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Abstract. In this paper we study a Lotka-Volterra predator-prey system with
prey logistic growth under the telegraph noise. The telegraph noise switches
at random two prey-predator models. The aim of this work is to determine
the subset of omega-limit set of the system and show out the existence of
a stationary distribution. We also focus on persistence of the predator and
thus we look for conditions that allow persistence of the predator and prey
community. We show that the asymptotic behaviour highly depends on the
value of some constant λ which is useful to make suitable predictions about
the persistence of the system.

1. Introduction. The dynamics of predator-prey systems have been investigated
very largely in the frame of deterministic models, Murray, (1989) [11], Edelstein-
Keshet (1998) [7]. In Bazykin (1998) [5], one can find a review of most classical de-
terministic predator- prey models. The two variables are the prey x(t) and predator
y(t) densities at time t. The classical form of a predator-prey model is the following
one: {

dx
dt = f(x) − h(x, y)y
dy
dt = ẽh(x, y)y − µy,

where the function f(x) is the natural growth function of the prey, h(x, y)y is
the capture term; ẽ is a positive prey biomass into predator biomass conversion
parameter. µ is the natural mortality rate for predators. h(x, y) is the so-called
functional response, i.e., the prey density captured per unit of time and per unit
of predator density. In the classical Lotka-Volterra model, it is assumed that the
functional response is type I, i.e., depending only on the prey density and linear,
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i.e., h(x) = qx where q is a positive constant which is called the catch-ability. It is
also usual to assume that prey grows logistically leading to the model:

{
dx
dt = x

(
r
(
1 − x

K

)
− qy

)
= x (a − bx − cy)

dy
dt = (ẽqx − µ) y = (−d + ex) y.

Where r is the growth rate of the prey and K its carrying capacity. For the sake of
simplification, in the next sections, we use the model under the form involving the
parameter set (a, b, c, d, e) and the links with ecological parameters (r, K, q, µ, ẽ) is
not given here because it is obvious. A simple mathematical analysis of this Lotka-
Volterra model with prey logistic growth shows that two cases can occur according
to parameters values, Bazykin (1998) [5]:

• if K < µ
ẽq , the predator cannot invade and goes extinct while the prey density

asymptotically tends to its carrying capacity;
• if K > µ

ẽq , the predator-prey community is persistent and prey, predator

asymptotically coexist at constant equilibrium densities.

This classical Lotka-Volterra model assumes that species live in a constant envi-
ronment. However, it is clear that it is not the case in reality and that it is important
to take into account the variability of the environment which may have important
consequences on the dynamics and persistence of a predator-prey community. The
variability of the environment may be expressed under the stochastic factors. For
the stochastic Lotka-Volterra equation, there is not too much in mathematical lit-
erature, and almost nothing in statistical inference. Here, we mention one of the
first attempts in this direction, the very interesting paper of Arnold et al. [4] in
which the authors used the theory of Brownian motion processes and the related
white noise models to study the sample paths of the equation. For the branching
models in a varying environment, we can refer to [2, 3, 12]. A systematic review
has been given in [1]. In the simplest case, one might consider that environmental
conditions can switch between two states, a hot and cold one, a dry state and wet
one. Thus, we can suppose there is a telegraph noise affecting on the model in the
form of switching between two-element set, E = {1, 2}. With different states, the
coefficients of model are different. The stochastic displacement of environmental
conditions provokes model to change from the system in state one to the system
in state two and vice versa. When the carrying capacity of environment is absent
(K = ∞), the telegraph noise does the model chaotically. It can not be permanent
if the positive rest points of two deterministic systems do not coincide [13, 10]. In
this paper we study this model with carrying capacity of environment (K < ∞)
where the dynamics of the system is quite different. The predator may be extinct
when one deterministic system has only non positive rest point. However, if two
deterministic systems have positive rest points, it is proved that the model will
be permanent with probability 1. Moreover, we show the existence of stationary
distribution of solution in this case.

The paper has 6 sections. Section 2 details model and gives some properties of
the boundary equations. In Section 3, dynamic behavior of the solution is studied.
Subsets of ω-limit set are also described for each case. It is shown that the ω-limit
sets include every orbit starting at a point on the curves linking two rest points
of the subsystems. In Section 4, it proves the existence of invariant measures. In
the section 5 and last section, some computational results illustrate the behavior
of Lotka-Volterra systems under telegraph noise and the research work is discussed
and summarized.
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2. Preliminary. Let (Ω,F , P) be a probability space satisfying the general hy-
potheses [8] and (ξt)t≥0 be a Markov process, defined on (Ω,F , P), taking values
in the set of two elements, say E = {1, 2}. Suppose that (ξt) has the transition

intensities 1
α
→ 2 and 2

β
→ 1 with α > 0, β > 0. The process (ξt) has a unique

stationary distribution

p = lim
t→∞

P{ξt = 1} =
β

α + β
; q = lim

t→∞
P{ξt = 2} =

α

α + β
. (2.1)

The trajectories of (ξt) are piecewise-constant, cadlag functions. Let

0 = τ0 < τ1 < τ2 < ... < τn < ... (2.2)

be its jump times. Put

σ1 = τ1 − τ0, σ2 = τ2 − τ1, ..., σn = τn − τn−1... (2.3)

σ1 = τ1 is the first exile from the initial state, σ2 is the time the process (ξt)
spends in the state into which it moves from the first state... It is known that
(σk)∞k=1 are independent in the condition of given sequence (ξτk

)∞k=1 (see [8, vol. 2,
pp. 217]). Note that if ξ0 is given then ξτn

is known since the process (ξt) takes
only two values. Hence, (σk)∞n=1 is a sequence of conditionally independent random
variables, valued in [0,∞). Moreover, if ξ0 = 1 then σ2n+1 has the exponential
density α1[0,∞) exp(−αt) and σ2n has the density β1[0,∞) exp(−βt). Conversely, if
ξ0 = 2 then σ2n has the exponential density α1[0,∞) exp(−αt) and σ2n+1 has the
density β1[0,∞) exp(−βt) (see [8, vol. 2, pp. 217]). Here 1[0,∞) = 1 for t ≥ 0 (= 0
for t < 0).

