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Abstract. Harvesting and predation occur through contact processes in which
the rate at which the managed (prey) population can be found depends on the
population size, usually saturating at high densities. Many models incorpo-
rate saturation in this process without considering the effects of the particular
function used to describe it. We show that the sharpness with which this
saturation occurs has an important effect upon the resulting population dy-
namics, with bistability (sometimes involving a stable equilibrium and a stable
limit cycle) occurring for saturation that is any sharper than the commonly
used Michaelis-Menten (Holling type II) functional response. This sharpness
threshold occurs across a wide range of model types, from simple harvesting

to density-dependent and ratio-dependent predation.

1. Saturation in harvesting and predation. Harvesting and predation are both
processes in which members of a population are removed by an external agency,
sometimes for population management but more often for the benefit of the har-
vester, whether in the wild or in a managed environment. The two are distinguished
in mathematical modeling by whether or not the harvester is dependent upon the
yield (if the harvester or predator has other food sources, one develops a harvest-
ing model that tracks only the harvested population; otherwise the model depicts
a predator-prey system, in which the prey removal rate usually depends upon the
predator population.) There is a long and extensive history of mathematical studies
of both harvesting and predation, dating back most famously to Lotka and Volterra.

Both harvesting and predation normally take place through a so-called contact

process; that is, the harvester or predator must come into contact with the prey, and
the rate at which prey are removed increases with the frequency of these encoun-
ters, which increases in proportion to the size of each population. In predator-prey
models, this contact rate is called the predator functional response. The preda-
tor functional response is commonly taken to be linear in the predator population
density. Holling [11] famously classified the ways in which the contact rate may
change with prey population density into a handful of types, each of which deals
slightly differently with the fact that as prey become more plentiful, at some point
the predators are satiated and predation (or harvesting) no longer increases (much).
This corresponds to saturation in the contact process. In a Holling type I functional
response, the harvesting rate increases linearly in the prey density until it reaches
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the maximum level, at which point the increase cuts off abruptly, remaining con-
stant for greater prey densities. We can also refer to this as a switching model, as
the functional response, say g(x) = H min(x,A), switches over sharply from a linear
increase to a constant rate once it reaches the maximum level H at prey density
x = A. In a Holling type II functional response, generated by an assumption that
increased prey handling time slows the harvesting, the saturation is more gradual,
tapering off asymptotically as it approaches the maximum, typified by the smooth
Verhulst [24] function g(x) = Hx/(x + A) (also called Michaelis-Menten). Holling
type III functional responses, typified by the Hill functions g(x) = Hxn/(xn +An)
for n > 1, represent opportunistic predation or harvesting, in which predation is
very low below the threshold density A, above which it very rapidly approaches the
maximum. Finally, some ecologists have extended this classification to a type IV
functional response of the form g(x) = HX/(A0 +A1x+ x2) to explore alternative
assumptions about the predator attack rate. Thieme and Yang [23] considered a
more complex saturation term in a predator-prey complex formation model.

Population harvesting models typically make one of two assumptions in modeling
the rate at which individuals are removed from the population (e.g., [5]): One
possibility, called constant-effort harvesting (CEH), holds that the effort expended
in harvesting (the reciprocal of the average time until a given individual is removed)
is constant, with the resulting harvesting rate being the product of the effort and the
population size. Under this assumption, more individuals are removed per unit time
when the population is large than when it is small, since it is much easier to find
individuals for removal when the population is large. The alternative assumption,
called constant-yield harvesting (CYH), holds that a certain (constant) number of
individuals will be removed in unit time, regardless of population size or the effort
required to remove them. Under this assumption, it is demand (harvest yield),
rather than resources (harvest effort), that constrains the removal.

Each of these two assumptions may be accurate under different circumstances.
In practice, regardless of the source or purpose of the harvesting in question, both
resources and demand are likely to act as constraints; the question is which im-
poses the lower constraint. When the population is sufficiently large, the effort
required to remove an individual is low enough that effort is no longer the domi-
nant constraint, and the desired harvest yield can be met, leading to constant-yield
harvesting. When the population is small enough, however (perhaps as a result of
overharvesting), it becomes more difficult to find and remove a given individual, so
that at some point the effort required to harvest the desired yield rate is greater
than the maximum available effort, and the effort becomes the limiting constraint,
leading to constant-effort harvesting. Imposing only one of these two constraints
leads to unrealistic predictions in the corresponding model: the classical constant-
yield harvesting model [5, 6] predicts extinction of the harvested population in finite
time when overharvesting occurs, whereas in reality the desired harvesting yield is
unsustainable once the population level is low—instead, the increase in required ef-
fort will reduce the yield before the population reaches extinction, even if the intent
is to drive the population extinct. The classical constant-effort harvesting model
[5, 22], on the other hand, predicts unrealistically high yields when the population
is high (assuming that harvesting refers to physical removal of an individual).

We may form a more realistic model by incorporating both constraints, limit-
ing harvest yield to a target level and limiting harvest effort to some maximum
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available effort. Such a model must describe how the effective harvesting rate be-
haves in a neighborhood of the critical level where one constraint gives way to the
other. Two recent studies [15, 16], which considered both sharp (Holling type I) and
gradual (type II) saturation in rates such as this, found that the resulting model
behavior may differ qualitatively depending on the sharpness of the saturation. In
the following sections we introduce models in which a tuning parameter n controls
the sharpness of the saturation, and we observe the effects of this parameter upon
the harvested population, beginning with the simplest possible harvesting model
and continuing on to observe parallels in the behavior of systems with conventional
as well as ratio-dependent predation. We end with some conclusions about the
thresholds exhibited in the saturation sharpness n.

2. Saturation in the simplest harvesting model. We consider first the sim-
plest possible harvesting model, in which a single population x(t) with a natural
net growth rate of f(x) undergoes harvesting at a rate g(x) dependent on some
combination of the population size and external factors (modeled through constant
parameters). Hence dx/dt = f(x)−g(x). We can also consider this as predation by
predators with many other food sources. To give the population some robustness,
we assume its natural growth is logistic, f(x) = rx(1 − x/K), with intrinsic maxi-
mum per-capita growth rate r and carrying capacity K in the present environment.
We assume that the maximum desired harvesting yield (removal rate) is H and the
maximum available harvesting effort is Emax = H/A, with H as above and A the
critical population level, above which yield is the dominant constraint and below
which effort is the dominant constraint.

If we superimpose the two harvesting constraints, so that g(x) ≤ H and also
g(x) ≤ Emaxx, then we arrive at the sharp (Holling type I) saturation model

dx

dt
= rx

(

1 − x

K

)

−Hmin
( x

A
, 1
)

, (1)

in which g(x) = Hmin(x/A, 1). Here A acts as a switching point between two
submodels, the classical constant-yield harvesting (for x > A) and constant-effort
harvesting (for x < A) models, whose behaviors are already well known. The CYH
model has two equilibria,

x∗± =
1

2
K

(

1 ±
√

1 − 4H

rK

)

,

iff H ≤ rK/4, the larger of which is always locally asymptotically stable (henceforth
LAS) when it exists, and the smaller of which is always unstable. If H > rK/4,
there are no equilibria and the population goes extinct in finite time. Meanwhile,
the CEH model has a zero (extinction) equilibrium which always exists, and is LAS
iff H ≥ rA (i.e., Emax ≥ r), and a positive equilibrium K(1−H/rA) that exists iff
H < rA (Emax < r) and is always LAS when it exists.

