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Abstract. Drug residence time in “compartmentalized” human body system

had been studied from both deterministic and Markovian perspectives. How-
ever, probability and probability density functions for a drug molecule to be (1)

in any compartment of study interest, (2) with any defined inter-compartment

traveling route, and (3) with/without specified residence times in its visited
compartments, has not been systemically reported. In Markovian view of com-

partmental system, mathematical solutions for the probability or probability
density functions, for a drug molecule with any defined inter- compartment

traveling routes in the system and/or with specified residence times in any

visited compartments, are provided. Matrix convolution is defined and thus
employed to facilitate methodology development. Laplace transformations are

used to facilitate convolution operations in linear systems. This paper shows

that the drug time-concentration function can be decomposed into the sum-
mation of a series of component functions, which is named as convolution

expansion. The studied probability or probability density functions can be po-

tentially engaged with physiological or pharmacological significances and thus
be used to describe a broad range of drug exposure-response relationships.

1. Introduction. To explore drug absorption, distribution, metabolism, and elim-
ination of drug administered into human body, two types of mathematical formu-
lations have been used to describe the dynamic processes. Pharmacokinetics and
Pharmacodynamics, which falls into the category of deterministic compartmental
models, are conventionally used. In contrast, continuous-time Markovian models
with finite number of states, categorized as stochastic models, have also been inves-
tigated as another approach [1, 3, 7, 9, 10, 13, 14, 15]. The theoretical frameworks
have been well established and outlined for Markovian models [11, 12]. Noteworthy,
if the retention time density function cannot be described by a single exponential
function, the stochastic compartmental system will be labeled as “non-Markovian”
or “semi-Markovian.” However, these systems can be expanded to or approximated
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by virtual ordinary Markovian models with more compartments or states using
appropriate transformation rules [12].

Although originated independently from different scientific fields, the determinis-
tic and stochastic formulations are mathematically equivalent in their final expres-
sions to describe pharmacokinetic-pharmacodynamic processes such as drug concen-
tration profile against time. However, stochastic models prompt to the exploration
of the probability and probability density functions of drug residence times and
number of visits to other “states,” equivalent to “compartments” in the language
of pharmacokinetics, before exiting to the system exterior [9, 18, 19, 20, 21]. In this
paper, the quantity of residence time is defined as the time or the cumulative time
for a drug molecule to reside in a chosen compartment during its single or multiple
visits before exiting to other compartments or the system exterior. The drug resi-
dence time in compartment of pharmacological significance is of great importance
in predicting drug efficacy and safety, and can be studied with physiologically based
pharmacokinetic models. A full physiologically based pharmacokinetic model at-
tempts to describe all aspects of a drug’s absorption, distribution and elimination
in terms of organ or regional blood flows, plasma and tissue binding constants, fluid
volumes and pH’s, and passive or active transport capacities, and enzyme affinities,
etc. The area under drug concentration-time curve (AUC) in the target organ, either
determined experimentally or inferred from physiologically based pharmacokinetic
models, has been considered as a superior drug exposure measure to predict drug
responses. However, AUC cannot tell the fraction of drug that has visited the target
organ with residence time bigger than the minimally required incubation time to
allow the drug to exert therapeutic or toxic effect.

Methods capable of deriving probability functions for a drug molecule with cer-
tain visits to other compartments and the probability density functions (PDF’s)
associated with the corresponding residence times can potentially enhance the per-
formances and capabilities of physiologically based pharmacokinetic models. The
residence time or cumulative residence time for a drug molecule in an interested
organ or drug target site, once understood, can potentially provide us with a bet-
ter measure of drug exposure that highly correlates with drug efficacy and safety.
As known in cancer research, the incubation time of cancer cells with anti-cancer
agents such as paclitaxel and doxorubicin determines their potency of cytotoxicity
[6, 22]. As known in anti-infectious disease research, the duration of viral or bacte-
rial exposure to minimally effective drug concentration dictates whether or not the
treatment is successful. As generally known in immunology, number of visits of an
antigen or immunogen to lymphoid organs or B cells may be a better causal metric
for the extent of immune responses. Consequently, PDF’s and probability functions
associated with residence times and defined inter-compartment traveling routes can
be further adopted to explain pharmacological efficacy and safety in many cases
held in the fields of anti-caner and anti-infectious disease research.

