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08193 Bellaterra, Barcelona, Spain

(Communicated by Azmy S. Ackleh)

Abstract. We consider a selection mutation predator-prey model for the dis-
tribution of individuals with respect to an evolutionary trait. Local stability
of the equilibria of this model is studied using the linearized stability principle
and taking advantage of the (assumed) asymptotic stability of the equilibria of

the resident population adopting an evolutionarily stable strategy.

1. Introduction. The evolutionary process of certain evolutionary traits can be
modelled by selection mutation equations for the distribution of individuals with
respect to the trait that can be either discrete (see, for instance [2]) or continuous
(see for instance [9], [5], [21]).

These evolutionary traits can be either genotypical or phenotypical. In the con-
tinuous framework, the use of selection mutation equations in population genetics
can be traced back to the works of Crow and Kimura ([14], [20]) for the frequency
distribution of a continuum of alleles in order to explain the maintenance of vari-
ability due to the balance effect of selection and mutation. In [14] mutation was
modelled by a convolution operator whereas in [20] it was approximated by a diffu-
sion operator. Later on, Bürger and Bomze ([5]) have generalized Kimura’s model
considering general integral operators. They show, under certain hypotheses, ex-
istence and uniqueness of stationary distributions in L1 and, in some other cases,
existence of equilibrium solutions that are Borel measures.

Selection mutation equations have also been used to model evolution of (pure)
continuous phenotypic traits. The main ingredient for these models is a density of
individuals with respect to some phenotypical evolutionary trait (the more natural
formulation of these equations in the space of measures is still being developed, see
[1], [4], [13] for a formulation in the space of measures of pure selection models).
Selection appears in the equations as some nonlinear terms that model the com-
petition among individuals. Mutation is modelled either by means of a Laplacian
operator ([9], [10], [21], [18]) or by an integral operator with a mutation kernel which
is often linear ([6], [7], [11]) although it can also be nonlinear ([16])(see also [24]
where selection mutation equations considering both ways of modelling mutation
are used to analyse experimental studies of in vitro viral evolution). Of particular
interest for many of these works has been the study of the equilibria of these models

2000 Mathematics Subject Classification. Primary: 47A10, 92D15; Secondary: 35B35.
Key words and phrases. Asymptotic stability, Weinstein Aronszajn determinant, evolutionarily

stable strategy.
The author is supported by MTM2008-06349-C03-03.

701

http://dx.doi.org/10.3934/mbe.2009.6.701


702 SÍLVIA CUADRADO

for the density of individuals with respect to a phenotypic evolutionary trait and
their relation with the evolutionarily stable strategies (ESS) of the underlying eco-
logical models (that is, the models that we obtain when there is no mutation and all
individuals have the same value of the evolutionary variable). The evolutionarily
stable strategies are the stationary values of the evolutionary process and it is a
concept that was first introduced by Maynard Smith and Price in the context of
game theory (see [22]). In a few words, a strategy x (value of a phenotypic charac-
teristic) is an ESS if a clonal population of individuals with strategy x cannot be
invaded by another small clonal population of individuals with a different strategy
y.

An example of a selection mutation equation for a phenotypical characteristic
is the following predator-prey model ([15]) for the distribution of individuals with
respect to the index of activity of the predator during daytime x ∈ [0, 1]







































f ′(t) =
(

a − µf(t) −
∫ 1

0

β(x)u(x, t)

1 + β(x)hf(t)
dx
)

f(t),

∂u(x, t)

∂t
= (1 − ε)

αβ(x)f(t)u(x, t)

1 + β(x)hf(t)
+ ε

∫ 1

0
γ(x, y)

αβ(y)f(t)u(y, t)

1 + β(y)hf(t)
dy

−d(x)u(x, t),

(1)

where f(t) denotes the number of individuals of the prey population at time t and
u(x, t) denotes the density of predators with respect to the trait at time t (see
Section 2 for a full description of the model).

In [15] we proved, under some hypotheses, existence of a family of equilibria
(fε, uε) of System (1) that tend to concentrate, when the probability of mutation
tends to zero at a certain value of the evolutionary trait that turns out to be the
(unique) evolutionarily stable strategy of the finite dimensional predator-prey model
obtained when we consider in (1) that there is no mutation and all individuals have
the same value of the evolutionary variable. The present work is devoted to study
local stability of these equilibria.

More in general, selection mutation equations for the distribution of individuals
with respect to a phenotypical trait give rise (in some cases) to equations for den-
sities on the trait parameter space Ω. That is, equations for Rn valued densities in
the state space L1(Ω) which can be written in the form

~zt = Aε(F (~z))~z (2)

where Aε(E) is a (generally unbounded) linear operator, ε denotes the mutation rate
and F is a function from the state space to R

m which summarizes the environmental
interaction variables (like predator density or food concentration for instance), in
such a way that, given F (~z), the population problem becomes linear. If we assume
for these equations that there is no mutation and all individuals have the same value
of the evolutionary variable, we can consider the n-dimensional ordinary differential
equations model

~vt = A0(x, F (~vδx))~v (3)

being the relationship between the operators Aε(E) and A0(x, E) that Aε(E) tends
(formally) as ε goes to 0 to a matrix multiplication operator generated by the matrix
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A0(x, E). In particular, for the predator-prey model (1) we have

Aε(E) =















a − µE −
∫ 1

0
β(x)E

(1+β(x)hE) · dx

0 −d(x) + (1 − ε)α β(x)E
1+β(x)hE

+ε
∫ 1

0 αγ(x, y) β(y)E
1+β(y)hE

· dy















and

A0(x, E) =







a − µE − β(x)E
(1+β(x)hE)

0 −d(x) + α β(x)E
1+β(x)hE






.

Assuming the existence of an (hyperbolic) asymptotically stable nontrivial steady
state ~vx of (3) for some values of the parameter x, one of these values x̂ is called an
evolutionarily stable strategy (ESS) if the linear equation ~wt = A0(x, F (~vx̂δx̂))~w, is
hyperbolically asymptotically stable for any value x 6= x̂ (see [23]).

A nontrivial stationary solution ~zε of equation (2) is a positive eigenvector of
eigenvalue 0 of the linear operator Aε(F (~zε)). That is, the problem of finding
non trivial stationary solutions of these equations is related to infinite dimensional
versions of the Perron Frobenius theorem.