Denote Fn
0 = σ(τk : k ≤ n); F∞

n = σ(τk − τn : k > n). We see that Fn
0 is

independent of F∞
n for any n ∈ N in the condition that ξ0 given.

We consider the Lotka-Volterra predator-prey system described by the equation
{

ẋ = x (a(ξt) − b(ξt)x − c(ξt)y) ,

ẏ = y (−d(ξt) + e(ξt)x) ,
(2.4)

where g : E → (0,∞) for g = a, b, c, d, e. The noise (ξt) intervenes virtually into
the equation (2.4), it makes a switching between the deterministic system

{
ẋ1(t) = x1(t)(a1 − b1x1(t) − c1y1(t)),

ẏ1(t) = y1(t)(−d1 + e1x1(t)),
(2.5)

and the deterministic one{
ẋ2(t) = x2(t)(a2 − b2x2(t) − c2y2(t)),

ẏ2(t) = y2(t)(−d2 + e2x2(t)),
(2.6)

where gi = g(i) for i = 1, 2 and g = a, b, c, d, e.
Since (ξt) takes values in a two-element set E, if the solution of the system

(2.4) satisfies the system (2.5) on the interval (τn−1, τn), then it must satisfy the
system (2.6) on the interval (τn, τn+1) and vice versa. Therefore, (x(τn), y(τn)) is
the switching point which plays the terminal point of one system and simultaneously
the initial condition of the other. The relationship between the system (2.5) and
the system (2.6) will determine the trajectory behavior of the system (2.4).

The case where b1 = b2 = 0 has been studied in [13] where it has shown that the
dynamics of the solution is very chaotic. In this paper, we focus only on the case
b1 > 0 and b2 > 0.
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It is well-known that the systems (2.5) and (2.6) respectively have the rest points

x∗
i =

di

ei
, y∗

i =
aiei − bidi

ciei
, i = 1, 2, (2.7)

and their global dynamics depend on these rest points. Concretely, if y∗
i > 0 then

the ith-rest point is asymptotically stable, i.e., lim
t→∞

(xi(t), yi(t)) = (x∗
i , y

∗
i ) when

xi(0) > 0, yi(0) > 0. If y∗
i ≤ 0 then lim

t→∞
(xi(t), yi(t)) =

(
ai

bi

, 0
)

for i = 1, 2.

The behavior of two boundary equations is easy to be studied. In the case
where the prey is absent, the quantity v(t) of predator at the time t satisfies the
equation v̇ = −d(ξt)v. Thus, v(t) decreases exponentially to 0. Similarly, without
the predator, the quantity u(t) of the prey at the time t satisfies the logistic equation

u̇ = u
(
a(ξt) − b(ξt)u

)
, u(0) > 0. (2.8)

To simplify notations, we put

h1 = h1(u) = u(a1 − b1u), h2 = h2(u) = u(a2 − b2u),

I = [u∗, u
∗] where u∗ = min{a1/b1, a2/b2} and u∗ = max{a1/b1, a2/b2}.

It is known that (see [6]) (ξt, u(t)) is a Markov process with the infinitesimal operator
{

Lf(1, u) = −α(f(1, u) − f(2, u)) + h1(u) d
duf(1, u),

Lf(2, u) = β(f(1, u) − f(2, u)) + h2(u) d
duf(2, u),

with f(i, x) to be a function defined on E × (0,∞), continuously differentiable in x.
The stationary density (µ1, µ2) of (ξt, u(t)) can be found from the Fokker-Planck
equation {

−αµ1(u) + βµ2(u) − d
du [h1µ1(u)] = 0,

αµ1(u) − βµ2(u) − d
du [h2µ2(u)] = 0.

(2.9)

This equation has a unique solution

µ1(u) =
F (u)

h1(u)

[
X(u0) + βm

∫ u

u0

1

F (x)h2(x)
dx

]
, (2.10)

µ2(u) =
F (u)

h2(u)

[
m − X(u0) + αm

∫ u

u0

1

F (x)h1(x)
dx

]
, (2.11)

where the constants m and X(u0) are chosen such that

µ1(u) ≥ 0, µ2(u) ≥ 0,

∫

I

(
pµ1(u) + qµ2(u)

)
du = 1.

Further,

lim inf
t→∞

u(t) = u∗; lim sup
t→∞

u(t) = u∗, (2.12)

and by the law of large numbers, for any continuous function f : E × R → R with
∫

I

(
pf(1, u)µ1(u) + qf(2, u)µ2(u)

)
du < ∞,

we have

lim
t→∞

1

t

∫ t

0

f(ξs, u(s)) ds =

∫

I

(
pf(1, u)µ1(u) + qf(2, u)µ2(u)

)
du. (2.13)

In fact, we can calculate the explicit formula for the stationary densities µ1(u),
µ2(u) but in practice, it is not useful. To study some their properties, we had better
use the simulation method.
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3. Dynamic behavior of the solutions. Let (x0, y0) ∈ R
2
+. Denote by (x(t, x0,

y0), y(t, x0, y0)) the solution of (2.4) satisfying the initial condition (x(0, x0, y0), y(0,
x0, y0)) = (x0, y0). For the sake of simplification, we write (x(t), y(t)) for (x(t, x0, y0),
y(t, x0, y0)) if there is no confusion. Denote gmin = min(g1, g2), gmax = max(g1, g2)
for g = a, b, c, d, e. A function f defined on [0,∞) is said to be ultimately bounded
above (respectively, ultimately bounded below) by a if lim supt→∞ f(t) < a (respec-
tively, lim inft→∞ f(t) > a).

Proposition 3.1. The system (2.4) is dissipative.

Proof. From the first equation of the system (2.4) we see that whenever x(t) ≥ x =:
max{a1

b1
, a2

b2
}, x(t) is decreasing in t. Therefore, x(t) is ultimately bounded above

by x. That is, x(t) < x ∀ t > t0 for some t0 > 0. Denote y = max{ 2a1

c1
, 2a2

c2
} and

k = −max{ 2e1

c1
, 2e2

c2
}. Since −ci + ai−bix

y < 0 when 0 < x < x and y > y,

y(−di + eix) < kx(ai − bix − ciy) ∀ 0 < x < x, y > y, i = 1, 2.