The residence time for a drug molecule to reside in the whole body with one or
multiple elimination compartment or compartments has been researched [5, 11, 12,
19, 20]. For compartmental models, Yu and Wehrly presented the method of using
saddlepoint approximation to approximate the densities for the residence time us-
ing the moment generating function (MGF) for a two-compartment model [21]. To
a certain degree of complexity for pharmacokinetist and clinicians, this approach
can be extended to multi-compartment (> 2) models using cofactor rule [11]. For
circulatory models, research efforts have been focused on the drug residence time
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in the whole system or human body. In comparison to the approaches used in com-
partmental models, Laguerre series approximation has been used to construct the
residence-time density by Smith et al. [18], given that the first four moments of the
cycle time can be made available by taking advantage of the Laplace-Stieltjes trans-
forms of residence time and cycle time. However, probability and probability density
functions for a drug molecule, with a joint numbers of visits to multiple compart-
ments, a specified inter-compartment traveling route, a joint cumulative residence
times in different compartments, and the specified residence times in conjunction to
the number of visits or specified traveling route etc in a multi-compartment (> 2)
system, have not been reported.

This paper will adopt stochastic Markovian view of pharmacokinetic system and
provide new approaches to capture the PDF’s of residence time and probability
functions as discussed. The proposed methodologies will render exact mathematical
expressions for probability functions and PDF’s, which is different from conventional
approximation forms such as saddlepoint approximation. They can also be flexibly
used to address any arbitrary probability functions and PDF’s of study interest.
The newly developed methodologies, compared with published works, are capable
of addressing (1) probability functions for a drug molecule to travel along any
defined inter- compartment route or (2) the PDF’s for a drug molecule to sojourn
in a single or any series of compartments with specific residence times during any
interested inter-compartment traveling route or any routes.

2. Notations and theoretical frameworks for stochastic Markovian mod-
els. The theoretical frameworks for stochastic Markovian models and the associated
notations are outlined as follows for an n-compartment model.

1. Pij(t), with i, j = 1, . . . , n, denotes the probability for a random drug molecule
to start from compartment i and end in compartment j after an elapsed time
t. Noteworthy, uppercase P indicates probability function and lowercase p
indicates probability density function.

2. Xij(t) represents the amount of drug molecules that start from compartment
i and end in compartment j after an elapsed time t.

3. Cij(t) denotes concentration of drug molecules that start from compartment
i and end in compartment j after an elapsed time t.

4. E[X(t)] and E[C(t)] be matrices of expected values of X(t) and C(t).
5. Kij , for i = 1, . . . , n, j = 0, . . . , n, i 6= j, be a probability intensity coefficient

defined by Prob(a given unit in i transfers to j in (t, t + ∆t)|P (t)) = Kij∆t +
o(∆t). It is quantitatively equivalent to the transfer rate constant as defined in
deterministic compartment models and will be referred as transition coefficient
in this paper. Here 0 represents the system exterior.

6. Kii = −
∑n

j=1,j 6=i Kij . Kii be a probability intensity coefficient defined by
Prob(a given unit in i transfers back to i in (t, t+∆t)|P (t)) = Kii∆t+ o(∆t).

7. P (t) = [Pij(t)], X(t) = [Xij(t)], K = [Kij ], and C(t) = [Cij(t)] be matrices
of probabilities, amounts, transfer rates, and concentrations, respectively.

8. The definition of convolution is given by f(t) ∗ g(t) =
∫ t

0
f(tt)g(t − tt)dtt.

nf(t)s︷ ︸︸ ︷
f(t) ∗ · · · ∗ f(t) will be abbreviated as f(t)∗n and n will be originally named
as the convolution power of order n by this paper.

9. Matrix convolution, originally defined by this paper, will be referring to con-
volution product of two matrices. That is, if A(t) and B(t) are matrix valued
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functions, then

(A(t) ∗B(t))ij =
n∑

k=1

∫ t

0

Aik(tt)Bkj(t− tt)dtt.

In other words, Matrix convolution is performed by switching the multipli-
cation operations to convolution operations in each element of the outcome
matrix resulted from conventional matrix multiplication.

10. Throughout this paper, operator “∗” between two functions/matrices will be
used to indicate operation of convolution and operator “.” or space between
two functions/matrices will be used to indicate operation of normal multipli-
cation.

11. For a two-compartment model, PVn
11 (t) will indicate the probability for a drug

molecule to be in the compartment one with n times of visit to compartment
two, given it is initiated at compartment one and after an elapsed time t; For
a multi (> 2)-compartment model, Pn

ij(t) will indicate the probability for a
drug molecule to be in the compartment j with n times of inter-compartment
transitions, given it is initiated at compartment i and after an elapsed time t.
The physical meaning of “one inter-compartment transition” can be viewed
as a drug molecule travels from one compartment to a different compartment
once.

12. Throughout this paper, the pharmacokinetic translation of “a drug molecule
is initiated from compartment i” is that the drug is administered with a bolus
dose to compartment i.

Conventionally, the matrix of probabilities assumes the form as described by (1)
[11].