Equilibria from the CEH model for which x∗ < A will appear in the switching
(sharp saturation) model, as will those from the CYH model for which x∗ > A. The
trivial equilibrium E0 = 0 from the CEH model is thus always part of the switching
model, while the positive equilibrium E1 = K

(

1 − H
rA

)

will appear iff it exists and

E1 < A, i.e., iff H < rA and H > rA
(

1 − A
K

)

. The CYH equilibria E2 = x∗+
and E3 = x∗−, which exist when H ≤ rK/4, will appear in the switching model iff
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x∗± > A, which can be rewritten as

±
√

1 − 4H

rK
> 2

A

K
− 1.

For E2 this can be simplified to K > 2A or H < rA
(

1 − A
K

)

. For E3 it can be

simplified toK > 2A andH > rA
(

1 − A
K

)

. Since this model is a single, autonomous
differential equation, whose solutions are monotone, we can extend local to global
stability where there is a single asymptotically stable equilibrium.

We can simplify these expressions and reduce the number of parameters from
four to two by defining

a =
A

K
, h =

H

rK/4
.

Here, a recalibrates the switching point in terms of the carrying capacity, while h
expresses the desired harvest yield in terms of the critical harvesting rate rK/4.
The equilibria of the switching model (1) are given in terms of a and K in Table 1,
with bifurcation diagrams in Figures 1 and 21.

As can be seen in the figures, there is a region of parameter space in which the
model is bistable: to the left of the inverted parabola, E2 competes with either E0

or E1, creating a hysteresis in which the same rate of harvesting can, in the former
case, either wipe the population out asymptotically or leave it at a relatively high
level, and in the latter case lead to either a low or high population level, with the
unstable E3 serving to separate the two basins of attraction in either case.

If, instead, we suppose that the harvesting rate saturates more smoothly as
the effort constraint gives way to the demand constraint (as x increases), then we
find no bistability between two positive equilibria. One common way to model a
smooth transition from CEH to CYH is to use a Verhulst (Holling Type II) function,
g(x) = Hx/(x+ a), leading to the harvesting model

dx

dt
= rx

(

1 − x

K

)

−H
x

x+A
. (2)

Note that Hx/(x + A) ≤ Hmin(x/A, 1) (with equality only at x = 0, and asymp-

totically as x → ∞). Equation (2) has the trivial equilibrium Ẽ0 (x∗ = 0) and, if

h < (a+ 1)2, the two equilibria Ẽ2 > Ẽ3, for which

x∗

K
=

1

2

(

1 − a±
√

(1 + a)2 − h
)

,

with a and h as above. Some algebra shows that Ẽ2 > 0 iff, in addition, a < 1
or h < 4a, while Ẽ3 > 0 iff a < 1 and 4a < h < (a + 1)2. Standard techniques

show that Ẽ0 is LAS when h > 4a, while Ẽ2 is always LAS when it exists, and Ẽ3

is always unstable. Again, local stability extends to global when there is a unique
asymptotically stable equilibrium. Bifurcation diagrams for (2) are given in Figures
3 and 4.

The qualitative difference between the behaviors of models (1) and (2) is that
sharp saturation creates a region with two positive attractors, where a sufficiently
large abrupt change in population size (a sudden influx or a natural disaster, for
instance) can have lasting effects by pulling the population into the basin of attrac-
tion of a different equilibrium. The fact that this particular bistability exists for the
sharp saturation model but not the smooth saturation model leads to the question

1 All figures in this article except the first part of Figure 10 were generated in Mathematica.
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Table 1. The equilibria of equation (1) and their existence and
stability conditions

Eqm. x∗/K
value

Exists in
submodel if

Appears in
switching model if

LAS iff

E0 0 always always h > 4a

E1 1 − h
4a h < 4a h > 4a(1 − a) exists

E2
1
2

(

1 +
√

1 − h
)

h ≤ 1 a < 1
2 or h < 4a(1 − a) exists

E3
1
2

(

1 −
√

1 − h
)

h ≤ 1 a < 1
2 and h > 4a(1 − a) never
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Figure 1. The a–
h parameter plane
divided into regions ac-
cording to the stability
of equilibria of model
(1). In the two regions
with bistability, E3

exists as an unstable
separatrix.
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of how sharp the saturation in harvesting must be to create it. In the next section
we consider precisely this question.

3. A threshold in saturation sharpness. As suggested in [15], one way to con-
sider a progression of increasingly sharper saturation is to use the monotone se-
quence

gn(x) = H

(

xn

xn +An

)1/n

,

of which the Verhulst function is the first (n = 1). (Note that gm(x) > gn(x) when
m > n (and x > 0).) This gives us a spectrum of models

dx

dt
= rx

(

1 − x

K

)

−H
x

(xn +An)1/n
(3)

that saturate ever more sharply as n increases, with the saturation approaching
Holling type I as n → ∞. That is, n forms an abstract sharpness measure; high
values of n imply that saturation occurs suddenly rather than gradually near the
saturation point.

We can see immediately that x∗ = 0 will always be an equilibrium of these
models, and can show that its being LAS is independent of n:

f ′(x) − g′n(x) = r

(

1 − 2x

K

)

−H
An

(xn +An)
(1/n)+1

= r



1 − 2
x

K
− h

4

an

((

x
K

)n
+ an

)(1/n)+1



 ,

with h and a as defined in the previous section. For x = 0, this is r(1 − h/4a),
which is negative iff h > 4a. Thus the zero equilibrium is LAS for h > 4a, which
was the case for both of the extremes studied in the previous section.

More generally, positive equilibria of (3) will be difficult to identify analytically,
given the remaining equilibrium condition of order 2n

Fn

( x

K

)

:=
(

1 − x

K

)n (( x

K

)n

+ an
)

−
(

h

4

)n

= 0, (4)

but we find that the behavior along the boundary of our parameter space is also
independent of n. For h = 0, we have the simple logistic model with globally
asymptotically stable (GAS) equilibrium x∗/K = 1, while for a = 0 the equation
(3) has the equilibria

x∗

K
=

1

2

(

1 ±
√

1 − h
)

when h ≤ 1. Since for a = 0 we have f ′(x) − g′n(x) = r(1 − 2x/K), which is
negative for x∗/K > 1/2, the greater of the two equilibria is always LAS, and the
lesser unstable, acting (as in the previous section) as a separatrix between the basins
(intervals) of attraction of the zero equilibrium and the greater positive equilibrium.