This means that the vector fields on the straight segment AB joining two points
A = (x, y) and B = (0, y−kx) direct into the domain H limited by the straight lines
x = 0, x = x, y = 0 and the segment AB. Further, it is easy to see that there exists
a t0 > 0 such that (x(t0), y(t0)) ∈ H which implies (x(t), y(t)) ∈ H for any t > t0.
Thus, we conclude that the system (2.4) is dissipative. The proof is complete.

Proposition 3.2. lim supt→∞ x(t) ≥ min{x∗
1, x

∗
2,

a1

b1
, a2

b2
}.

Proof. Suppose in the contrary that lim supt→∞ x(t) < min{x∗
1, x

∗
2,

a1

b1
, a2

b2
}. With

this assumption, there are δ > 0, ε > 0 and t1 > 0 satisfying biδ − ciε > 0, i = 1, 2
and x(t) < min{x∗

1, x
∗
2,

a1

b1
, a2

b2
} − δ for all t ≥ t1. From the second equation of the

system (2.4), it follows that y(t) decreases exponentially in t (t ≥ t1). Therefore,
there is t2 > t1 such that y(t) < ε for any t > t2. Hence, a(ξt)−b(ξt)x(t)−c(ξt)y(t) >

a(ξt)−b(ξt)
(a(ξt)

b(ξt)
−δ

)
−c(ξt)ε > 0 for any t > t2. This implies that limt→∞ x(t) = ∞

which is impossible since x(t) is bounded.

Proposition 3.3. There exists a positive number xmin, independent from the choice
of (x0, y0) ∈ R

2
+, such that x(t) is ultimately bounded below by xmin. This means

that there is t3 > 0 such that x(t) ≥ xmin for all t ≥ t3.

Proof. Denote ymax = y−kx where k, y, x are mentioned in the proposition 3.1. By
virtue of the proposition 3.2, there exists t3 > 0 such that x(t3) > 1

2 min{x∗
1, x

∗
2,

a1

b1
,

a2

b2
}. Let 0 < ε ≤ 1

2 min{x∗
1, x

∗
2,

a1

b1
, a2

b2
} such that δ1 = −dmin + εemax < 0. If

x(t) ≥ ε for t > t3 then the proposition is proved. Otherwise, x(t) < ε for a t > t3.
Let h1 = inf{s > t3 : x(s) < ε}. We see that if x(t) ≤ ε for t ∈ (h1, h2) then
ẏ = y(−d + ex) ≤ y(−dmin + emaxε) = δ1y for all t ∈ (h1, h2) which implies that

y(t) ≤ y(h1) exp{δ1(t − h1)} ≤ ymax exp{δ1(t − h1)}, ∀t ∈ (h1, h2).

Hence,

ẋ = x(a − bx − cy) ≥ x(amin − bmaxx − cmaxymax exp{δ1(t − h1)}), ∀t ∈ (h1, h2).
(3.1)

Putting

n(t) =

t∫

h1

(amin − cmaxymax exp{δ1(s − h1)})ds, N(t) =

t∫

h1

exp{n(s)}ds,
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by comparison theorem we get

x(t) ≥
ε exp{n(t)}

1 + εbmaxN(t)
, ∀t ∈ (h1, h2).

Let

α = min
t>h1

ε exp{n(t)}

1 + εbmaxN(t)
> 0.

It is clear that α does not depend on (x(0), y(0)) and h1. Let xmin = min{α, ε} we
see that x(t) > xmin for all t > t3. The proof is complete.

Denote

λ :=

∫

I

(
p(−d1 + e1u)µ1(u) + q(−d2 + e2u)µ2(u)

)
du. (3.2)

Proposition 3.4.

a) If λ > 0 then there is a positive number δ such that lim supt→∞ y(t, x0, y0) > δ
with probability 1.

b) If λ < 0 we have limt→∞ y(t, x0, y0) = 0 with probability 1.

Proof. Let u(t) be the solution of (2.8) with u(0) = x(0). By virtue of the inequality

ẋ = x(a − bx − cy) ≤ x(a − bx)

and the comparison theorem we have u(t) ≥ x(t) for any t ≥ 0.
a) Suppose in the contrary that for any δ > 0, there is a set Bδ ∈ F with
P (Bδ) > 0 and lim supt→∞ y(t, ω) < δ for any ω ∈ Bδ. By the proposition
3.3, lim inft→∞ x(t, ω) ≥ xmin a.s. This means that there is t4 > 0 such that

0 < c(ξt(ω))y(t,ω)
x(t,ω) < m1δ for any t > t4 and ω ∈ Bδ where m1 =

cmax

xmin
. Putting

z = 1
x − 1

u , we obtain ż = −az + cy
x . Therefore,

z(t) = e−A(t)(z(t4) +

∫ t

t4

eA(s) c(ξs)y(s)

x(s)
ds)

< e−A(t)(z(t4) + m1δ

∫ t

t4

eA(s) ds), A(t) =

∫ t

t4

a(ξs)ds.

This inequality implies that lim supt→∞ z(t) < m2δ where m2 = m1/amin. Hence, it
is easy to see that there is a constant m3 such that lim supt→∞ | emax(x(t, x0, y0)−
u(t, x0, y0)) |< m3δ. Further, from the equality

ẏ(t)

y(t)
= −d(ξt) + e(ξt)x(t) = −d(ξt) + e(ξt)u(t) + e(ξt)(x(t) − u(t)),
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it follows that

lim sup
t→∞

ln y(t) − ln y(0)

t

= lim sup
t→∞

1

t

(∫ t

t4

(−d(ξs) + e(ξs)u(s) + e(ξs)(x(s) − u(s))) ds
)

≥ lim inf
t→∞

1

t

(∫ t

t4

(−d(ξs) + e(ξs)u(s) + e(ξs)(x(s) − u(s))) ds
)

≥ lim inf
t→∞

1

t

∫ t

t4

(−d(ξs) + e(ξs)u(s)) ds + lim inf
t→∞

1

t

( ∫ t

t4

e(ξs)(x(s) − u(s)) ds
)

≥ lim inf
t→∞

1

t

∫ t

t4

(−d(ξs) + e(ξs)u(s)) ds − m3δ.

for any ω ∈ Bδ. Using (2.13) we have

lim
t→∞

1

t

∫ t

t4

(−d(ξs) + e(ξs)u(s)) ds =

∫

I

(
p(−d1 + e1u)µ1(u) + q(−d2 + e2u)µ2(u)

)
du = λ > 0 a.s.