In [8] we studied local stability (for ε close to zero) of equilibria ~zε of selection
mutation equations of the form (2) taking advantage of the asymptotic stability of
the corresponding ESS “ecological” equilibrium (that is, the equilibrium of (3) for
the value x̂ of ESS of the parameter). The main feature for this kind of equations
is that, in general, when the environment, F (~z), is finite dimensional, the linearized
operator at the stationary solution is a degenerate perturbation of an operator with
spectral bound equal to zero. Because of this, the computation of the spectrum
of the linearization reduces to the computation of the zeroes of a characteristic
equation given by the so called Weinstein-Aronszajn determinant (see [19] for a
definition of this determinant).

However, this analysis is in general not easy due to the fact that the operator
Aε(F (~zε)) tends, when ε goes to zero, to a multiplication operator and therefore its
dominant eigenvalue is not uniformly isolated with respect to ε. For the predator-
prey model (1), the two dimensionality of the model adds difficulties in order to
apply the stability results of [8].

Linearizing System (1) at the steady state (fε, uε) we obtain that the linearized

operator can be written as Ãε + Sε where

Ãε := Aε(fε) =















a − µfε −
∫ 1

0
β(x)fε

(1+β(x)hfε) · dx

0 −d(x) + (1 − ε)α β(x)fε

1+β(x)hfε

+ε
∫ 1

0 αγ(x, y) β(y)fε

1+β(y)hfε
· dy
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and

Sε =













−µfε −
∫ 1

0

β(x)uε(x)

(1 + β(x)hfε)2
dx 0

(1 − ε)α
β(x)uε(x)

(1 + β(x)hfε)2
+ ε

∫ 1

0 αγ(x, y)
β(y)uε(y)

(1 + β(y)hfε)2
dy 0













,

(see Section 3 for more details). What we have to show in order to obtain stability
of the steady state (fε, uε) can be summarized in the following result (Theorem 3.2
in Section 3).

Theorem 1.1. Let Ãε and Sε be the operators defined above. If 0 /∈ σ(Ãε + Sε),

a − µfε /∈ σ(Ãε + Sε) and moreover ωε(λ) := det
(

I + Sε

(

Ãε − λI
)−1)

6= 0 for
λ ∈ Dε := {λ ∈ C s.t. Reλ ≥ 0, λ 6= 0, λ 6= a − µfε} then the steady state
(fε, uε) of the predator-prey model (1) is locally asymptotically stable.

Reformulating some of the results of [8] and applying them we can give the
following result (Theorem 3.5 in Section 3) about the stability of the equilibria of
System (1).

Theorem 1.2. Let Ãε and Sε be the operators defined above. If there exists L1 >

0 such that, for ε small, ωε(λ) = det
(

I + Sε

(

Ãε − λI
)−1)

6= 0 for λ ∈ {λ ∈
Dε s.t. Reλ ≥ 0, |λ| < L1} then, for ε small, the steady state (fε, uε) of the
predator-prey model (1) is locally asymptotically stable.

However, the previous theorem still has one hypothesis that, due to the just
mentioned convergence of Ãε to a multiplication operator is difficult to prove for
System (1). In Section 3.2 we consider the following particular case of System (1)






































f ′(t) =
(

a − µf(t) −
∫ 1

0

β(x)u(x, t)

1 + β(x)hf(t)
dx
)

f(t),

∂u(x, t)

∂t
= (1 − ε)

αβ(x)f(t)u(x, t)

1 + β(x)hf(t)
+ εγ(x)

∫ 1

0

αβ(y)f(t)u(y, t)

1 + β(y)hf(t)
dy

−d(x)u(x, t),

(4)

(house of cards model) which is explicit enough to be able to obtain the following
stability result (Theorem 3.6 in Section 3)

Theorem 1.3. For ε small enough the steady state (fε, uε(x)) of System (4) is
locally asymptotically stable.

2. The model. Our aim is to study local stability of the equilibria of the predator-
prey model introduced in [15]






































f ′(t) =
(

a − µf(t) −
∫ 1

0

β(x)u(x, t)

1 + β(x)hf(t)
dx
)

f(t),

∂u(x, t)

∂t
= (1 − ε)

αβ(x)f(t)u(x, t)

1 + β(x)hf(t)
+ ε

∫ 1

0 γ(x, y)
αβ(y)f(t)u(y, t)

1 + β(y)hf(t)
dy

−d(x)u(x, t),

(5)
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where f(t) denotes the number of individuals of the prey population at time t and
u(x, t) denotes the density of predators at time t with respect to the trait x ∈ [0, 1]
that denotes the index of activity of the predator during daytime.

In absence of predators, the prey population follows a logistic growth law. a and
µ are fixed positive numbers denoting the intrinsic growth rate and the competition
coefficient of the prey population.

β(x) and d(x) are increasing bounded functions such that β(0) = 0 and d(0) > 0
denoting the searching efficiency and the mortality of the predator respectively.
That is, the searching efficiency increases when the index of activity of the predator
increases but then there is also a higher risk of being captured by another predator.
Predation rate is simulated using a Holling’s type 2 functional response, i.e. the rate

of prey consumption by all predators per unit of time is β(x)fu

1+β(x)hf
where h denotes the

handling time. That is, we are assuming that the attack rate of predators increases
at a decreasing rate with population prey due to handling and consumption times.
α is the proportion of energy that the predator obtains from prey consumption.
Finally, ε denotes the probability of mutation which is given by the density of
probability γ(x, y) that we assume that it is a strictly positive continuous function

satisfying
∫ 1

0 γ(x, y)dx = 1 for all y.
In [15] we also considered the finite dimensional model























f ′(t) =
(

a − µf(t) −
β(x)u(t)

1 + β(x)hf(t)

)

f(t),

u′(t) =
(

α
β(x)f(t)

1 + β(x)hf(t)
− d(x)

)

u(t),

(6)

where f(t) and u(t) are the number of individuals of the prey and predator popu-
lation respectively and x plays the role of a parameter. Under the hypotheses

- for fixed, not too small f , the function x → λ(f, x) = αβ(x)f
1+β(x)hf

− d(x) has a

unique non degenerate critical point which is an absolute maximum that will
be denoted by x(f),

- there exists f̂ > 0 such that λ(f̂ , x(f̂)) = 0 (we denoted x(f̂) =: x̂),

- ahβ(x̂) ≤ µ < aβ(x̂)α−d(x̂)h
d(x̂) ,

we showed existence of an hyperbolic and asymptotically stable equilibrium point

(f̂ , û) corresponding to the unique value of ESS of the parameter x̂. Under these
hypotheses we also proved existence of a family equilibria (fε, uε) of System (5)
that tend to concentrate, when the probability of mutation tends to zero, at the
evolutionarily stable value (ESS) of the “corresponding” finite dimensional model
(6) and moreover, that the total population at equilibrium of System (5) tends to
the equilibrium of System (6) for the value of ESS of the parameter.