We can also observe the behavior along the line h = 4a, which is the only place
where 0 is a root of Fn. We calculate

Fn(0) = an −
(

h

4

)n

and Fn(1) = −
(

h

4

)n

< 0,

so that Fn(0) > 0 ⇔ h < 4a, in which case there are an odd number (at least 1)
of equilibria in (0,1), while above the line (h > 4a) there are an even number. In
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particular, for n > 1, since F ′
n(0) = −nan < 0, the number of equilibria in (0,1)

decreases by one as h increases past 4a. For n = 1 we have F ′
1(0) = 1 − a, so that

as h increases past 4a, the number decreases by one if a > 1 and increases by one
if a < 1, as can be seen in Figure 3.

If we now juxtapose the fact that for all n > 1, the number of equilibria in (0,1)
decreases by one as h increases past 4a, with the facts that close to the a axis
(h ≈ 0, and below the line) that number is 1, while close to the h axis (a ≈ 0, and
above the line) that number is 2 for h < 1, we must conclude that there is another
bifurcation curve, between either the a axis or the h axis and h = 4a, at which
two equilibria appear. In fact, numerical explorations show that it is between the
a axis and h = 4a, and that all models in the sequence (3) for which n > 1 behave
qualitatively like the limiting (n → ∞) case of sharp saturation (1). Figures 5 and
6 show the behavior for n = 2 and n = 1.5.

Since only the first of this sequence of models fails to exhibit a region of positive
bistability, the question occurs as to whether the case n = 1 is truly a threshold
case. To address this question, we can consider the index n to vary continuously
rather than discretely. Further investigation shows that indeed it is: models of type
(3) for which n is a noninteger greater than 1 behave just like those for which n
is an integer greater than 1 (see Figure 6 for the picture with n = 1.5). On the
other hand, models of this form for which 0 < n < 1 have unbounded regions of
survival-extinction bistability in the a-h plane separating the regions of globally
asymptotically stable (henceforth GAS) survival and globally stable [asymptotic]
extinction (see Figure 7 for the picture with n = 0.5). The case n = 1 therefore
bridges the gap, exhibiting only one type of bistability as do the cases with n < 1 but
with a bounded region of survival-extinction bistability like the cases with n > 1.
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Figure 7. The a–h parameter plane divided into regions by the
number of equilibria of model (3) with n = 0.5 (including the zero
equilibrium)

In [16] a model is considered for the sylvatic transmission of the parasite Try-

panosoma cruzi, which causes Chagas’ disease, between host species such as rac-
coons and opossums and vector species such as Triatoma sanguisuga. In this trans-
mission cycle, a predator-prey relationship is superimposed upon the host-vector
interaction, as the hosts are opportunistic feeders which will eat insects when avail-
able, and there is evidence which supports this as an additional route of infection.
Given the opportunistic nature of the predation, the host population is unaffected
by it, but the prey is effectively subject to harvesting, with a variable effort such
as that modeled by equations (1), (2), and (3). Because the infection’s basic re-
productive number R0 is an increasing function of vector density, the existence of
two locally stable vector densities (for sufficiently sharp saturation) presents the
possibility that R0 < 1 at the lower density but R0 > 1 at the higher density, so
that a one-time perturbation in vector density (such as that observed in Louisiana
following Hurricane Katrina in 2005) can actually determine whether or not the
infection cycle persists.

One may also ask whether there may be other saturation functions g(x) besides
the continuum described above. If we require only that g(0) = 0, g be nondecreas-
ing, and limx→∞ g(x) = H , then certainly there are such functions (for example,
the exponential functions gk(x) = H(1−e−kx)), but the property of interest, which
generates the additional bistability, is the sharpness with which the saturation oc-
curs. One measure of this sharpness is the curvature of the saturation function at
the saturation point. The curvature of a function g(x) at a particular point is given
by

κg(x) =
g′′(x)

[

1 + (g′(x))
2
]3/2

;
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for the monotone sequence gn(x) defined above, we calculate

κgn(x) = −H(n+ 1)Anxn−1 (xn +An)
1+ 2

n

[

H2A2n + (xn +An)
2+ 2

n

]3/2
.

At the saturation point x = A, this becomes

κn := κgn(A) = − H(n+ 1)2A41/n

[

H2 + 4A2 41/n
]3/2

.

We can observe that κn → 0 as n→ 0 while κn → ∞ as n→ ∞; thus the continuum
of models given in (3) represents all possible curvatures, and the threshold n = 1
established above is also representative.

To illustrate this principle, we consider one other spectrum of functions com-
monly used to describe saturation: the Hill functions

g̃n(x) = H
xn

xn +An
,

which describe Holling Type III (opportunistic) predation for n > 1. Rather than
preserving the constant-effort asymptote at low densities as the Holling Type II
functions do, the Hill functions preserve the saturation point A as a halfway point:
g̃n(A) = H/2. As n → 0, g̃n(x) approaches the constant function H/2; as n → ∞,
g̃n(x) approaches a step function which switches from 0 to H at x = A. The
Verhulst function again serves as the boundary case n = 1, between increasingly
concave functions (n < 1) and increasingly sigmoid functions (n > 1). This class
of models includes that proposed for the spruce budworm by Ludwig, Jones and
Holling [18], who used n = 2.

If we consider the resulting harvesting models, dx/dt = f(x)− g̃n(x), we see that
x∗ = 0 is always an equilibrium (as long as A > 0), which is unstable for n > 1,
LAS for h > 4a if n = 1, and LAS for all h if 0 < n < 1. Numerical investigation
shows that for 0 < n < 1 there are either 2 positive equilibria (one LAS, one
unstable) or none, so that for relatively low harvest rates there is an Allee effect,
while for relatively high harvest rates the population goes asymptotically extinct
(see Figure 8). For n > 1, numerical analysis also shows a unique, GAS positive
equilibrium for most combinations of a and h, but for some combinations near the
lower h-axis there are 3 positive equilibria, 2 of them LAS (see Figure 9). Once again
the Verhulst function n = 1 serves as a threshold for sharpness of saturation, even
though the sharpness toward which the Hill functions tend as n increases involves
an unlikely discontinuity from no harvesting to maximal harvesting at the switch
point A. The principle continues to hold that saturation sharper than the Verhulst
function causes an additional bistability not present with smoother saturation.

4. Saturation in predation. Predation can be seen as an extension of harvesting,
in the sense that predators effectively engage in prey harvesting. Predators that
have a wide range of prey or other food available may not be constrained in their
growth by the availability of one prey species, in which case the predator-prey sys-
tem decouples, with the predator population autonomous and the prey population
dependent on the end state of the predator population. In such a scenario, the prey
population can be modeled alone by a harvesting equation such as those considered
in the previous section. In this section, we will consider the effect of sharpness of
saturation on some classical [coupled] predator-prey models.
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Perhaps the most well known predator-prey system to incorporate saturation
in predation (the Lotka-Volterra equations do not) is the Rosenzweig-MacArthur
model [20] with logistic prey growth and Michaelis-Menten functional response
(a.k.a. Holling type II or Verhulst),

dx

dt
= rx

(

1 − x

K

)

− cy
x

x+A
,

dy

dt
= by

x

x+A
− dy,

(5)

where x is the size of the prey population and y the size of the predator population.
The first equation is an extension of the harvesting equation (2) with the maximum
harvest rate H = cy now given in terms of the predator population, with c the max-
imum predation rate per predator. The model assumes that predator population
growth comes only from predation on this one prey, with conversion efficiency b/c
and predator natural per capita mortality rate d. By assumption b > d, or else the
predators would always go extinct. In this model (and the others studied later in
this section) the saturation term implies that the prey are difficult to find at low
densities (x < A).