Let δ < λ
2m3

, we have lim supt→∞
ln y(t)−ln y(0)

t > λ− λ
2 > 0. This is a contradiction

because lim supt→∞
ln y(t)−ln y(0)

t ≤ 0 for ω ∈ Bδ. Thus, lim supt→∞ y(t, x0, y0) >
δ > 0 a.s.
b) Suppose that λ < 0. From above we see that

ẏ(t)

y(t)
= −d(ξt) + e(ξt)x(t) ≤ −d(ξt) + e(ξt)u(t).

Similar a) we obtain

lim sup
t→∞

ln y(t) − ln y(0)

t
≤ lim sup

t→∞

1

t

( ∫ t

t4

(−d(ξs) + e(ξs)u(s)) ds
)

= λ < 0,

which implies that lim supt→∞ y(t) = 0. The proof is complete.

Corollary 3.5. If λ > 0 then (2.4) is persistent with probability 1.

Proof. By combining the propositions 3.1 and 3.4.

We give the explicit formula to calculate λ.
Denote λi = ai

bi

− di

ei

, i = 1, 2.

Proposition 3.6.

λ = e1λ1p + e2λ2q. (3.3)

Proof. Without loss of generality, we suppose that ξ0 = 1 with probability 1. By
the proposition 3.4 we have

λ = lim
n→∞

1

τ2n

∫ τ2n

0

(−d(ξs) + e(ξs)u(s))ds (a.s).
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From the relation

−d(ξs) + e(ξs)u(s) = −d(ξs) +
e(ξs)

b(ξs)
a(ξs) −

e(ξs)

b(ξs)
(a(ξs) − b(ξs)u(s))

= −d(ξs) +
e(ξs)

b(ξs)
a(ξs) −

e(ξs)

b(ξs)

u̇(s)

u(s)

= −d(ξs) +
e(ξs)

b(ξs)
a(ξs) +

(e2

b2
−

e1

b1

) u̇(s)

u(s)
1{ξs=1} −

e2

b2

u̇(s)

u(s)
,

it follows that
∫ τ2n

0

(−d(ξs) + e(ξs)u(s))ds

=

∫ τ2n

0

(−d(ξs) +
e(ξs)

b(ξs)
a(ξs))ds +

∫ τ2n

0

((e2

b2
−

e1

b1

) u̇(s)

u(s)
1{ξs=1} −

e2

b2

u̇(s)

u(s)

)
ds

=

∫ τ2n

0

(−d(ξs) +
e(ξs)

b(ξs)
a(ξs))ds +

(
e2

b2
−

e1

b1

) n−1∑

k=0

ln
u(τ2k+1)

u(τ2k)
−

e2

b2
ln

u(τ2n)

u(0)
.

Applying the law of large numbers we obtain

lim
n→∞

1

τ2n

∫ τ2n

0

(−d(ξs) +
e(ξs)

b(ξs)
a(ξs))ds

= (−d1 +
e1

b1
a1)p + (−d2 +

e2

b2
a2)q = e1λ1p + e2λ2q (a.s).

Therefore,

λ = lim
n→∞

1

τ2n

∫ τ2n

0

(−d(ξs) + e(ξs)u(s))ds

= e1λ1p + e2λ2q + lim
n→∞

1

τ2n

{(
e2

b2
−

e1

b1

) n−1∑

k=0

ln
u(τ2k+1)

u(τ2k)
−

e2

b2
ln

u(τ2n)

u(0)

}
.

Because u(t) is bounded above and below by positive constants we get

lim
n→∞

1

τ2n

e2

b2
ln

u(τ2n)

u(0)
= 0.

Moreover, since

u(τ2k+2) =
u(τ2k) exp{a1σ2k+1 + a2σ2k+2}

1 + u(τ2k)[( b1
a1

− b2
a2

) exp{a1σ2k+1} + b2
a2

exp{a1σ2k+1 + a2σ2k+2}]
,

it follows that (u2k)k∈N is a Markov process with the transition operator

P1f(u) = E {f(u2k+2) | u2k = u}

= E

{
u exp{a1σ2k+1 + a2σ2k+2}

1 + u[( b1
a1

− b2
a2

) exp{a1σ2k+1} + b2
a2

exp{a1σ2k+1 + a2σ2k+2}]

}

= E

{
u exp{a1σ1 + a2σ2}

1 + u[( b1
a1

− b2
a2

) exp{a1σ1} + b2
a2

exp{a1σ1 + a2σ2}]

}
,
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where f is a bounded, continuous function defined on R+. Similarly, (u2k+1)k∈N is
a Markov process with the transition operator

P2f(u) = E {f(u2k+3) | u2k+1 = u}

= E

{
u exp{a1σ2k+3 + a2σ2k+2}

1 + u[( b1
a1

− b2
a2

) exp{a1σ2k+3} + b2
a2

exp{a1σ2k+3 + a2σ2k+2}]

}

= E

{
u exp{a1σ1 + a2σ2}

1 + u[( b1
a1

− b2
a2

) exp{a1σ1} + b2
a2

exp{a1σ1 + a2σ2}]

}
.

Hence, by the law of large numbers

lim
n→∞

1

τ2n

n−1∑

k=0

lnu(τ2k+1) = lim
n→∞

1

τ2n

n−1∑

k=0

lnu(τ2k).

By combining these results we obtain (3.3). The proposition is proved.

Next part we will describe subsets of ω−limit set of the system (2.4). Let
(x1(t, x, y), y1(t, x, y)) be the solution of (2.5) and (x2(t, x, y), y2(t, x, y)) be the
solution of (2.6) starting in the point (x, y) ∈ R

2
+. Denote by Uε(x, y) the ε- neigh-

borhood of (x, y) and Mi = (x∗
i , max{y∗

i , 0}) for i = 1, 2. Let K ⊂ R
2
+ be a compact

set.
Let ω(x0, y0) be the ω-limit set of the solution (x(t, x0, y0), y(t, x0, y0)) of the

system (2.4).