3. Stability. In [8] we studied, under some hypotheses, local stability of the equi-
libria ~zε (for ε close to 0) of a nonlinear equation of the form

~zt = Aε(F (~z))~z (7)

in the space X of L1- Rn valued functions defined on a domain Ω of RN . F was
a function from the state space X to a m- dimensional space, which we assumed
linear and continuous. Since (7) has semilinear structure and the spectral mapping
property holds in L1, by the principle of linearized stability ~zε will be locally expo-
nentially asymptotically stable if the spectrum of the linearization of (7) at ~zε lies
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in {Reλ < α} for some α < 0. Linearizing, we obtained

~vt = Aε(F (~zε))~v + DAε(F (~zε))F (~v)~zε

=: Ãε~v + Sε~v.
(8)

That is, the linearized operator is a perturbation by a finite dimensional range
operator of the operator that we have when in the model the nonlinearity is given
by the equilibrium (denoted by Ãε and that in general has spectral bound zero
but not for the predator-prey model (1), which is one of the difficulties in order to

apply some of the results of [8]). Computing the spectrum of Ãε + Sε we have that

σ(Ãε + Sε) ⊂ σ(Ãε) ∪ {λ : det
(

I + Sε

(

Ãε − λI
)−1)

= 0}. That is, the spectrum of

the linearized operator is contained in the spectrum of the operator Ãε union the
zeros of a characteristic equation given by the Weinstein-Aronszajn determinant
associated with the operators Ãε and Sε.

On the other hand, we considered the n-dimensional ordinary differential equa-
tions system

~vt = A0(x, F (~vδx))~v, (9)

being the relationship between the operators Aε(E) and A0(x, E) that Aε(E) tends
(formally) as ε goes to 0 to a matrix multiplication operator generated by the matrix
A0(x, E).

Assuming the existence of an (hyperbolic) asymptotically stable nontrivial steady
state ~vx of (9) for some values of the parameter x, one of these values x̂ is called an
ESS if the linear equation

~wt = A0(x, F (~vx̂δx̂))~w,

is hyperbolically asymptotically stable for any value x 6= x̂.
Denoting by x̂ a value of ESS of (9) and by ~vx̂ the corresponding equilibrium

and linearizing, we obtained

~w′ = A0(x̂, F (~vx̂δx̂))~w +
(

D2A0(x̂, F (~vx̂δx̂))F (~wδx̂)
)

~vx̂

=: ˆ̃A0 ~w + Ŝ0 ~w.

The main result of [8] is summarized in the following:

Theorem 3.1. Let ~zε be a (nontrivial) positive equilibrium solution of the nonlinear
equation ~zt = Aε(F (~z))~z where F is a linear function from the state space X to a
m-dimensional space and such that, for fixed E = F (~z), Aε(E) is the generator of a

C0 positive semigroup on X. Let Ãε+Sε be the linearized operator at the equilibrium

~zε and let ωε(λ) := det
(

I + Sε

(

Ãε − λI
)−1)

and ω0(λ) := det
(

I + Ŝ0(
ˆ̃A0 − λI)−1

)

.
Let us denote by D := {λ ∈ C such that Reλ ≥ 0, λ 6= 0}.

Let us assume that ωε(λ) and ω0(λ) are holomorphic functions for all λ ∈ D,
that ω0(λ) does not vanish for λ ∈ D and that

ωε(λ)
ε→0
−→ ω0(λ)

uniformly on λ in compact sets contained in D.
Let us also assume that there exists a constant L2 > 0 such that if |λ| > L2 then

‖SεR(λ, Ãε)|R(Sε)
‖ < 1

2 .

Then, for all L1 > 0 there exists ε0 small enough such that ωε(λ) does not vanish
for ε < ε0 and λ ∈ {λ ∈ C such that Reλ ≥ 0, |λ| ≥ L1}.
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Moreover, if m = 1 let us assume that 0 is a strictly dominant eigenvalue of
Ãε = Aε(F (~zε)) with algebraic multiplicity 1. Let Pε be the projection corresponding

to the eigenvalue 0 of Ãε. Finally, let us assume that F (PεDAε(Eε)~zε)) 6= 0 and

that lim inf(ε,λ)λ∈D→(0+,0) λF (Ãε−λI)−1DAε(Eε)~zε 6= 0. Then, for ε small enough,
the equilibrium solution ~zε is uniformly asymptotically stable.

3.1. Linearization. System (5) can be written in the form ~zt = Aε(F (~z))~z where

F : R × L1(0, 1) −→ R

(f, u) −→ f,

Aε(f) =











a − µf −
∫ 1

0
β(x)f

1+β(x)hf
· dx

0 −d(x) + (1 − ε)α β(x)f
1+β(x)hf

+

ε
∫ 1

0
αγ(x, y) β(y)f

1+β(y)hf
· dy











.

Our aim in this section would be to apply Theorem 3.1 to study the stability of the
equilibria (fε, uε) of the predator-prey System (5). A direct application of Theorem
3.1 however is not possible since 0 is not a strictly dominant eigenvalue of the
operator

Ãε := Aε(fε) =















a − µfε −
∫ 1

0
β(x)fε

(1+β(x)hfε) · dx

0 −d(x) + (1 − ε)α β(x)fε

1+β(x)hfε

+ε
∫ 1

0
αγ(x, y) β(y)fε

1+β(y)hfε
· dy















(10)

and therefore the hypothesis that ωε(λ) is an holomorphic function for all λ ∈ D
does not hold. Nevertheless, proving some extra results, we will still be able to use
Theorem 3.1 to study the stability, for ε small enough, of the equilibria (fε, uε) of
System (5).

The linearized system for the predator-prey model (5) at the equilibrium (fε, uε)
(considering f(t) = fε + f̄ , u(x, t) = uε + ū(x, t), using that (fε, uε) is a steady
state, Taylor’s formula and eliminating higher order terms) is





f̄ ′

∂ū
∂t



 = (Ãε + Sε)

(

f̄
ū

)

,

where Ãε was defined by (10) and

Sε =













−µfε −
∫ 1

0

β(x)uε(x)

(1 + β(x)hfε)2
dx 0

(1 − ε)α
β(x)uε(x)

(1 + β(x)hfε)2
+ ε

∫ 1

0 αγ(x, y)
β(y)uε(y)

(1 + β(y)hfε)2
dy 0













.