This model has been extensively studied (e.g., [5, 9, 10, 12, 20, 21]); its behavior
is summarized in Table 2, and depends on two parameters: the relative saturation
point a = A/K and the predator death-to-birth ratio δ = d/b < 1. It has three equi-
libria: a double-extinction equilibrium E0(0, 0), which is always unstable; a prey-
only equilibrium E1(K, 0), which is GAS for slow saturation (high a) and/or high

death-to-birth ratio δ; and a coexistence equilibrium E2

(

δA
1−δ ,

r
c

A
1−δ

(

1 − aδ
1−δ

))

,

which exists when E1 is unstable and is GAS for intermediate values of a and δ.
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For sufficiently low values of a and δ, there is a stable (attracting) limit cycle in
which the predator population lags behind the prey in its ups and downs. (See
Table 2 for specific criteria. Details of the analysis for this and other models in this
section are given in the Appendix.)

If we sharpen the saturation in the functional response (predation terms), we
obtain instead the following [Holling type I] model, originally studied by Dubois
and Closset [7]:

dx

dt
= rx

(

1 − x

K

)

− cymin
( x

A
, 1
)

,

dy

dt
= bymin

( x

A
, 1
)

− dy,

(6)

which we can analyze by considering the two component systems. For x < A, we
have dx/dt = rx(1 − x/K) − (c/A)xy, dy/dt = (b/A)xy − dy, which has again
three equilibria: the unstable E0; the prey-only E1, which is GAS if aδ > 1; and
a slightly different coexistence equilibrium Ẽ2

(

δA, r
cA(1 − aδ)

)

, which exists and
is GAS if aδ < 1. The LAS of the respective equilibria can be extended to GAS
by the Poincaré-Bendixson Theorem after a straightforward application of Dulac’s
Criterion (with coefficient function 1/xy) shows there are no closed trajectories in
the interior of the positive quadrant.

The second component model of (6), in which x > A, is given by dx/dt = rx(1−
x/K)−cy, dy/dt = by−dy, which has no stable equilibria (E0 and E1 both exist but
are unstable). Instead, the predator population grows exponentially without bound,
y(t) = y(0) exp((b−d)t), eventually causing the prey population to decrease without
bound. By itself, this system is ill-posed, in that the prey population becomes
negative in finite time, but as a component of the switching model, it simply means
that all trajectories will eventually be sent below the switching point x = A to
follow the dynamics of the first component model. The composite switching model
(6) then has the two equilibria E0 and E1 common to both components, and in

addition the equilibrium Ẽ2 if it falls below the switch point. Simple calculation
verifies that E1 falls below the switch point whenever it is LAS, and that Ẽ2 falls
below the switch point whenever it exists. Likewise it is straightforward to verify
that the two x-nullclines y = (rA/c)(1 − x/K) and y = (rx/c)(1 − x/K) coincide
at x = A, while the first component’s y-nullcline x = δA always falls below the
switch point and hence is incorporated into the model. The LAS of E1 (if aδ > 1)

or Ẽ2 (if aδ < 1) can be extended to GAS for a > 1 (A > K) by considering the
composite phase portrait and noting first that dx/dt < 0 above the switch point, so
all trajectories end up below the switch point, where they remain, and where the
local stability has already been extended to global.

For a < 1, however, numerical analysis indicates the presence of an additional
bifurcation threshold a = Q(δ) not seen in system (5), above which Ẽ2 is GAS,
but below which it is only locally stable, surrounded by an unstable limit cycle,
which is in turn surrounded by a stable limit cycle that is the attractor for the
state space outside the unstable limit cycle. For δ fixed, as a decreases (i.e., as prey

availability increases), Ẽ2 enters the state space through E1, becoming the global
attractor, and then in crossing this additional threshold, away from the equilibrium
there occurs a saddle-node bifurcation of limit cycles, in which the two limit cycles
(verified analytically in [19]) appear. As a continues to decrease, the inner, unstable
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Table 2. Summary of behavior for predator-prey models (5), (7)
and (6)

Attractor(s) Criterion for (5) Criterion for (7) Criterion for (6)
(smooth saturation) (intermediates) (sharp saturation)

Limit cycle
around E2

a <
1 − δ

1 + δ
a < δn−1 (1 − δn)1/n

1 + δn
—

E2 and

limit cycle
— δn−1 (1−δn)1/n

1+δn < a < Qn(δ) a < Q(δ)

E2 GAS
1 − δ

1 + δ
< a <

1 − δ

δ
Qn(δ) < a <

(1 − δn)1/n

δ

Q(δ) < a < 1/δ
(includes a > 1)

E1 GAS a >
1 − δ

δ
a >

(1 − δn)1/n

δ
aδ > 1

limit cycle approaches Ẽ2, leaving the outer, stable limit cycle as the attractor for
most initial conditions.

To examine the effects of a saturation that is intermediate in sharpness between
the two extremes (5) and (6), we can again consider the model (5) with Verhulst-
function saturation to be the first in a sequence of systems with increasingly sharp
saturation:

dx

dt
= rx

(

1 − x

K

)

− cy
x

(xn +An)
1/n

,

dy

dt
= by

x

(xn +An)
1/n

− dy.

(7)

System (7) has the three equilibria E0 (always unstable), E1 which is LAS iff (an +

1)δn > 1, and Ê2 given by
(

δA

(1 − δn)1/n
,

rA

c(1 − δn)1/n

(

1 − aδ

(1 − δn)1/n

))

,

which exists iff a < (1 − δn)1/n/δ and is LAS iff

δn−1 (1 − δn)1/n

1 + δn
< a <

(1 − δn)1/n

δ
.

(Note that all these expressions approach the corresponding ones for system (6)
as n → ∞.) By eliminating the possibility of unbounded solutions as before, we
can see that when no interior equilibrium exists E1 must in fact be GAS. However,
for n > 1 we again find the additional possibility, as in system (6), of bistability

between Ê2 and a limit cycle. That is, numerical analysis confirms the existence
for n > 1 of an additional threshold a = Qn(δ), above which Ê2 is GAS, and below

which Ê2 is surrounded by two limit cycles, respectively unstable and stable, as
before. (For n = 1, Q1(δ) coincides with the boundary a = (1 − δ)/(1 + δ), so that
the region does not exist. As n→ ∞, Qn(δ) → Q(δ), the boundary for system (6).)