Lemma 3.7. For any δ1 > 0, there is a T1 = T1(δ1) > 0 such that if (x0, y0) ∈ K
then (x1(t, x0, y0), y1(t, x0, y0)) ∈ Uδ1

(M1) and (x2(t, x0, y0), y2(t, x0, y0)) ∈ Uδ1
(M2)

for any t ≥ T1.

Proof. Consider the system (2.5), if (x, y) ∈ K then limt→∞(x1(t, x, y), y1(t, x, y)) =
M1. Therefore, there exists a Txy such that

(x1(t, x, y), y1(t, x, y)) ∈ Uδ1/2(M1) for all t ≥ Txy.

By the continuity of the solutions in the initial conditions, there is a neighborhood
Uxy of (x, y) such that for any (u, v) ∈ Uxy we have

(x1(t, u, v), y1(t, u, v)) ∈ Uδ1
(M1) for all t ≥ Txy + 1.

Since K is compact and the family {Uxy : (x, y) ∈ K} is an open covering of K,
by Heine-Borel lemma, there is a finite subfamily, namely {Uxiyi

, i = 1, 2, ..., n},
which covers K. Let T ′

1 = max1≤i≤n{Txiyi
+ 1}. We see that if (x0, y0) ∈ K then

(x1(t, x0, y0), y1(t, x0, y0)) ∈ Uδ1
(M1) for any t ≥ T ′

1.
Similarly, we can choose T ′′

1 > 0 such that if (x0, y0) ∈ K then (x2(t, x0, y0),
y2(t, x0, y0)) ∈ Uδ1

(M2) for any t ≥ T ′′
1 . By putting T1 = max{T ′

1, T
′′
1 } the lemma

is proved.

Lemma 3.8. For any δ3 > 0, there exists a δ2 > 0 such that if d((x0, y0), (u, v)) <
δ2, (x0, y0) ∈ K and (u, v) ∈ K then

d((x1(t, x0, y0), y1(t, x0, y0)); (x1(t, u, v), y1(t, u, v))) < δ3 for all t ≥ 0,

d((x2(t, x0, y0), y2(t, x0, y0)); (x2(t, u, v), y2(t, u, v))) < δ3 for all t ≥ 0.

where d(A, B) denote the distance between two points A and B.

Proof. This lemma follows from the lemma 3.7 and the continuous dependence of
the solutions on the initial data.
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Let γ1 (respectively, γ2) be the orbit of the solution of (2.5) (respectively, of
(2.6)) with the initial point M2 (respectively, with the initial point M1).

Lemma 3.9. For any δ5 > 0 and (x, y) ∈ γ2, there exists a δ4 > 0, T2 > 0 and
t2 > 0 such that if d((u, v), M1) < δ4 then d((x2(t, u, v), y2(t, u, v)), (x, y)) < δ5 for
all T2 ≤ t ≤ T2 + t2.
A similar formulation for the solution curves γ1 of (2.5) is valid.

Proof. This lemma follows from the continuous dependence of the solutions on the
initial data.

Without loss of generality, suppose that ξ0 = 1 with probability 1.

Theorem 3.10.

a) Suppose that λ > 0

1. If y∗
1 > 0 and y∗

2 > 0, both the positive orbit γ1 of the solution (x1(t, x
∗
2, y

∗
2),

y1(t, x
∗
2, y

∗
2)) of the system (2.5); γ2 of the solution (x2(t, x

∗
1, y

∗
1), y2(t, x

∗
1, y

∗
1))

of system (2.6) are subsets of ω(x0, y0). Moreover,
2. Any positive orbit γ2 of the solution (x2(t, x, y), y2(t, x, y)) of the system (2.6),

starting in a point (x, y) ∈ γ1 at t = 0, is a subset of ω(x0, y0).
Similarly, any positive orbit γ̃1 of the solution (x1(t, x̃, ỹ), y1(t, x̃, ỹ)) of the
system (2.5), starting in a point (x̃, ỹ) ∈ γ2 at t = 0, is a subset of ω(x0, y0).

3. If y∗
1 > 0 and y∗

2 < 0, then we have a similar result as in 1.; provided that
(x∗

2, y
∗
2) is replaced by (a2

b2
, 0) and γ1 is replaced by closure of γ̃1 - says γ̂1.

Concurrently, γu ⊂ ω(x0, y0) with γu to be the ω-limit set of (u(t), 0), here
u(t) is the solution of the system (2.8).

b) If λ < 0, y∗
1 < 0 and y∗

2 < 0 then γu ≡ ω(x0, y0).

Proof. Let

xn = x(τn, x0, y0), yn = y(τn, x0, y0),

Fn
0 = σ(τk : k ≤ n), F∞

n = σ(τk − τn : k > n).

We see that (xn, yn) is Fn
0 −adapted. Moreover, if ξ0 is given then F∞

n is indepen-
dent of Fn

0 .
a) From the proposition 3.1, there are non-random constants ∆ > 0 and t0 such
that x(t, x, y) < ∆ and y(t, x, y) < ∆ for any t ≥ t0 with probability 1. Without loss
of generality, we can suppose that t0 = 0. Since λ > 0, by virtue of the proposition
3.4, there is δ > 0 such that x2k ≥ δ and y2k ≥ δ for infinitely many time. Let
K = [δ, ∆] × [δ, ∆]. We construct a sequence

η1 = inf{2k : x2k ≥ δ, y2k ≥ δ},

η2 = inf{2k > η1 : x2k ≥ δ; y2k ≥ δ},

· · ·

ηn = inf{2k > ηn−1 : x2k ≥ δ; y2k ≥ δ} . . . ,

η1 < η2 < ... < ηk < ... is a sequence of Fn
0 − stopping times (see [8]). Moreover,

{ηk = n} ∈ Fn
0 for any k, n. Thus, the event {ηk = n} is independent of F∞

n .
Because λ > 0 it yields ηn < ∞ a.s. for any n. With δ1, T1 > 0 in the lemma 3.7
we put

Ak = {σηk+1 ≥ T1}, k = 1, 2, ...
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We see that

P(Ak) = P{σηk+1 ≥ T1} =
∞∑

n=0

P{σηk+1 ≥ T1 | ηk = 2n}P{ηk = 2n}

=

∞∑

n=0

P{σ2n+1 ≥ T1 | ηk = 2n}P{ηk = 2n} =

∞∑

n=0

P{σ2n+1 ≥ T1}P{ηk = 2n}

=

∞∑

n=0

P{σ1 ≥ T1}P{ηk = 2n} = P{σ1 ≥ T1} > 0.