(11)
Let us note that

σ(Ãε) = {a − µfε} ∪ σ(Cε,fε
),

where we have denoted

Cε,fε
:= −d(x) + (1 − ε)α

β(x)fε

1 + β(x)hfε

+ ε

∫ 1

0

αγ(x, y)
β(y)fε

1 + β(y)hfε

· dy. (12)
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In [15] we proved that zero is the dominant eigenvalue of the operator Cε,fε
.

Since a − µfε > 0, the hypothesis of Theorem 3.1 saying that ωε(λ) = det(I +

Sε(Ãε − λI)−1) is holomorphic for all λ such that Re λ ≥ 0, λ 6= 0 does not hold.

However, this hypothesis was only used (see [8]) because if it holds then, σ(Ãε) does
not contain values with positive real part and since (see [8])

σ(Ãε + Sε) ⊂ σ(Ãε) ∪ {λ s.t det
(

I + Sε

(

Ãε − λI
)−1)

= 0},

we only had to show that det
(

I + Sε

(

Ãε − λI
)−1)

6= 0 for λ such that Reλ ≥ 0,

λ 6= 0 and that 0 /∈ σ(Ãε + Sε).
From now on, let us denote

Dε := {λ ∈ C s.t. Reλ ≥ 0, λ 6= 0, λ 6= a − µfε}.

The next result summarizes what we have to show in order to obtain stability of
the steady state of the predator-prey model (5).

Theorem 3.2. Let Ãε and Sε be defined by (10) and (11) respectively. If 0 /∈

σ(Ãε+Sε), a−µfε /∈ σ(Ãε+Sε) and moreover ωε(λ) := det
(

I+Sε

(

Ãε−λI
)−1)

6= 0
for λ ∈ Dε then the steady state (fε, uε) of the predator-prey model (5) is locally
asymptotically stable.

Proof. We have σ(Ãε + Sε) ⊂ σ(Ãε) ∪ {λ s.t det
(

I + Sε

(

Ãε − λI
)−1)

= 0} (see

[8]) and σ(Ãε) = {a − µfε} ∪ σ(Cε,fε
) where Cε,fε

(defined in (12) is an operator
that has zero as a dominant eigenvalue (see [15]). The statement follows from the
principle of linearized stability.

The first two statements of the previous theorem are proved in the next propo-
sitions.

Proposition 1. Let Ãε, Sε be the operators given by (10) and (11) respectively.

Then 0 /∈ σ(Ãε + Sε).

Proof. 0 is a simple eigenvalue of Ãε with corresponding eigenfunction (fε, uε). By
the Weinstein Aronszajn formula (see [19]), if we show that 0 is a pole of order 1 of

ωε(λ) = det
(

(I + Sε

(

Ãε − λI
)−1

)|R(Sε)

)

, we will obtain that 0 /∈ σ(Ãε + Sε).
The range of Sε is one dimensional and a basis is

DAε(Eε)

(

fε

uε

)

=







−µfε −
∫ 1

0
β(x)uε

(1+β(x)hfε)2
dx

(1 − ε)α β(x)uε

(1+β(x)hfε)2
+ ε

∫ 1

0
αγ(x, y) β(y)uε

(1+β(y)hfε)2 dy






.

More in general, considering the linearized operator Ãε + Sε at the equilibrium ~zε

of a nonlinear equation ~zt = Aε(F (~z))~z where F is a linear function from the state
space to a one dimensional space, we showed in Proposition 1 in [8] that 0 is a pole

of order 1 of ωε(λ) = det
(

(I +Sε

(

Ãε −λI
)−1

)|R(Sε)

)

(and therefore 0 /∈ σ(Ãε +Sε))
if and only if the following two conditions

DAε(Eε)

(

fε

uε

)

/∈ Range(Ãε). (13)

F

(

fε

uε

)

6= 0. (14)

hold.
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Since for the predator-prey model (5) we have F

(

fε

uε

)

= fε, condition (14)

holds. Let us now show that (13) also holds. Since N(Ã∗
ε) = Range(Ãε)

⊥, where

Ã∗
ε denotes the adjoint operator of Ãε, N(Ã∗

ε) denotes the kernel of the operator

Ã∗
ε and ⊥ denotes orthogonal (in the dual space sense), condition (13) is equivalent

to
〈

(

f∗
ε

u∗
ε

)

, DAε(Eε)

(

fε

uε

)

〉

6= 0, (15)

where

(

f∗
ε

u∗
ε

)

is the eigenfunction of eigenvalue 0 of Ã∗
ε .

For the predator-prey model (5) condition (15) is

−µfεf
∗
ε − f∗

ε

∫ 1

0
β(x)uε

(1+β(x)hfε)2 + (1 − ε)α
∫ 1

0
β(x)uεu∗

ε

(1+β(x)hfε)2 dx

+ε
∫ 1

0 u∗
ε(x)

∫ 1

0 αγ(x, y) β(y)uε(y)
(1+β(x)hfε)2

dydx 6= 0.

Computing Ã∗
ε we obtain

Ã∗
ε =















a − µfε 0

−β(x)fε

1+β(x)hfε
−d(x) + (1 − ε)α β(x)fε

1+β(x)hfε

+εα β(x)fε

1+β(x)hfε

∫ 1

0 γ(y, x) · dy















.

Since Ã∗
ε

(

f∗
ε

u∗
ε

)

= 0 we obtain that f∗
ε = 0 and u∗

ε satisfies

(

− d(x) + (1 − ε)α β(x)fε

1+β(x)hfε

)

u∗
ε

+εα β(x)fε

1+β(x)hfε

∫ 1

0
γ(y, x)u∗

ε(y)dy = 0.

The operator −d(x) + (1 − ε)α β(x)fε

1+β(x)hfε
+ εα β(x)fε

1+β(x)hfε

∫ 1

0
γ(y, x) · dy is the adjoint

operator of Cε,fε
(defined in (12)). Since the operator Cε,fε

generates a positive
irreducible semigroup and its spectral bound s(Cε,fε

) is a pole of the resolvent (see
[15]) Theorem 8.17 in [12] gives that u∗

ε is strictly positive (and also that uε is
strictly positive) and therefore

〈

(

f∗
ε

u∗
ε

)

, DAε(Eε)

(

fε

uε

)

〉

> 0

Proposition 2. Let Ãε, Sε be the operators given by (10) and (11) respectively.

Then a − µfε /∈ σ(Ãε + Sε).

Proof. a−µfε is a simple eigenvalue of Ãε with corresponding eigenfunction

(

1
0

)

.

By the Weinstein-Aronszajn formula, if we show that a−µfε is a pole of order 1 of
ωε(λ) = det((I + Sε(Ãε − λI)−1)|R(Sε)

) we will obtain that a − µfε /∈ σ(Ãε + Sε).

