figure 7. Now we consider the predictive ability of the model and
show how it can be of use for understanding T1DM. The previous
figures have focused on the model’s description of changes in β-cell
numbers over time. In this figure, we generated a random set of
data points that simulates the gradual decline of functional β-cells
over a 30 year period of time. Keeping the model parameters fixed
from before, we focused on the timing of the appearance of the
islet autoantibodies in the pancreas. We assumed they appeared
at 5, 10, 15 and 20 years, post start of the simulation, and then
described the level of response the pathogenic T cells needed to
fit the data. The equation we used was S(t) = (α1H(t − 1825) +
α2H(t− 3650) + α3H(t− 5475) + α4H(t− 7300)) t3

K+t3 , where the
H represents the heaviside (step) function. From our data set we
were able to show an increase in the response of pathogenic T cells
after the number of islet autoantibodies increase. As seen in Fig. 7
we used α1 = 10, α2 = 50, α3 = 100, and α4 = 150.

specific autoimmune responses targeting pancreatic β-cells [17, 18, 66]. Although in
our armamentarium we have reliable autoantibody markers predicting with accu-
racy T1DM progression [17, 18], the negative results from the Diabetes Prevention
Trial-Type 1 Diabetes Study Group [79] and the European Nicotinamide Diabetes
Intervention Trial (ENDIT) Group [80] have for now clouded our vision that effec-
tive prevention is around the corner. One reason that could explain these negative
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results is that the mechanisms of the disease process prior to diabetes onset are
largely unknown.

In the past two decades tremendous progress has been made in the understanding
of the genetics, pathophysiology and prediction of the disease. However, there are
critical gaps that have yet to be filled. Prompted by an interest in trying to fill some
of these gaps, we modeled a few crucial aspects of the disease process. The model
that we present is an attempt to address complicated questions about the decline of
functioning β-cells, about the ratio of pathogenic T cells to regulatory T cells, and
describe the onset of the disease. As seen in Fig. 3 we found in low risk individuals
(less than three islet autoantibodies) that the person can have a 10−20% decline in
the number of functioning β-cells but still stay in a pre-diabetic state. In fact, we
can find declines up to 25% in these pre-diabetic individuals (results not shown).
During the pre-diabetic state we also can predict the ratio of pathogenic T cells
to regulatory T cells. We found a significant result when allowing dysfunctional
β-cells to return to the functioning class. When we assumed ε > 0 in (3) we found
Tb

R > 1 and when the third islet autoantibody appears that the person will have a
catastrophic decrease within 3 years of functioning β-cells without intervention. If
we do not allow for the return to the functioning class (seen in (3) with ε = 0) we
see the catastrophic decrease within one year, however, Tb

R < 1, which implies the
regulatory T cells still out number the pathogenic T cells. A result that is somewhat
non-intuitive when compared with Fig. 2 and shows the model’s ability to describe
dynamics that are not mainstream and may lead to important conjectures that must
be tested experimentally.

Another unique feature of our model is the term a1TbBf

k1+Tb
which allows for a dy-

namic change in functionality of β-cells over time and hence does not assume the
change to be constant. We tested the model’s ability to fit a generated random
set of data points showing the gradual decline of functional β-cells over a 30 year
period of time. The model allows us to focus on certain kinetics associated with the
disease and in Fig. 7 we showed how we can use this model to simulate the decay
of β-cells in relation to the islet autoantibodies in the pancreas. These results show
the potential of our model to make significant contributions to the understanding
of T1DM when applied to real clinical data sets.