Similarly,

P(Ak ∩ Ak+1) = P{σηk+1 ≥ T1, σηk+1+1 ≥ T1}

=
∑

0≤l<n<∞

P{σηk+1 ≥ T1, σηk+1+1 ≥ T1 | ηk = 2l, ηk+1 = 2n}

× P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ2l+1 ≥ T1, σ2n+1 ≥ T1 | ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ2n+1 ≥ T1}P{σ2l+1 ≥ T1 | ηk = 2l, ηk+1 = 2n}

× P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ1 ≥ T1}P{σ2l+1 ≥ T1 | ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

= P{σ1 ≥ T1}
∑

0≤l<n<∞

P{σ2l+1 ≥ T1 | ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

= P{σ1 ≥ T1}
∞∑

l=0

P{σ2l+1 ≥ T1 | ηk = 2l}P{ηk = 2l} = P{σ1 ≥ T1}
2
...

Hence

P(Ak ∪ Ak+1) = 1 − (1 − P{σ1 ≥ T1})2.

Continuing this way we obtain

P
( n⋃

i=k

Ai

)
= 1 − (1 − P{σ1 ≥ T1})

n−k+1.

Thus,

P{σηk+1 ≥ T1 i.o. k} = P
( ∞⋂

k=1

∞⋃

i=k

Ai

)
= lim

k→∞
P

( ∞⋃

i=k

Ai

)
= 1.

From xηk
> δ and yηk

> δ, it follows that if σηk+1 > T1 then (xηk+1, yηk+1) ∈
Uδ1

(x∗
1, y

∗
1) by the lemma 3.7. This relation says that there are infinitely many

n satisfying (x2n+1, y2n+1) ∈ Uδ1
(x∗

1, y
∗
1). Hence, (x∗

1, y
∗
1) ∈ ω(x0, y0). Similarly,

(x∗
2, y

∗
2) ∈ ω(x0, y0).

Consider a point (x, y) ∈ γ2. By virtue of the lemmas 3.8 and 3.9, for any
neighborhood Uδ3

of (x, y) there exists T2, t2, δ2 > 0 such that if (u, v) ∈ Uδ2
(x∗

1, y
∗
1)
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then (x2(t, u, v), y2(t, u, v)) ∈ Uδ3
(x, y), ∀t ∈ [T2, T2 + t2]. Let T1 > 0 be a number

mentioned in the lemma 3.7 with δ1 = δ2. Put

Bk = {σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2]}, k = 1, 2, ...

Then,

P(Bk) = P{σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2]}

=

∞∑

n=0

P{σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2] | ηk = 2n}P{ηk = 2n}

=
∞∑

n=0

P{σ2n+1 ≥ T1, σ2n+2 ∈ [T2, T2 + t2] | ηk = 2n}P{ηk = 2n}

=

∞∑

n=0

P{σ2n+1 ≥ T1, σ2n+2 ∈ [T2, T2 + t2]}P{ηk = 2n}

=
∞∑

n=0

P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]}P{ηk = 2n}

= P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]} > 0.

Similarly,

P(Bk ∩ Bk+1)

= P{σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2], σηk+1+1 ≥ T1, σηk+1+2 ∈ [T2, T2 + t2]}

=
∑

0≤l<n<∞

P{σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2], σηk+1+1 ≥ T1, σηk+1+2 ∈

[T2, T2 + t2] | ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ2l+1 ≥ T1, σ2l+2 ∈ [T2, T2 + t2], σ2n+1 ≥ T1, σ2n+2 ∈ [T2, T2 + t2] |

| ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ2n+1 ≥ T1, σ2n+2 ∈ [T2, T2 + t2]}P{σ2l+1 ≥ T1,

σ2l+2 ∈ [T2, T2 + t2] | ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

=
∑

0≤l<n<∞

P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]}P{σ2l+1 ≥ T1, σ2l+2 ∈ [T2, T2 + t2] |

| ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

= P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]}
∑

0≤l<n<∞

P{σ2l+1 ≥ T1, σ2l+2 ∈ [T2, T2 + t2] |

| ηk = 2l, ηk+1 = 2n}P{ηk = 2l, ηk+1 = 2n}

= P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]}
∞∑

l=0

P{σ2l+1 ≥ T1, σ2l+2 ∈ [T2, T2 + t2] |

| ηk = 2l}P{ηk = 2l}

= (P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]})
2...

Thus,

P(Bk ∪ Bk+1) = 1 − (1 − P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]})2.
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Continuing this way we have

P
( n⋃

i=k

Bi

)
= 1 − (1 − P{σ1 ≥ T1, σ2 ∈ [T2, T2 + t2]})

n−k+1.

Hence,

P{σηk+1 ≥ T1, σηk+2 ∈ [T2, T2 + t2] i.o. k} = P
( ∞⋂

k=1

∞⋃

i=k

Bi

)
= lim

k→∞
P

( ∞⋃

i=k

Bi

)
= 1.

This means that (x, y) ∈ ω(x0, y0). Therefore, γ2 ⊂ ω(x0, y0). Similarly, γ1 ⊂
ω(x0, y0). Thus, we get 1.