Let us recall that the range of Sε is DAε(Eε)

(

fε

uε

)

.
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Since a − µfε is a simple pole of R(λ, Ãε) by the Laurent series at λ = a − µfε we
have

(

I + Sε(Ãε − λI)−1
)

DAε(Eε)

(

fε

uε

)

= DAε(Eε)

(

fε

uε

)

+ Sε
1

(λ−(a−µfε))PεDAε(Eε)

(

fε

uε

)

+ Sε

∑∞
n=0

1
2πi

(λ − (a − µfε))
n
∫

Γ
−

(Ãε−λI)−1DAε(Eε)





fε

uε





(λ−(a−µfε))n+1 dλ,

where Γ is a positively-oriented small circle enclosing λ = a−µfε but excluding other
eigenvalues of Ãε and Pε is the spectral projection corresponding to the spectral set
{a− µfε}.

ωε(λ) will have a pole of first order in a−µfε if SεPεDAε(Eε)

(

fε

uε

)

6= 0. Since

the eigenvector corresponding to the eigenvalue a−µfε of the operator Ãε is of the

form

(

1
0

)

we have PεDAε(Eε)

(

fε

uε

)

=





−µfε −
∫ 1

0

β(x)uε

(1 + β(x)hfε)2

0



 .

Finally, since the equilibrium (fε, uε) is strictly positive we have

SεPεDAε(Eε)

(

fε

uε

)

6= 0 and the proof is complete.

In order to be able to apply Theorem 3.2 what remains to show is that ωε(λ) :=

det
(

I + Sε

(

Ãε − λI
)−1)

6= 0 for λ ∈ Dε. In order to do it we will take advantage

of the asymptotical stability of the corresponding “ecological” equilibrium (f̂ , û)
(which, recall, is the unique equilibrium point corresponding to the value of ESS of
the parameter) of the finite dimensional predator-prey model (6). Linearizing (6)

when x = x̂ at the equilibrium point (f̂ , û) and eliminating higher order terms we
obtain the linear system

(

f̄
ū

)′

= ˆ̃A0

(

f̄
ū

)

+ Ŝ0

(

f̄
ū

)

,

where

ˆ̃A0 :=







a − µf̂ − β(x̂)f̂

1+β(x̂)hf̂

0 0






Ŝ0 :=







−µf̂ − β(x̂)û

(1+β(x̂)hf̂)2
0

αβ(x̂)û

(1+β(x̂)hf̂)2
0






.

Let us define ω0(λ) := det(I + Ŝ0(
ˆ̃A0 − λI)−1) for λ /∈ σ( ˆ̃A0) (i.e. for λ such that

λ 6= 0 and λ 6= a − µf̂).
Let us denote

D0 := {λ ∈ C s.t. Reλ ≥ 0, λ 6= 0, λ 6= a − µf̂}.

Since the equilibrium point (f̂ , û) is hyperbolic and asymptotically stable

ω0(λ) = det(I + Ŝ0(
ˆ̃A0 − λI)−1) 6= 0
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for λ ∈ D0, that is,

1 +
(

− µf̂ − β(x̂)û

(1+β(x̂)hf̂)2

)(

1
(a−µf̂−λ)

)

+ αβ(x̂)û

(1+β(x̂)hf̂)2

( β(x̂)f̂

1+β(x̂)hf̂

(a−µf̂−λ)(−λ)

)

6= 0

for λ ∈ D0.
Our aim is to use the fact that ω0(λ) 6= 0 for λ ∈ D0 to prove that, for ε small,

ωε(λ) 6= 0 for λ ∈ D0 ∩ Dε. Therefore one of the hypotheses that we have to prove

is that ωε(λ)
ε→0
−→ ω0(λ) uniformly on λ in compact sets contained in D0 ∩ Dε. In

order to show it, let us consider the following operators in R × M (where M is the
space of Radon measures),

Ã0 =





a − µf̂ −
∫ 1

0
β(x)f̂

1+β(x)hf̂
· dx

0 αβ(x)f̂

1+β(x)hf̂
− d(x)



 , S0 =





−µf̂ − β(x̂)û

(1+β(x̂)hf̂)2
0

αβ(x)û

(1+β(x)hf̂)2
δx̂ 0



 .

(16)

We can define g0(λ) := det(I +S0(Ã0−λI)−1)|R(S0)
. Since the operator (Ã0−λI)−1

can be computed explicitly

(Ã0 − λI)−1 =











1

(a−µf̂−λ)

1

(a−µf̂−λ)

∫ 1

0
β(x)f̂

1+β(x)hf̂

1
αβ(x)f̂

1+β(x)hf̂
−d(x)−λ

· dx

0 1
αβ(x)f̂

1+β(x)hf̂
−d(x)−λ











and the range of S0 is one dimensional and generated by





−µf̂ − β(x̂)û

(1+β(x̂)hf̂)2

αβ(x)û

(1+β(x)hf̂)2
δx̂



 ,

g0(λ) can be computed explicitly and we obtain that g0(λ) = ω0(λ) and therefore
g0(λ) 6= 0 for λ ∈ D0.

Proposition 3. Let ωε(λ) := det(I + Sε(Ãε − λI)−1) where Ãε and Sε are defined

by (10) and (11) respectively and g0(λ) := det(I +S0(Ã0 −λI)−1) where Ã0 and S0

are defined in (16). Then

ωε(λ)
ε→0
−→ g0(λ)(= ω0(λ))

uniformly on λ in compact sets contained in D0 ∩ Dε.

Proof. It is enough showing that

‖
(

Sε(Ãε − λI)−1
)

|R(Sε)
−
(

Sε(Ã0 − λI)−1
)

|R(Sε)
‖

ε→0
−→ 0 (17)

and that

‖
(

Sε(Ã0 − λI)−1
)

|R(Sε)
−
(

S0(Ã0 − λI)−1
)

|R(S0)
‖

ε→0
−→ 0. (18)

Let us denote by Bε := Ãε − Ã0. Then

(Ãε − λI)−1 = R(λ, Ãε) = R(λ, (Ã0 + Bε))

= R(λ, Ã0)(I − BεR(λ, Ã0))
−1

= R(λ, Ã0)
∑∞

n=0(BεR(λ, Ã0))
n
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where in the last equality we have used that, as ‖Bε‖
ε→0
−→ 0, for ε small enough

‖BεR(λ, Ã0)‖ < 1. Hence, for ε small enough

‖
(

Sε(Ãε − λI)−1
)

−
(

Sε(Ã0 − λI)−1
)

‖

= ‖SεR(λ, Ã0)
∑∞

i=0(BεR(λ, Ã0))
n − SεR(λ, Ã0)‖

= ‖SεR(λ, Ã0)
∑∞

n=1(BεR(λ, Ã0))
n‖

≤ ‖Sε‖‖R(λ, Ã0)‖
‖BεR(λ, Ã0)‖

1 − ‖BεR(λ, Ã0)‖
.