Albeit evidence indicates that T1DM is the end result of an altered balance be-
tween pathogenic T cells and regulatory Tregs, the mechanisms determining this
imbalance have not yet been determined. One hypothesis is that the rate of T1DM
progression depends on the degree of epitope spreading, the efficiency of regulatory
responses and, possibly, the rate of regeneration of β-cells in response to immune-
mediated beta cell injury [81]. Treg cells prevent activation of autoreactive T cells
in the lymph nodes by limiting their access to dendritic cells and thus their expan-
sion and achievement of effector functions. These activities are largely mediated
by thymus-derived natural Tregs. When immune homeostasis is perturbed and in-
flammation erupts in the tissues, both natural Tregs and cytokine-induced adaptive
Tregs traffic to the site of inammation and inhibit the functions of fully differen-
tiated pathogenic effector T cells in the target tissue. If regulatory responses are
defective, as postulated in our model, we can find effector T cell responses that out-
number regulatory responses leading to impairment, destruction of β-cell mass and
disease onset. However, we can also find disease onset in patients whose regulatory
T cells still outnumber the pathogenic T cells, suggesting a more complex implicit
dynamic.
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Despite significant advances, a simple, scalable, non-toxic, and highly-effective
therapeutic strategy that can indefinitely lead to a recovery of β-cell function or
mass remains elusive. At least in theory β-cell mass and function could be rescued
by blocking the ability to generate pathogenic T cell responses to islet autoanti-
gen(s) thought to signal the beginning stages of the disease, and by either devel-
oping Treg-based cellular therapeutics or delete pathogenic T cells in an attempt
to suppress autoimmune responses. In vivo potential mechanisms of action with
the ultimate goal of safety and efficacy trials in pre-clinical and new-onset Type 1
diabetic patients may be valuable to help design future prevention trials for Type
1 diabetes. T1DM is a chronic autoimmune disease characterized by dysfunction
and ultimately destruction of β-cells in the islets of Langerhans. T1DM presents
a complex interaction between genetic, immunological, and environmental factors,
most of which have yet to be identified. Hence, we proposed in this paper the first
model of its kind to study this complex interaction. For instance, while it is known
that when the level of β-cell function is no longer sufficient to maintain metabolic
homeostasis, the individual is then dependent on endogenous insulin to sustain life,
it is not known why or how these β-cells lose function. Also, the fundamental
pathophysiology shared by all patients with T1DM is the progressive loss in the
ability of the β-cells of the pancreas to secrete insulin in response to glucose. This
progressive decline in beta cell function may be secondary to a defect of regulatory
T cells.

With this information at hand we have provided the groundwork for the next
stage of models to study T1DM. With real connections between experiment and
theory, we expect significant advances in our understanding of this disease.

7. Future studies and limitations. We have developed a dynamical systems
model that describes β-cells, immune cells, cytokines, glucose and insulin. Our
current work describes the relationship between functional β-cells and islet autoan-
tibodies. Our results suggest that the timing in which the β-cells switch over from
functional to dysfunctional plays a critical role in the model’s predictive ability. As
seen in (3) we assume the switch is modeled by a1TbBf

k1+Tb
+ εBnf . While we allow for

a dynamic change seen in the levels of Tb and Bf , however, it is assumed to occur
at a constant rate a1. We plan to study a switch that is time dependent such that
a1 = a(t).

We should note the limitations of the model at this point. Time series data
is scarce for T1DM and we hope that this work will generate interest from the
experimental community to collaborate. The model presented here is robust and
allows for a wide range of output and hence predictions. However, we have had
to estimate a fair number of parameters and we need to find better experimental
estimates for these parameters. This will then allow us to focus specifically on the
interaction between regulatory T cells and pathogenic T cells and hence lead to a
better understanding of the disease.

A second area of interest is focusing more on the regulatory T cells. We assumed
that regulatory T cells can switch over to a dysfunctional class and that these cells
become unable to control the pathogenic T cells. However, what causes this switch
is unknown. We want to expand the model to test specific hypotheses about the
causes for the change in regulatory T cells: Is it an imbalance in the regulatory T
cells? Is it caused by the migration of pathogenic T cells in the pancreas? or is it
a combination of both?
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Third, we plan to begin a mathematical study to evaluate the association between
infectious diseases and T1DM [82]. Evidence suggests that the recent increase in
the incidence of T1DM that cannot be explained by hereditary events leads one
to look for environmental causes, such as childhood infectious diseases [83]. Our
mathematical model will allow us to study this in detail.