In addition, there is the lower threshold given above, below which Ê2 is no longer
stable. Numerical analysis indicates that at this lower threshold there is a Hopf
bifurcation in which the unstable limit cycle merges with Ê2, leaving an unstable

Ê2 surrounded by the outer limit cycle, which is still stable. Taken altogether, this
phenomenon might be described as a “backward bifurcation of limit cycles” (see
Figure 10).
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Figure 10. A bifurcation diagram for system (7) showing the
three bifurcations in y∗ as a varies. Left, an idealized version;
right, the graph for r = b = 1, c = 1, K = 1, δ = 0.8, n = 10.
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Figure 11. Effects of prey availability a and predator relative
death rate δ on the behavior of the predator-prey system (7) for
sharpness n = 0.5, 1, 10, 1000. “Both” denotes the region of
bistability.

These results, as well as those for the limiting (sharp) saturation model, are also
summarized in Table 2. The effects of the parameters a and δ are illustrated in
Figure 11 for several values of the sharpness measure n. If we consider the entire
spectrum of sharpness in predation saturation, we find that sharp (n > 1) saturation
again causes bistability, in such a way that for some parameter values a sufficiently
large perturbation away from a stable coexistence state can lead to sustained, and
often large, oscillations (in fact, the smaller the perturbation needed, the larger the
resulting oscillations).

In addition, sharper saturation favors predator survival: for n > 1 the predators
survive unless prey are difficult to find even when plentiful (large a) and predators
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live short lives (δ ≈ 1), and there are no persistent oscillations unless prey are easy
to find even near extinction (a ≈ 0) and again predators are short-lived. However,
for smooth (0 < n ≤ 1) saturation, predators will die out unless prey are easy to
find even near extinction or the predators are exceptionally long-lived (δ ≈ 0).

Thus, while sharp saturation in prey harvesting for predators with multiple prey
types available tends to encourage bistability of the prey population (which may
not be in the predators’ interest), sharp saturation in predation for predators with
a single prey population tends to encourage bistability in both populations.

5. Ratio-dependent predation. Several authors (e.g., [1, 2, 14, 17]) have sug-
gested that predation tends to saturate based not on the absolute density of the
prey, but rather on the density of prey relative to predators, x/y, in cases where
predators must search for prey. This assumption of ratio-dependent predation yields
a saturation term of the form

x/y

x/y +m

for the number of prey caught per predator in unit time, wherem is a half-saturation
constant, the number of prey per predator at which predation reaches half its max-
imum rate. We can write this term more simply by multiplying top and bottom of
the expression by y:

x

x+my
.

In this form, known as the Michaelis-Menten-Holling type functional response [2,
14], we recognize the same saturation form we have been using, but with a half-
saturation constant A = my proportional to predator density. That is, the more
predators there are, the higher the prey density must be before the prey are easy
for predators to find (saturation).

It is important to note that the expression above which describes ratio-dependent
predation is not only undefined at the origin but does not even have a well-defined
limit there [14, 17]. The system can be defined piecewise as

(

dx

dt
,
dy

dt

)

=

{ (

rx
(

1 − x
K

)

− cy x
x+my , by

x
x+my − dy

)

, (x, y) 6= (0, 0);

(0, 0); (x, y) = (0, 0),

so that the derivatives are continuous at (0,0), since the per-capita predation term
is bounded by 1 [25], but the system’s behavior remains complex, including regions
in parameter space for which some trajectories near the origin approach it asymp-
totically while others approach a coexistence equilibrium or a limit cycle; [4, 13, 25]
gave complete descriptions of the resulting model’s global dynamics.

To consider the effect of the sharpness in this saturation term on the dynamics
of ratio-dependent predation, we pass directly to a model with variable sharpness
n as in previous sections, taking dx/dt = dy/dt = 0 for x = y = 0, and otherwise

dx

dt
= rx

(

1 − x

K

)

− cy
x

(xn + (my)n)
1/n

,

dy

dt
= by

x

(xn + (my)n)
1/n

− dy.

(8)

Although we will not be able to analyze this system’s behavior near the origin
using the Jacobian matrix, we will continue to refer to the asymptotic extinction of
both populations as E0. In addition, the system has two equilibria: the prey-only
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equilibrium E1 seen earlier, which is always an unstable saddle point for 0 < δ < 1
(allowing δ ≥ 1 here leads to predator extinction, with the prey sometimes surviving
and sometimes not, depending on the initial prey-to-predator ratio [4, 25]), and the
coexistence equilibrium Ě2(x

∗, y∗), where

x∗ =
[

1 − α (1 − δn)
1/n
]

K, y∗ =
(1 − δn)

1/n

mδ

[

1 − α (1 − δn)
1/n
]

K, α =
c

mr
,

and δ = d/b < 1 as before. Ě2 exists when α (1 − δn)
1/n

< 1, and is LAS when

α (1 − δn)
1/n

< min

(

1,
1 + βδ(1 − δn)

1 + δn

)

, with β = b/r.

Note that α is a dimensionless ratio of the maximum predation rate (per predator)
to the product of the half-saturation constant and the prey growth rate; it is a
measure of the relative intensity of predation.

The global behavior of system (8), like that of the well-studied case n = 1, can
be complicated, with the origin E0 acting as a saddle for α < 1 (and n ≥ 1), as

the global attractor for α > 1/ (1 − δn)1/n, and for intermediate values of α E0

may have an attracting (stable node) sector and a repelling sector. A behavior that
occurs only for n > 1, however, is a bistability between a LAS interior equilibrium
and a stable limit cycle, as occurs in systems (6) and (7), through a backward
bifurcation of limit cycles. We therefore see that the sharpness threshold remains
the same (n = 1) whether predation is prey-dependent or ratio-dependent. (Details
are again given in the Appendix, including explicit calculation of the first Lyapunov
value using the approach given in [3].)

As sharpness of saturation increases (n→ ∞), the sequence of models in system
(8) tends toward a piecewise linear limit in which the predation term is given by
ymin(x/my, 1), but we can simplify this and remove the singularity by rewriting it
as min(x,my)/m. This yields the switching model

dx

dt
= rx

(

1 − x

K

)

− c

m
min(x,my),

dy

dt
=

b

m
min(x,my) − dy.

(9)

This system has three equilibria: the double-extinction equilibrium E0, which is
globally stable when α = c/mr > 1; the prey-only equilibrium E1, which is always
an unstable saddle; and the coexistence equilibrium Ē2((1 − α)K, (1 − α)K/mδ),
which exists iff α < 1 and is globally stable when it exists. (See Appendix for
analysis.)

We see, therefore, that under sharp saturation the prey (and hence the preda-
tors) survive only when α < 1: that is, when the prey’s natural reproduction rate
outpaces the maximum consumption rate of prey per predator measured in half-
saturation units. It is significant to note that the complex behavior exhibited by
system (8) is absent under completely sharp saturation, as both the existence of a
stable sector for E0 (observed for n ≥ 1) and the equilibrium/limit cycle bistability
(observed for n > 1) occur for intermediate intervals in α whose endpoints approach
1 asymptotically as n → ∞, thus disappearing in the limiting case (9). However,
the Holling type II saturation n = 1 again proves to be a threshold beyond which
bistability can occur.
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6. Discussion. Since mathematical models can at best approximate the behav-
ior of real biological systems, and the specific functions used to represent observed
characteristics are often chosen for mathematical simplicity and tractability rather
than for close fits to detailed biological data, it is desirable to draw conclusions with
robust support: that is, conclusions that follow from general qualitative assump-
tions about how populations develop, and hold true across a spectrum of specific
models obeying those assumptions. Saturation in the contact processes that drive
population management and predation is observed in real biological systems, but
there is a continuum of sharpness with which that saturation can set in. The simple
models explored in this paper all point to a sharpness threshold beyond which a
common phenomenon occurs: bistability, either between two stable equilibria or
between a stable equilibrium and a stable oscillation.