To prove 2., let (x̃, ỹ) ∈ γ2 and γ̃1 be the orbit of the solution of (2.5) start-
ing in (x̃, ỹ). We consider (ũ, ṽ) ∈ γ̃1. By the lemmas 3.8 and 3.9, for any
neighborhood Uδ6

(ũ, ṽ), there exists T3, t3, T4, t4, δ4, δ5 > 0 such that if (u, v) ∈
Uδ4

(x∗
1, y

∗
1) and h ∈ [T3, T3 + t3], we have ((x2(h, u, v), y2(h, u, v)) ∈ Uδ5

(x̃, ỹ).
Moreover, (x1(t, u, v), y1(t, u, v)) ∈ Uδ6

(ũ, ṽ) for any t ∈ [T4, T4 + t4], where (u, v) =
((x2(h, u, v), y2(h, u, v)). Let T1 > 0 be a number mentioned in the lemma 3.7 with
δ1 = δ4. By the same way as above we obtain

P{σηk+1 ≥ T1, σηk+2 ∈ [T3, T3 + t3], σηk+3 ∈ [T4, T4 + t4]; i.o. k > 0} = 1.

This implies that (ũ, ṽ) ∈ ω(x0, y0) and γ̃1 ⊂ ω(x0, y0). Similarly, γ2 ⊂ ω(x0, y0).
To get 3. we note that (x∗

1, y
∗
1) ∈ ω(x0, y0), γ2 ⊂ ω(x0, y0), γ̃1 ⊂ ω(x0, y0) by

1. and 2. Concurrently, (a2

b2
, 0) belongs to the closure of γ2 thus (a2

b2
, 0) ∈ ω(x0, y0)

and γ̂1 is the closure of γ̃1 then γ̂1 ⊂ ω(x0, y0). By the similar ways, we can show
that

[
(a1

b1
, 0), (a2

b2
, 0)

]
:= γu is the ω-limit set of (u(t), 0).

Consider any (x̃, ỹ) ∈ γu. For any neighborhood Vε2
(x̃, ỹ), there exists T5, t5, ε1 >

0 such that if (u, v) ∈ Vε1
(a2

b2
, 0) then (x1(t, u, v), y1(t, u, v)) ∈ Vε2

(x̃, ỹ), ∀t ∈

[T5, T5 + t5]. We set

ρ1 = inf{2k : (x2k, y2k) ∈ Vε1
(
a2

b2
, 0)},

ρ2 = inf{2k > ρ1 : (x2k, y2k) ∈ Vε1
(
a2

b2
, 0)},

· · ·

ρn = inf{2k > ρn−1 : (x2k, y2k) ∈ Vε1
(
a2

b2
, 0)} . . .

Since (a2

b2
, 0) ∈ ω(x0, y0), it follows that ρn < ∞ a.s. for any n. By similar way, we

get (x̃, ỹ) ∈ ω(x0, y0) and γu ⊂ ω(x0, y0).
b) By the proposition 3.4, if λ < 0, we get lim

t→∞
y(t, x0, y0) = 0. Therefore,

behavior of the system (2.4) is described by system (2.8). The proof of the theorem
3.10 is complete.

4. The existence of invariant measures. In this section, we study the existence
of an invariant measure for Markov process (x(t), y(t), ξ(t)). From now on, we
assume y∗

1 > 0, y∗
2 > 0.

Proposition 4.1. There exists a non-random positive number ymin > 0 such that
y(t) is ultimately bounded below by ymin for all t ≥ 0.
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Proof. Without loss of generality, suppose that x∗
1 ≤ x∗

2. From the assumption
y∗
1 > 0, y∗

2 > 0 and proposition 3.6, it is easy to see that λ > 0. Let ε0 > 0 be a
positive number satisfying ε1 = min{a1−b1x

∗
1−cmaxε0, a2−b2x

∗
1−cmaxε0} > 0. By

the theorem 3.10, the solution (x(t), y(t)) visits any neighborhood of the rest point
(x∗

1, y
∗
1). Therefore, we can suppose that x(t) ≥ xmin ∀ t ≥ 0 and ε0 < y(0) < y∗

1 .
Let x(t) < x∗

1 and y(t) ≤ ε0 for h0 ≤ t ≤ h1. From the inequality

ẋ(t) = x(t)(a − bx(t) − cy(t)) ≥ ε1x(t), t ∈ (h0, h1),

it follows that

x(t) ≥ x(h0) exp{ε1(t − h0)} ≥ xmin exp{ε1(t − h0)}. (4.1)

Denote T = 1
ε1

ln
x∗

1

xmin
and ε2 = ε0 exp{−dminT }. In the case where y(t) ≥ ε0

for any t > 0 we choose ymin = ε0 to prove the proposition. Otherwise, there
is a h2 > 0 such that y(h2) = ε0. Let τ = inf{t > h2 : x(t) = x∗

1} (with the
convention inf ∅ = h2). By virtue of (4.1) we see that τ ≤ h2 + T . Therefore, from
ẏ(t) = y(t)(−d + cx(t)) ≥ −dminy(t), it follows that y(τ) ≥ ε0 exp{−dminT } = ε2.

Let (x2(t), y2(t)) be the solution of (2.6) satisfying x2(0) = xmin, y2(0) = ε2.
Put ymin = inf{y2(t) : t > 0}. It is easy to see that ymin = y2(τ

∗) > 0 where
τ∗ = inf{s > 0 : x2(s) = x∗

2}. We show that y(t) ≥ ymin for any t ≥ h2. Indeed,
y(t) is increasing whenever x(t) ≥ x∗

2. In this case y(t) > ymin. If x(t) < x∗
1

we get y(t) ≥ y(τ) ≥ ε2 > ymin. We consider the case x∗
1 ≤ x(t) ≤ x∗

2. Let
γ = {(x(t), y(t)) : t ≥ h2} and γ2 = {(x2(t), y2(t)) : 0 < t < τ∗}. We see that when
ξ(t) = 1 then ẏ(t) > 0 because x(t) > x∗

1. If ξ(t) = 2 then ẏ(t) = ẏ2(t). This implies
that γ lies above the solution curve γ2. It means that y(t) > ymin. The proof is
complete.

Proposition 4.2. The system (2.4) is permanent.

Proof. The proof follows from the propositions 3.1, 3.3 and 4.1.

Theorem 4.3. For the Markov process (x(t), y(t), ξt)t≥0, there exists a stationary
distribution.