Finally, it is now well established that autoantibodies are some of the most potent
risk determinants for Type 1 diabetes with relative risks exceeding 100 [2, 69, 84,
85]. The quintessential model for the application of autoantibody markers in the
prediction of a selective immune-mediated tissue damage, is Type 1 diabetes and
this concept can be theoretically extended to other chronic autoimmune diseases.
For example, several recent studies have suggested that using a combination of
autoantibody markers gives a higher predictive value for T1DM [17, 68, 69, 73, 74,
86, 87, 88] . Among the most characterized molecular targets of the T1DM-related
autoimmune, such as insulin, the protein tyrosine phosphatase-like molecule IA-2
(or ICA512), the enzyme glutamic acid decarboxylase (GAD, predominantly the 65
kDa isoform) and the recently discovered zinc transporter ZnT8 [89]. Pietropaolo’s
group has recently found that an antibody response against an epitope localized
within the extracellular domain of the neuroendocrine autoantigen IA-2 can predict
a rapid progression of T1DM in adolescents as well as young adults (unpublished
results). We are working to apply our model to study the pathogenesis of T1DM
in young adults. Our model can describe this early and rapid progression as seen
in Fig. 8 and with proper connections to experimental data should be able to help
in the understanding of this dynamic.
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Figure 8. With modifications in our function, S(t), we can de-
scribe early events in the onset of T1DM in young adults. Top
figure shows the gradual decline in functioning β-cells. The initial
decline could be due to the subjects genetic disposition to the dis-
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dG

dt
= R0 −G(Eg0 + SiI), (9)
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σBfG2
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− δII, (10)

dBf
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= (r1G− d0 − r2G

2)Bf −
a1TbBf

k1 + Tb
+ εBnf , (11)

dBnf
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=

a1TbBf

k1 + Tb
− γT d1Bnf − εBnf , (12)
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k4 + Tb
(1− Tb + R + Rb + Bf + Bnf

Kp
)− d3Tb − δTbR, (13)
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=
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Kp
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=
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k4 + R
− µI2, (17)
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Table 1. Summary of Variables
Variable Definition Units Values Reference

G Glucose mg V−1 (4− 6) [26]
I Insulin Unit (U) V−1 [26]

Bf Functioning β-cells Cells (mg) V−1 (0− 500) Estimated
Bnf Non-functioning β-cells Cells V−1 Bnf (0) = 0 Estimated
Tb Pathogenic T cells Cells/(mm3) Tb(0) = 0 Estimated
R Functioning Tregs Cells/(mm3) R(0) = 100 Estimated
I2 Cytokine IL-2 Proteins (IU)/(mm3) I2(0) = 100 Estimated
Rb Non-functioning Tregs Cells/(mm3) Rb(0) = 0 Estimated

Table 2. Summary of parameter values
Parameter Definition Units Values Reference

R0 glucose production [G] day−1 (500− 1000) [26]
Eg0 glucose effectiveness day−1 1.44 [26]
Si insulin sensitivity [I]−1 day−1 0.72 [26]
σ Insulin production U ([Bf ] day)−1 (20 - 50) [26]
α half-saturation constant [G]2 20000 [26]
σr regeneration rate of R day−1 (0-1) Estimated
δi death rates day−1 (0− 1) various
δ killing rate for Tb ([R] day)−1 (0-2) Estimated
r1 replication rate (mg [G] day)−1 (8− 9) ∗ 10−4 [26]
di death rates day−1 (0− 1) Various
r2 hyperglycemia rate (mg [G])−2 day−1 (0.001− 0.01) [26]

Table 3. Summary of parameter values
Parameter Definition Units Values Reference

a1 rate of switch between Bf and Bnf day−1 (0-5) Estimated
k1,2 Half-saturations constants Cells Various Estimated
k4 Half-saturation constant [I2] Various Estimated
ε rate of Bnf regaining function day−1 (0-1) Estimated

γT death factor unit-less (0-1)
γR death rate day−1 (0-5) Estimated
a3 production rate [Tb] day−1 (0-10) Estimated
a4 production rate day−1 (0-10) Estimated
Kp carrying capacity Cells (102, 105) Estimated
δ control rate ([R] day)−1 (0-1) Estimated
αi strength constant [Tb]day−1 (0-1000) Estimated
ρ1 rate of IL2 production day−1 (0-100) Estimated
µ death rate for IL-2 days−1 (0-1) Estimated
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