Historically, saturation in predation and harvesting has been considered to be ei-
ther completely sharp (Holling type I) or smooth as typified by a Michaelis-Menten
(Holling type II) functional response. The investigation in this paper consistently
suggests that the degree of sharpness exhibited by the latter response is that thresh-
old, and that any saturation even a little sharper than that can exhibit this bista-
bility which could have serious consequences for the population(s) involved: Short-
term fluctuations in the harvested (prey) population may result in sustained density
changes or oscillations, which may also affect any predators involved which are de-
pendent upon the prey. It may therefore be important to consider such “sharper”
models, since the precise degree of sharpness with which these processes saturate
(measured here by the parameter n) is not well known in general, and the sharper
models—with sudden-onset, rather than gradual, saturation—allow the prediction
of additional behaviors.

There remains work to do in following up these conclusions, including a more
complete analysis of the conditions under which system (8) exhibits each of its pos-
sible behaviors, as well as the effects of sharpness of saturation in other harvesting
and predation models. Also, some recent studies (e.g., [9, 16]) juxtapose infection
in predator or prey species (or both) with the predation relationship, and even the
cursory consideration mentioned in Section 3 indicates that the bistability caused
by sharp saturation in predation can affect a disease’s ability to invade. Finally, we
recall that the study on saturation in contact processes that preceded the present
work also suggests that other contact processes, such as infection itself, may be
affected in similar ways [15].
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the graphical method of Rosenzweig and MacArthur [8, 20] by observing that the
predator nullcline is vertical there, while the prey nullcline (a quadratic with roots
at x = −A, x = K) is decreasing to the right of the vertex x = K−A

2 , so that E2

is LAS iff δA/(1 − δ) falls to the right of K−A
2 (this condition can be simplified as

given above).
To attend to global behavior issues, we first rule out unbounded solutions. We

observe that d
dt (bx + cy) = brx(1 − x/K) − cdy < 0 ⇔ y > br

cd x(1 − x/K) and

then find a constant k such that bx + cy > k ⇒ y > br
cd x(1 − x/K). We do this

by matching dy/dx = −b/c = br
cd (1 − 2x/K), which yields x = K

2

(

1 + d
r

)

, making

y = K
4

br
cd

(

1 − d2

r2

)

. Thus

bx+ cy = k =
K

4

br

d

(

1 +
d

r

)2

.

Hence all solutions of (5) which begin with bx + cy > k eventually pass below
the line bx + cy = k, and any solutions for which bx + cy < k remain inside the
triangle {x ≥ 0, y ≥ 0, bx + cy < k} thereafter. Now, for sufficiently high a and
δ ((a + 1)δ > 1) E2 does not exist, so there are no interior equilibria, and hence
(by Poincaré-Bendixson) no limit cycles. Thus the LAS E1 is in fact GAS. For
sufficiently low a and δ (a < (1 − δ)/(1 + δ)) there are no stable equilibria, and
thus (by Poincaré-Bendixson) all solutions must approach a periodic orbit. For
intermediate values of a and δ, the LAS E2 is in fact GAS (the proof, which applies

Dulac’s Criterion with a coefficient function of
(

x
x+A

)M

yN for suitable values of

M and N , is given in [12], Lemma 4.4 and [10], Theorem 4.4.3).

System (6). For the first (x < A) component of (6), equilibrium conditions re-
quire x∗ = 0 or y∗ = (Ar/c)(1 − x∗/K), and y∗ = 0 or x∗ = δA. The resulting

combinations yield E0, E1, and Ẽ2 as given in the main text. The corresponding
Jacobian matrix is

J =

[

r
(

1 − 2 x∗

K

)

− cy∗

A − cx∗

A
by∗

A
bx∗

A − d

]

,

from which we calculate J(E0) = diag[r,−d],

J(E1) =

[

−r − c
a

0 b
(

1
a − δ

)

]

, and J(Ẽ2) =

[

−raδ −cδ
br
c (1 − aδ) 0

]

.

Thus E0 is unstable, E1 is LAS iff aδ > 1, and Ẽ2 is always LAS when it exists,
since trJ(Ẽ2) = −raδ < 0, and detJ(Ẽ2) = rd(1 − aδ) > 0 when aδ < 1.

The second (x > A) component of the switching model has equilibrium conditions
y∗ = (r/c)x∗(1 − x∗/K) and y∗ = 0, yielding only the equilibria E0 and E1, both
of which can been seen to be unstable from the Jacobian matrix,

J =

[

r
(

1 − 2 x∗

K

)

−c
0 b− d

]

,

since the second eigenvalue b− d > 0 by assumption.
The composite model includes the first component’s sometimes-stable E1, rather

than the second component’s never-stable E1, when its x∗ value falls below the
switch point, K < A (i.e., a > 1). But this criterion is implied by the LAS criterion
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aδ > 1 since δ < 1, so whenever aδ > 1 it is the LAS E1 that appears in the
composite model (6).

Global behavior of each component, as well as of the composite model, is ad-
dressed in the main text.

System (7). Equilibrium conditions for (7) require x∗ = 0 or y∗ = (r/c)(1 −
x∗/K)(x∗n +An)1/n, and y∗ = 0 or x∗ = δA/(1 − δn)1/n. Combinations yield E0,

E1 and Ê2 as in the main text; LAS analysis uses the Jacobian matrix

J =





r
(

1 − 2 x∗

K

)

− cy∗An

(x∗n+An)1+
1
n

− cx∗

(x∗n+An)1/n

by∗An

(x∗n+An)1+
1
n

b
(

x∗

(x∗n+An)1/n − δ
)



 ,

from which we calculate

J(E0) =

[

r 0
0 −d

]

, J(E1) =

[ −r − c
(1+an)1/n

0 b
(

1
(1+an)1/n − δ

)

]

,

and

J(Ê2) =





rδ
[

δn−1 − a 1+δn

(1−δn)1/n

]

−cδ
br
c (1 − δn)

(

1 − aδ
(1−δn)1/n

)

0



 .

Thus by inspection E0 is unstable, and E1 is LAS iff δ > 1/(1 + an)1/n; i.e.,

a > (1 − δn)1/n/δ. The conditions for Ê2 to be LAS are

trJ(Ê2) = rδ

[

δn−1 − a
1 + δn

(1 − δn)1/n

]

< 0 ⇔ a > δn−1 (1 − δn)1/n

1 + δn
and

detJ(Ê2) = rd(1 − δn)

(

1 − aδ

(1 − δn)1/n

)

> 0 ⇔ a <
(1 − δn)1/n

δ
.