Proof. For the sake of simplicity, we denote z(t) = (x(t), y(t), ξt). Let P (z, t, A)
is homogeneous stochastically continuous Feller transition function of the Markov
process (z(t))t≥0 where z ∈ R

2
+, i.e., P (z, t, A) = P{z(t) ∈ A | z(0) = z}. For

r > 0, let Ur = {(x, y) ∈ R
2
+ : 1

r ≤ x ≤ r; 1
r ≤ y ≤ r} and Ur = Uc

r × E, where

Uc
R is the complement of Ur in R

2
+ and E = {1, 2}. For r large enough, the set Ur

contains the set {(x, y) ∈ H : x ≥ xmin, y ≥ ymin}, where H is the set mentioned in
the proposition 3.1. Therefore, by virtue of the proposition 4.2, if r is large enough
then limt→∞ P (z0, t,Ur) = 0. Hence,

lim
r→∞

lim
T→∞

1

T

∫ T

0

P (z0, t,Ur)dt = 0.

By the theorem (see [9, pp.72]), Markov process (z(t))t≥0 has a stationary distri-
bution. The proof is complete.

5. Computational results. In this section, we present some numerical simula-
tions. As the first example, we consider the case a1 = 4.2, b1 = 1, c1 = 1.1, d1 =
5, e1 = 1.8, a2 = 6, b2 = 0.8, c2 = 1.3, d2 = 9.4, e2 = 2.5, x(0) = 4, y(0) = 4.3, α =
0.6, β = 0.8, where y∗

1 > 0, y∗
2 > 0. The number of switching is n = 300. The

individual sample paths in the figure 1 illustrate the ω−limit set in the theorem
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3.10 in section 3 and the proposition 4.2; the theorem 4.3 in the section 4. The
figure 2 shows the oscillations of the population sizes x(t) and y(t).

Figure 1. Orbit of system in case y∗
1 > 0, y∗

2 > 0. The solution
moves between the two rest points (2.77, 1.29) and (3.76, 2.30) as
switching occurs.

Figure 2. The oscillations of x(t) and y(t) in case y∗
1 > 0, y∗

2 > 0.

The next examples concern with the numerical solutions of systems where y∗
1 >

0, y∗
2 < 0. On the case A of the figure 3, we compute with a1 = 7.2, b1 = 2.1, c1 =

0.8, d1 = 3.2, e1 = 1.6, a2 = 6.3, b2 = 1.1, c2 = 2.5, d2 = 5.8, e2 = 0.9, x(0) =
0.8, y(0) = 3.3, α = 0.5, β = 0.4 and the number of switching n=500. In this case
λ ≈ 0.66 > 0. As is seen lim supt→∞ y(t) > 0 but lim inft→∞ y(t) = 0.

For the case B, the parameters are a1 = 4.2, b1 = 0.9, c1 = 0.4, d1 = 6.5, e1 =
1.8, a2 = 5.8, b2 = 2, c2 = 1.5, d2 = 7.3, e2 = 1.1, x(0) = 4.5, y(0) = 2.6, α =
0.3, β = 0.6, number of switching n = 300. Since λ ≈ −0.1 < 0, it is seen that
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limt→∞ y(t) = 0 (according to the proposition 3.4). Thus the ω-limit set of all
solutions starting in int R

2
+ is the segment [(4.7, 0); (2.9, 0)] (see the theorem 3.10).

Figure 3. Orbit of system in case y∗
1 > 0, y∗

2 < 0.

We sketch the oscillations of x(t) and y(t) in these cases in the figure 4 and 5.

Figure 4. The oscillations of x(t) and y(t) in case A.
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Figure 5. The oscillations of x(t) and y(t) in case B.

6. Discussion and conclusion. This work provides some results about the as-
ymptotic behavior of a system of two coupled deterministic predator-prey models
switching at random. The mathematical analysis presented in this model shows
that according to the value of some number λ, one can make suitable predictions
about the asymptotic behavior of the overall predator-prey system.

The formula for the value λ is explicitly computed. This factor plays an im-
portant role in practice because by analyzing the coefficients, we understand the
behavior of the systems. However, as is seen in (3.3), the coefficient c is absent
in this formula. The matter of fact is that when the catch ability c is great, the
density x(t) of the prey is reduced which implies that the density y(t) of the preda-
tor decreases sharply because they are “hungry.” In this situation, the prey has a
chance to be recovered. A similar situation occurs when c is small. Therefore, the
persistence of the system (2.4) does not depend on c.

We consider an ecology system where there are two species related by predator-
prey relation. Suppose that the evolution of every species depends on the quantity
of rainfall for every period. If the rainfall is sufficient (good state), the catch ability
of the predator is good and the quantity of every species asymptotes to the positive
values (the prey and predator co-exist). Whenever the rainfall is small (bad state),
the hunting potential of the predator becomes very weak and the amount of predator
gets smaller with increasing of time (the predator vanishes). Suppose that the
rainfall is in a stationary regime (switching stationarily between dry season and
rainfall one). If the two states are good, i.e., both y∗

1 > 0 and y∗
2 > 0, although the

quantity of two species is chaotic, but the system is still permanent. Consequently,
none of species is extinct. When there is at least a system having the bad state,
i.e., either y∗

1 < 0 or y∗
2 < 0 we see that lim inft→∞ y(t) = 0. Depending on the sign

of the value λ, the quantity of the predator y(t) can be recovered or not. In case
λ > 0 we have lim supt→∞ y(t) > 0, i.e., the amount of the predator is recovered (of
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course in the rainfall season). If λ < 0 we have limt→∞ y(t) = 0, i.e., the predator
vanishes.

However, in reality, when the amount of a species is smaller than a threshold then
in fact we consider this species disappears. Thus, the estimate lim inf t→∞ y(t) = 0
tells us that in a predator-prey system developing under the influence of random
environment, if there is at least a bad situation, the predator must be vanished in
this system. This conclusion warns us to have a timely decision to protect

species in our eco-system.

The figures 1 and 3 (case A) suggest that when λ > 0 the dynamics of the
predator-prey system leads to a nice attractor. Moreover, in this case it seems
that the system (2.4) is asymptotically stable and the stationary distribution of the
solutions is unique. So far these are still open problems. As a perspective, it seems
interesting to extend the previous work to more realistic functional response such as
the Holling II functional response: h(x) = ax

1+bx which exhibits a saturation effect
at large prey densities.
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