As R(λ, Ã0) and Sε are bounded operators (uniformly with respect to ε) and

‖Bε‖
ε→0
−→ 0 we obtain that ‖

(

Sε(Ãε − λI)−1
)

−
(

Sε(A0 − λI)−1
)

‖
ε→0
−→ 0. Therefore

(17) holds.

In order to prove (18) let us compute SεR(λ, Ã0) in the basis of the range of Sε

which is

(

−µfε −
∫ 1

0
β(x)uε

(1+β(x)hfε)2
dx

(1 − ε)α β(x)uε

1+β(x)hfε
+ ε

∫ 1

0 αγ(x, y) β(y)uε

1+β(y)hfε
dy

)

.

Then

SεR(λ, A0)|R(Sε)
= 1

(a−µf̂−λ)

(

− µfε −
∫ 1

0
β(x)uε

(1+β(x)hfε)2 dx
)

+ 1

(a−µf̂−λ)

∫ 1

0
β(x)f̂

1+β(x)hf̂

( (1−ε)α β(x)uε

(1+β(x)hfε)2
+ε

∫

1
0

αγ(x,y) β(y)uε

(1+β(y)hfε )2
dy

αβ(x)f̂

1+β(x)hf̂
−d(x)−λ

)

dx

In Theorem 3.5 in [15] we obtained the convergence results fε
ε→0
−→ f̂ , uε

ε→0
−→ ûδx̂ in

the weak star topology,
∫∞

0
uε

ε→0
−→ û and

∫

Ic uε
ε→0
−→ 0 for any subinterval of [0, 1],

I, containing x̂, which imply

SεR(λ, Ã0)|R(Sε)

ε→0
−→ S0R(λ, Ã0)|R(S0)

=
(

1
(a−µf̂−λ)

)(

− µf̂ − β(x̂)û

(1+β(x̂)hf̂)2

)

+ αβ(x̂)û

(1+β(x̂)hf̂)2

( β(x̂)f̂

1+β(x̂)hf̂

(a−µf̂−λ)(−λ)

)

.

Now we will prove that for ε small ωε(a − µf̂) 6= 0. In order to show it we will
use the following technical/auxiliary lemma.

Lemma 3.3. Let f0(λ) be a meromorphic function. Let λ0 be a simple pole of f0.
Let fε(λ) be a family of meromorphic functions. Let us assume that for every ε

small enough, λε is a simple pole of fε. Moreover, let us assume that λε
ε→0
−→ λ0

and that

fε(λ)
ε→0
−→ f0(λ)

uniformly on compact sets that do not contain λ0. Then fε(λ0) 6= 0 for ε small
enough.

Proof. Developping f0 by its Laurent series at λ0 we can write

f0(λ) =
a−1

λ − λ0
+ h0(λ)
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where h0(λ) is an holomorphic function and a−1 =
1

2πi

∫

C
f0(ξ)dξ 6= 0 where C is

a positively oriented small circle enclosing λ0 but excluding other poles of f0. In
the same way

fε(λ) =
(b−1)ε

λ − λε

+ hε(λ)

where hε(λ) is an holomorphic function and (b−1)ε =
1

2πi

∫

C
fε(ξ)dξ, and where we

have used that, since λε
ε→0
−→ λ0, for ε small enough C also encloses λε. Therefore

(b−1)ε

λ − λε

ε→0
−→

a−1

λ − λ0

uniformly on compact sets that do not contain λ0. This implies that hε(λ)
ε→0
−→ h0(λ)

uniformly on compact sets that do not contain λ0. Since

hε(λ0) =
1

2πi

∫

C

hε(ξ)

ξ − λ0
dξ

ε→0
−→

1

2πi

∫

C

h0(ξ)

ξ − λ0
dξ = h0(λ0),

we have that hε(λ)
ε→0
−→ h0(λ) uniformly on compact sets in C. Then

(λ − λε)fε(λ) = (b−1)ε + (λ − λε)hε(λ)
ε→0
−→ a−1 + (λ − λ0)h0(λ) = (λ − λ0)f0(λ)

uniformly on compact sets in C. Applying Rouche’s theorem we obtain that, for ε
small enough, (λ−λε)fε(λ) does not vanish at λ0 and therefore that fε(λ0) 6= 0.

Remark 1. In fact we have proved that, for ε small enough there exists δ > 0 such
that fε(λ) 6= 0 for λ such that |λ − λ0| < δ.

Proposition 4. Let (f̂ , û) be the equilibrium point of the ordinary differential equa-

tions predator-prey model (6) for the value x̂ of ESS. Let ωε = det(I+Sε(Ãε−λI)−1)

where Ãε and Sε are the operators defined in (10) and (11) respectively. Then for

ε small there exists δ > 0 such that ωε(λ) 6= 0 for λ such that |λ − (a − µf̂)| < δ.

Proof. An application of Proposition 3, Lemma 3.3, Remark 1 and the fact that

a − µf̂ is an eigenvalue of A0.

As we mentioned before, since System (5) does not satisfy the hypothesis that 0

is a dominant eigenvalue of Ãε a direct application of Theorem 3.1 in order to prove
local stability of the equilibrium (fε, uε) is not possible. With the results proved
so far we can now state the theorem saying that the conclusion of the first part of
Theorem 3.1 holds for System (5).

Theorem 3.4. Let ωε(λ) := det(I + Sε(Ãε − λI)−1) where Ãε and Sε are defined
by (10) and (11) respectively. Then for all L1 > 0 there exists ε small enough such
that ωε(λ) does not vanish for λ ∈ {λ ∈ Dε s.t. Reλ ≥ 0, L1 ≤ |λ|}.

Proof. Ãε is a bounded operator. Then, since supε ‖Ãε‖ and supε ‖Sε‖ are bounded,

for |λ| > 2‖Ãε‖

‖SεR(λ, Ãε)‖ = ‖Sελ
−1

∞
∑

n=0

(λ−1Ãε)
n‖ ≤

‖Sε‖

λ − ‖Ãε‖
≤

2‖Sε‖

|λ|
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and therefore there exists L2 > 0 such that if |λ| > L2 then ‖SεR(λ, Ãε)‖ < 1
2 .