System (8). The equilibrium conditions are

(x− nullclines)
dx

dt
= 0 ⇔ x = 0 or r

(

1 − x

K

)

=
cy

[xn + (my)n]
1/n

,

(y − nullclines)
dy

dt
= 0 ⇔ y = 0 or

bx

[xn + (my)n]
1/n

= d.

To the double-extinction equilibrium E0(0, 0) we add the two equilibria E1(K, 0)
and Ě2(x

∗, y∗), where

x∗ =
[

1 − α (1 − δn)
1/n
]

K, y∗ =
(1 − δn)

1/n

mδ

[

1 − α (1 − δn)
1/n
]

K,

α = c/mr, and δ = d/b < 1. Note Ě2 exists when α < 1/ (1 − δn)
1/n

.
The Jacobian matrix for the system is

J =





r
(

1 − 2 x
K

)

− cy (my)n

[xn+(my)n]1+
1
n

−cx xn

[xn+(my)n]1+
1
n

by (my)n

[xn+(my)n]1+
1
n

bx xn

[xn+(my)n]1+
1
n
− d



 .

Deferring for the moment the question of behavior near E0, we find

J(E1) =

[

−r −c
0 b− d

]

,
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Figure 12. Phase portraits for system (8): from left to right,

(a) α ≤ 1, (b) 1 < α < 1/ (1 − δn)
1/n

, (c) α > 1/ (1 − δn)
1/n

.
x-nullclines occur at x = 0 (y > 0) and my = x(1 −
x/K)/ [αn − (1 − x/K)n]

1/n
; y-nullclines occur at y = 0 (x > 0)

and my = x(1 − δn)1/n/δ. Note that in any case x is bounded by
K, so y is bounded by K(1 − δn)1/n/mδ.

making E1 an [unstable] saddle (since b > d by assumption), and

J(Ě2) =





r
(

1 − 2 x∗

K

)

− cy∗

[x∗n+(my∗)n]1/n (1 − ∆) − c
b

bx∗

[x∗n+(my∗)n]1/n ∆
b
c

cy∗

[x∗n+(my∗)n]1/n (1 − ∆) bx∗

[x∗n+(my∗)n]1/n ∆ − d





where ∆ = x∗n/(x∗n + (my∗)n). Using the equilibrium conditions, we can simplify
this to

J(Ě2) =

[

r
(

1 − 2 x∗

K

)

− r
(

1 − x
K

)

(1 − δn) − c
b d δ

n

b
c r
(

1 − x
K

)

(1 − δn) d δn − d

]

=

[

r
[

α (1 − δn)
1/n

(1 + δn) − 1
]

−cδn+1

b
m (1 − δn)1+

1
n −bδ(1 − δn)

]

.

The conditions for Ě2 to be LAS are thus

trJ(Ě2) = r
[

α (1 − δn)1/n(1 + δn) − 1
]

−bδ(1−δn) < 0 ⇔ α<
1 + βδ(1 − δn)

(1 + δn) (1 − δn)
1/n

(10)

and detJ(Ě2) = brδ(1 − δn)
(

1 − α (1 − δn)
1/n
)

= brδ(1 − δn)
x∗

K
> 0.

(As in the main text, β = b/r.) The latter condition is always satisfied when Ě2

exists, so the additional criterion comes from the trace.
We now consider the system’s behavior near E0 using a phase portrait analysis,

with three cases in α illustrated in Figure 12. (Note that in each case, solutions
approach E0 along the y-axis but go away from it, and toward E1, along the x-axis.)
For α < 1, n ≥ 1 (Figure 12(a)), E0 acts like a saddle point and is not an attractor.
We can see this by the following argument (cf. Theorem 2.2 in [17]): Consider the
rescaled system

u′ = u(1 − u) − αv
u

(un + vn)
1/n

, v′ = βv

[

u

(un + vn)
1/n

− δ

]

, (11)

where u = x/K, v = my/K, and time has been rescaled to eliminate r. u′ >
u[(1 − α) − u], so u(t) > φ(t) where φ′ = φ[(1 − α) − φ] and φ(0) = u(0). Thus
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lim inft→∞ u(t) ≥ limt→∞ φ(t) = 1 − α > 0. Therefore for some time T , u(t) >
(1 − α)/2 for all t > T . Then, for t > T ,

v′ > βv





(

1−α
2

)

((

1−α
2

)n
+ vn

)1/n
− δ



 ≥ βv

[

(

1−α
2

)

(

1−α
2

)

+ v
− δ

]

,

with the second inequality following from the fact that u/(un + vn)1/n is increasing
in n (for fixed u, v > 0). Then v(t) > ψ(t) where

ψ′ = βψ

[

(

1−α
2

)

(

1−α
2

)

+ ψ
− δ

]

, ψ(0) = v(0),

and lim inft→∞ v(t) ≥ limt→∞ ψ(t) = 1−δ
δ

1−α
2 > 0. Hence system (8) is permanent.

For α > 1/ (1 − δn)
1/n

(Figure 12(c)), E0 is the global attractor, as can be
seen by an argument identical to that in Theorem 2.6 of [17] and that given in
more detail for system (9) in the next section, namely an inevitable, irreversible
counterclockwise progression from one region of the phase portrait to the next.

For 1 < α < 1/ (1 − δn)1/n (Figure 12(b)), there is the possibility for E0 to have
an attracting (stable node) sector when n ≥ 1, in the case that α > 1 + βδ; this
can be seen by adapting the proofs of Theorems 2.3 and 2.4 in [17] (given there for
n = 1) in a similar way to that done above for α < 1.

Finally, with regard to global behavior when E0 is not the sole attractor (i.e.,
when Ě2 exists), we can verify the equilibrium/limit cycle bistability by computing
the first Lyapunov value [3] at the Hopf bifurcation, which occurs when trJ(Ě2) = 0.
This requires translating Ě2 to the origin and Taylor-expanding to obtain terms up
to third-order: if x′ = f(x, y), y′ = g(x, y), then we write x = x∗+ x̃, y = y∗+ ỹ and
expand, writing the Taylor series (centered at (x, y) = (x∗, y∗), i.e., (x̃, ỹ) = (0, 0)):

x̃′ = x′ = f(x∗ + x̃, y∗ + ỹ) =a10x̃+ a01ỹ + a20x̃
2 + a11x̃ỹ + a02ỹ

2

+ a30x̃
3 + a21x̃

2ỹ + a12x̃ỹ
2 + a03ỹ

3 + O(4),

ỹ′ = y′ = g(x∗ + x̃, y∗ + ỹ) =b10x̃+ b01ỹ + b20x̃
2 + b11x̃ỹ + b02ỹ

2

+ b30x̃
3 + b21x̃

2ỹ + b12x̃ỹ
2 + b03ỹ

3 + O(4).