This implies that |ωε(λ)| > 0 if |λ| > L2. Indeed, denoting by P (µ) the char-
acteristic polynomial of SεR(λ, Aε)|R(Sε)

we have that any zero µi of P (µ) sat-

isfies |µi| < 1
2 and then |ωε(λ)| = |det

(

(I + SεR(λ, Ãε))|R(Sε)

)

| = |P (−1)| =

|(−1)l
∏l

i=1(−1 − µi)| > 1
2l if |λ| > L2 (where l = dim RangeSε).

Let us now consider the set D1 := {λ ∈ D0 s.t. L1 ≤ |λ|}∩{λ ∈ C s.t. |λ−

(a − µf̂)| ≥ δ} for any L1 ∈ (0, L2). Since a − µfε
ε→0
−→ a − µf̂ , by Proposition 3

and applying Rouche’s theorem we have that for ε small ωε(λ) does not vanish for
λ ∈ D1. By Proposition 4 we obtain that, in fact, for ε small enough ωε(λ) does
not vanish for λ ∈ {λ ∈ Dε s.t. Reλ ≥ 0, L1 ≤ |λ|}.

Lat us now state the result that we have so far about stability of the steady state
of System (5).

Theorem 3.5. Let (fε, uε) be the steady state of System (5). Let Ãε and Sε be
defined by (10) and (11) respectively. If there exists L1 > 0 such that, for ε small,

ωε(λ) = det
(

I + Sε

(

Ãε − λI
)−1)

6= 0 for λ ∈ {λ ∈ Dε s.t. Reλ ≥ 0, |λ| < L1}
then, for ε small, (fε, uε) is locally asymptotically stable.

Proof. By Theorem 3.2, Proposition 1, Proposition 2 and Theorem 3.4.

Summarizing, with all the results we proved so far for the predator-prey model,
the only thing that remains to prove in order to show that the equilibrium (fε, uε)
is uniformly asymptotically stable is to exclude, for ε small and for some L1 > 0
the set {λ ∈ C such that Reλ ≥ 0, |λ| < L1, λ 6= 0, a − µfε} from the spectrum

of the operator Ãε + Sε. In [8] we proved that this is equivalent to show that

lim inf
(ε,λ)λ∈D→(0+,0)

λF (Ãε − λI)−1DAε(Eε)

(

fε

uε

)

6= 0. (19)

For System (5) we can compute

F
(

(Ãε − λI)−1DAε(Eε)

(

fε

uε

)

)

= first component of (Ãε − λI)−1DAε(Eε)

(

fε

uε

)

=
1

a − µfε − λ

(

− µfε −
∫ 1

0

β(x)uε(x)

(1 + β(x)hfε)2
dx
)

+
1

a − µfε − λ

∫ 1

0

β(x)fε

1 + β(x)fε

R(λ, Cε,fε
)

(

(1 − ε)α
β(x)uε(x)

(1 + β(x)hfε)2
+ ε

∫ 1

0 αγ(x, y)
β(y)uε(y)

(1 + β(y)hfε)2
dy
)

dx

So, in this case, condition (19) is

lim inf(ε,λ)λ∈D→(0+,0) λ
( 1

a − µfε − λ

∫ 1

0

β(x)fε

1 + β(x)hfε

R(λ, Cε,fε
)

(

(1 − ε)α
β(x)uε(x)

(1 + β(x)hfε)2
+ ε

∫ 1

0 αγ(x, y)
β(y)uε(y)

(1 + β(y)hfε)2
dy
)

dx
)

6= 0 (20)

Since Cε,fε
tends to a multiplication operator (with continuous spectrum), the re-

solvent operator tends to be singular at 0 when ε
ε→0
−→ 0. Therefore we have an
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undetermined limit of the form 0 · ∞, which makes it difficult to prove the previ-
ous inequality. However, if we make the assumption of “hourse of cards model”
considered by Bürger and Bomze in [5], then the limit can be computed.

3.2. Particular case. Let us consider the predator-prey model






































f ′(t) =
(

a − µf(t) −
∫ 1

0

β(x)u(x, t)

1 + β(x)hf(t)
dx
)

f(t),

∂u(x, t)

∂t
= (1 − ε)

αβ(x)f(t)u(x, t)

1 + β(x)hf(t)
+ εγ(x)

∫ 1

0

αβ(y)f(t)u(y, t)

1 + β(y)hf(t)
dy

−d(x)u(x, t),

(21)

where we have made the “house of cards model” assumption, that is we have as-
sumed that the mutation kernel is independent of the parents trait. Let (fε, uε(x))
denote the family of stationary solutions of System (21) and

Cε,fε
v = −d(x)v + (1 − ε)

αβ(x)fεv

1 + β(x)hfε

+ εγ(x)
∫ 1

0

αβ(y)fεv(y)

1 + β(y)hfε

dy

=: −ãε(x)v + εγ(x)Lεv

where ãε(x) = d(x) − (1 − ε)
αβ(x)fε

1 + β(x)hfε

, Lεv =
∫ 1

0

αβ(y)fεv(y)

1 + β(y)hfε

dy.

We have the following stability result.

Theorem 3.6. For ε small enough, the equilibrium (fε, uε(x)) of System (21) is
locally asymptotically stable.

Proof. In the previous section we have seen that in order to prove the statement
of the Theorem we have to show that condition (20) holds. Therefore we need
to compute the resolvent operator of Cε,fε

. It can be computed explicitly in the
following way.

Given g ∈ L1, a solution of the equation −ãεv + εγLεv − λv = g for Reλ ≥ 0,
λ 6= 0, is given by

v = εLεv(ãε + λ)−1γ − (ãε + λ)−1g. (22)

Applying Lε we have

− Lε(ãε + λ)−1g =
(

1 − εLε(ãε + λ)−1γ
)

Lεv. (23)

From the second equilibrium equation of (21) (0 = Cε,fε
uε) we have uε = εγ(x)Lεuε

ãε(x)

or, equivalently

1 = εLε

( γ(x)

ãε(x)

)

. (24)

Substituting (24) in (23) we have

−Lε((ãε + λ)−1g) = ελLε

( γ

ãε(ãε + λ)

)

Lεv.

Isolating Lεv and substituting it in (22) we have

(C̃ε,fε
− λI)−1g = 1

ελ

(

Lε(ãε(ãε + λ))−1γ
)−1(

− (ãε + λ)−1g

+ε(Lε((ãε + λ)−1γ)(ãε + λ)−1g

−Lε((ãε + λ)−1g)(ãε + λ)−1γ)
)
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which allows us to compute limit (20) explicitly

lim inf(ε,λ)λ∈D→(0+,0) λF (Ãε − λI)−1DAε(Eε)

(

fε

uε

)

= lim inf(ε,λ)λ∈D→(0+,0)

∫ 1

0
−β(x)fεkε(x)

ε(1+β(x)hfε)(a−µfε−λ)(ãε(x)+λ)dx
∫ 1

0
αγ(x)β(x)fε

1+β(x)hfε

1
ãε(x)(ãε(x)+λ)dx

+
ε
∫ 1

0
αβ(x)fεγ(y)

(1+β(x)hfε)(ãε(x)+λ)dx
∫ 1

0
β(x)fεkε(x)

ε(1+β(x)hfε)(a−µfε−λ)(ãε(x)+λ)dx
∫ 1

0
αγ(x)β(x)fε

1+β(x)hfε

1
ãε(x)(ãε(x)+λ)dx

−
ε
∫ 1

0
β(x)fεkε(x)

ε(1+β(x)hfε)(a−µfε−λ)(ãε(x)+λ)dx
∫ 1

0
αβ(x)fεγ(y)

(1+β(x)hfε)(ãε(x)+λ)dx
∫ 1

0
αγ(x)β(x)fε

1+β(x)hfε

1
ãε(x)(ãε(x)+λ)dx

where we have denoted kε(x) := (1 − ε)α β(x)uε(x)
(1+β(x)hfε)2 + εγ(x)

∫ 1

0
αβ(y)uε(y)

(1+β(x)hfε)2 dy for

simplicity in the notation.

From the equilibria equations we have that uε = εγ(x)α(a−µfε)fε

ãε(x) .

Substituting it in kε(x) and noting that the last two terms in the previous limit
simplify we have

lim inf(ε,λ)λ∈D→(0+,0) λF (Ãε − λI)−1DAε(Eε)

(

fε

uε

)

= lim inf(ε,λ)λ∈D→(0+,0)
1

∫ 1

0
αγ(x)β(x)fε

1+β(x)hfε

1
ãε(x)(ãε(x)+λ)dx

(

(a−µfε)fε

(a−µfε−λ)

∫ 1

0
−αβ(x)fε

(1+β(x)hfε)(ãε(x)+λ)

(

(1 − ε) αβ(x)γ(x)
ãε(x)(1+β(x)hfε)2

+εγ(x)
∫ 1

0
αβ(x)γ(x)

ãε(x)(1+β(x)hfε)2
dy
)

dx
)

= lim inf(ε,λ)λ∈D→(0+,0)
(a−µfε)fε

(a−µfε−λ)

∫ 1

0
hε(x)gε(x)dx

(25)

where

gε(x) =

αγ(x)β(x)fε

ãε(x)(ãε(x)+λ)(1+β(x)hfε)
∫ 1

0
αγ(x)β(x)fε

ãε(x)(ãε(x)+λ)(1+β(x)hfε)dx

hε(x) = −(1 − ε)
αβ(x)

(1 + β(x)hfε)2
− εãε(x)

∫ 1

0

αβ(x)γ(y)

ãε(x)(1 + β(x)hfε)2
dx

Let us recall the following lemma stated in [8]

Lemma 3.7. a) Let h(x) be continuous in x̂ ∈ [a, b] and such that h(x̂) = 0 and
|h(x)| ≤ M for x ∈ [a, b]. Let gε(x) be a family of positive functions, indexed
by ε in a subset of Cn with 0 in its closure, with integral uniformly bounded

and such that
∫

Ic gε(x)dx
ε→0
−→ 0 for any (open) interval I ⊂ [a, b] centered at

x̂ (in particular if gε(x) tend uniformly in x ∈ Ic to 0 as ε → 0).

Then
∫ b

a
h(x)gε(x)dx

ε→0
−→ 0.
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b) If we substitute the hypothesis h(x̂) = 0 by hε(x)
ε→0
−→ h(x) uniformly and

∫ b

a
gε(x)dx = 1 for all ε, then the conclusion is

∫ b

a
hε(x)gε(x)dx

ε→0
−→ h(x̂).

Applying this lemma to (25) we obtain

lim inf
(ε,λ)λ∈D→(0+,0)

λF (Ãε − λI)−1DAε(Eε)

(

fε

uε

)

= −
αβ(x̂)f0

(1 + β(x̂)f0)2

which is a nonvanishing limit, which implies that condition (20) holds and therefore
that, for ε small, the equilibrium (fε, uε(x)) of System (21) is locally asymptotically
stable.

4. Concluding remarks. Selection mutation equations are models for structured
populations with respect to evolutionary traits. Some aspects of the adaptive dy-
namics can be understood by studying the relationship between the steady states
of these selection mutation equations and the evolutionarily stable strategies of the
underlying ecological models.

In [15] a predator-prey model for the evolution of a phenotypical trait (namely
the index of activity of the predator during daytime) was studied obtaining, under
some hypotheses, existence of a family of equilibria that tend to concentrate, when
the probability of mutation goes to zero, at the evolutionarily stable value of the
“corresponding” finite dimensional predator-prey model.

The present paper is devoted to study the stability of these equilibria. The main
mathematical tools are the principle of linearized stability and the fact that, since
the environment (the nonlinearity) is finite dimensional (in fact one dimensional)

the linearized operator at the steady state, Ãε + Sε, turns out to be a degenerate
perturbation of an operator (Ãε) satisfying σ(Ãε) = {a− µfε} ∪ {σ(Cε,fε

)}, where
a − µfε > 0 and Cε,fε

is and operator with spectral bound equal to zero.

Since we prove that 0 /∈ σ(Ãε + Sε) (Proposition 1) and a − µfε /∈ σ(Ãε + Sε)
(Proposition 2), the analysis of the stability reduces to the computation of the
zeroes of the characteristic equation given by the Weinstein-Aronszajn determinant
associated to Ãε and Sε, that we have denoted by ωε(λ).

Taking advantage of the asymptotic stability of the equilibrium of the corre-
sponding finite dimensional model at the ESS value we show that, for all L1 > 0,
ωε(λ) does not vanish for {λ ∈ C such that Reλ ≥ 0, |λ| ≥ L1, λ 6= 0, a − µfε}
(Theorem 3.4). Finally, in section 3.2 we show, under the assumption of the “house
of cards model”, that ωε(λ) does not vanish for {λ ∈ C such that Reλ ≥ 0, |λ| <
L1, λ 6= 0, a − µfε} obtaining then, stability of the steady state.
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[7] À. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure

mutation case, Math. Models. Meth. Appl. Sci., 15 (2005), 1091–1117.
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