Then we calculate the first Lyapunov value L1 as follows:

L1 = − π

4a01ω3

{[

a10b10(a
2
11 + a11b02 + a02b11) + a10a01(b

2
11 + b11a20 + b20a11)

+ b210(a11a02 + 2a02b02) − a2
01(b11b20 + 2a20b20) − 2a10b10(b

2
02 − a20a02)

−2a10a01(a
2
20 − b20b02) + (a01b10 − 2a2

10)(b11b02 − a11a20)
]

−(a2
10 + a01b10) [3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − b21a01)]

}

where ω =
√

−(a2
10 + a01b10), which is guaranteed to be real since ω2 is the de-

terminant of the Jacobian matrix, which is positive at a Hopf bifurcation. (Those
readers wondering why b01 does not appear in the above expressions are reminded
that the Hopf bifurcation appears when the trace of the Jacobian matrix vanishes
(a10 + b01 = 0), and hence b01 has been everywhere replaced by −a10.) If, at the
Hopf bifurcation, L1 < 0, then the bifurcation is supercritical, with a stable equi-
librium giving way to a stable limit cycle surrounding an unstable equilibrium. If
instead L1 > 0, then the bifurcation is subcritical, with an unstable limit cycle
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surrounding a stable equilibrium giving way to an unstable equilibrium. (If L1 = 0
there is a so-called Bautin bifurcation.)

We apply this approach to the rescaled system (11) with u∗ = 1−α (1 − δn)
1/n

,

v∗ = u∗ (1 − δn)
1/n

/δ and obtain the following coefficients:

a10 = 1 − 2u∗ − αpn+1, a01 = −αδn+1, b10 = βpn+1, b01 = −βδ(1 − δn),

a20 = −1 +
n+ 1

2
αδnpn+1/u∗, a02 =

n+ 1

2
αδn+2pn−1/u∗,

a30 = −n+ 1

6
αδnpn+1[(n+ 2)δn − (n− 1)pn]/u∗2,

a21 =
n+ 1

2
αδn+1pn[(n+ 1)δn − npn]/u∗2,

a12 = −n+ 1

2
αδn+2pn−1[nδn − (n+ 1)pn]/u∗2,

a03 =
n+ 1

6
αδn+3pn−2[(n− 1)δn − (n+ 2)pn]/u∗2,

a11 = −(n+ 1)αδn+1pn/u∗, b11 = (n+ 1)βδn+1pn/u∗,

b20 = −n+ 1

2
βδnpn+1/u∗, b02 = −n+ 1

2
βδn+2pn−1/u∗,

b30 =
n+ 1

6
βδnpn+1[(n+ 2)δn − (n− 1)pn]/u∗2,

b21 = −n+ 1

2
βδn+1pn[(n+ 1)δn − npn]/u∗2,

b12 =
n+ 1

2
βδn+2pn−1[nδn − (n+ 1)pn]/u∗2,

b03 = −n+ 1

6
βδn+3pn−2[(n− 1)δn − (n+ 2)pn]/u∗2,

where p = (1 − δn)
1/n

. We then use the relation (10) for trJ(Ě2) = 0 to set one of
the remaining parameter values, say

β =
α(1 − δn)1/n(1 + δn) − 1

δ(1 − δn)
,

and finally substitute values for n, α and δ to compute L1.
We find, for instance, that for n = 2, δ = 0.4 and α = 1, L1 = 3.94565 > 0,

indicating a subcritical Hopf bifurcation, with an unstable limit cycle surrounding
the LAS Ě2 for β above the bifurcation point. Since for β below the bifurcation point
there are no stable equilibria but solutions remain bounded, by Poincaré-Bendixson
there must be a stable limit cycle around Ě2. Since this stable limit cycle is not
involved in the Hopf bifurcation, it must exist for β above the bifurcation point as
well, surrounding the unstable limit cycle. Since for sufficiently high β Ě2 is GAS,
there must come a point at which the two limit cycles coalesce and disappear, in
a saddle-node bifurcation of limit cycles. We find this same behavior for a range
of values of n, δ and α, with n > 1, δ sufficiently small, and α sufficiently close to
1 for the Hopf bifurcation to occur. Figure 13 shows the (α, δ) plane divided into
regions by the behavior around Ě2 for n = 2.
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Figure 13. The (α, δ) parameter plane divided into regions by the
behavior of system (8) around Ě2 for n = 2. “Super” denotes the
region where the Hopf bifurcation is supercritical; “sub” denotes
the region where it is subcritical (and hence bistability occurs).
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Figure 14. Phase portraits for system (9): (a) left, α < 1; (b)
right, α > 1. Nullclines are dotted, and the switch line is dashed;
arrows indicate vector field directions. Region numbers correspond
to explanations in the main text.

System (9). On the side of the switch where x < my, the x-nullclines are x = 0 and
x/K = 1−α, and the unique y-nullcline is the line x = δmy (note that since δ < 1
this line always falls on the x < my side of the switch), producing the equilibria E0

and (when α < 1) Ē2. A straightforward calculation of the Jacobian matrix in each
case reveals that E0 is LAS iff α > 1, while Ē2 is LAS iff α < 1.

On the side of the switch where x > my, the x-nullcline is the inverted parabola
y = r

c x
(

1 − x
K

)

, and the y-nullcline is just y = 0, producing the equilibria E0 and
E1. The Jacobian matrix evaluated at each equilibrium shows them both to be
unstable.

To evaluate the switching behavior, we note that E1 and Ē2 each fall on the
correct respective sides of the switch to manifest in the composite model, while
E0 falls squarely on the switching line itself. E0 is unstable for x > my, but for
α > 1 is LAS above the switching line, where x < my. The global behavior can be
determined from the phase portraits, shown in Figure 14. It is straightforward to
verify that solutions cannot grow unbounded in either case: lim supx is bounded
by K, and consequently lim sup y is bounded by K/mδ.

When α > 1, we can show the global asymptotic stability of E0 in the switching
model by observing that solutions beginning below the parabola y = r

c x
(

1 − x
K

)
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(region 1 in Figure 14(b)) eventually cross above it (to region 2) and do not return
(since dx/dt = 0, dy/dt > 0 on it), that solutions beginning below the line x = δmy
(region 2) eventually cross above it (to region 3) and do not return (since dx/dt < 0,
dy/dt > 0 in the region just below it but dx/dt < 0, dy/dt = 0 on it), and that
solutions above this line (region 3) move continually downward without crossing
below it, thus inevitably approaching E0.

When α < 1, we can likewise show Ē2 to be GAS in (9) by observing an inevitable
progression of any solution in region 1 of Figure 14(a) either toward Ē2 or into region
2, of any solution in region 2 either toward Ē2 or into region 3, of any solution in
region 3 either toward Ē2 or into region 4, and finally of any solution in region 4
toward Ē2.

Received February 24, 2009; Accepted May 28, 2009.

E-mail address: kribs@uta.edu


	1. Saturation in harvesting and predation
	2. Saturation in the simplest harvesting model
	3. A threshold in saturation sharpness
	4. Saturation in predation
	5. Ratio-dependent predation
	6. Discussion
	REFERENCES
	Appendix. Analysis for predation models
	System (5)
	System (6)
	System (7)
	System (8)
	System (9)