P (t) = exp(Kt) =
∞∑

i=1

1
i!

Kiti. (1)

Provided the eigenvalues of K (λl, l = 1, . . . , n) are distinct and real, each element
of matrix P (t) can be described by (2) [11].

Pij(t) =
n∑

l=1

Aijl exp(λlt). (2)

Here Aijk indicates a specific constant (k = 1, . . . , n and n is the total number of
distinct eigenvalues of K). Noteworthy, if the eigenvalues of K are complex, the
methodology developed in this paper still applies. The expected drug concentration
can be calculated by (3).

E[C(t)] = C(0)P (t). (3)
The significance of the above equation can be intuitively interpreted as follows. If
drug is initiated at compartment i with initial concentration C(0), the drug con-
centration function against time t for compartment j, where j represents any arbi-
trary compartment, is C(0)Pij(t). C(0)Pij(t) is mathematically equivalent to the
concentration function obtained via solving conventional deterministic differential
equations for pharmacokinetic compartment models.

3. Overview of methodology development. The methodology development
takes the following three major steps. Initially, methodologies will be developed for
a two-compartment system. The conventional two-compartment pharmacokinetic
model, along with its two complementary models as originally defined by this paper,
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will be introduced. The probability function against time t, for a drug molecule to
be in the central compartment after exactly n times accomplished visits to the pe-
ripheral compartment, will be derived. The PDF against time t, for a drug molecule
in the central compartment that has not only visited the peripheral compartment
exactly n times but also stayed for a cumulative residence time T , will be derived.
Furthermore, all of the derivations and theoretical developments will be extended
to general models with > 2 compartments using matrix convolution.

4. Methods and results for two-compartment model.

4.1. The two-compartment model. The two-compartment model used for de-
monstration is depicted by Figure 1A, with compartment one representing the cen-
tral compartment and compartment two representing the peripheral compartment.
Unless specifically mentioned, it is assumed that drug is originally administered to
the central compartment throughout the paper. Although compartmental models
are commonly understood, it is deemed necessary to present it again to illustrate
the construction of its two complementary models. For convenience, this paper
will use P (t) to denote the probability function matrix for the original model as
depicted by Figure 1A; P (1)(t) for the first complementary model by Figure 1B;
P (2)(t) for the second complementary model by Figure 1C. In principle, the first
complementary model is constructed in a way that guarantees all drug molecules in
the peripheral compartment will never go to the central compartment. The second
complementary model is constructed in a way that guarantees all drug molecules in
the central compartment will never visit the peripheral compartment. With such
changes,P (1)

11 (t) or P
(2)
22 (t), compared to P11(t) or P22(t), only represents the prob-

ability for a drug molecule that has never traveled out from compartment one or
two by excluding those probabilities for it to have visited the other compartment
but returned to compartment one or two, after an elapsed time t. P

(1)
12 (t) represents

the probability for a drug molecule that has traveled from compartment one to two
only for the first time, after an elapsed time t. For models with > 2 compart-
ments, the complementary models to the original model will be constructed with
similar underlying principles (Fig 2) and one example for its usage can be found in
Appendix A.

4.2. Probability function for number of visits in a two-compartment
model. The probability for a drug molecule to be in the central compartment with
n times of accomplished visits to the peripheral compartment, given drug is initiated
at the central compartment and after an elapsed time t, can be calculated by (4).
Its derivations can be found in Appendix B.

PVn
11 (t) = Kn

12K
n
21(P

(1)
11 (t) ∗ P

(2)
22 (t))∗n ∗ P

(1)
11 (t). (4)

Here operator “∗” represents convolution. Superscript ∗n is the convolution power
of order n. P

(1)
11 (t) and P 2

22(t) are the corresponding elements of probability function
matrices P (1)(t) and P 2(t) as defined in the previous section, respectively.

Given drug is initiated at the central compartment and after an elapsed time t,
the probability for a drug molecule in the central compartment is the summation
of the probabilities for it to be in the central compartment and with exactly i
(i = 0, 1, . . . ,∞) times of accomplished visits to the peripheral compartment. The
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Figure 1. The two-compartment model. Compartment one rep-
resents the central compartment and compartment two the periph-
eral compartment. A. The original model. B. Complementary
model one. C. Complementary model two. Specification of dosing
compartment is not indicated because in a Markovian system, the
probability function Pij(t) spontaneously assumes drug is given is
compartment i. Note that, the first complementary model is con-
structed in a way that guarantees all drug molecules in the com-
partment two will never go to the compartment one. The second
complementary model is constructed in a way that guarantees all
drug molecules in compartment one will never visit compartment
two. With such requirements, the transition coefficient of K21
for both complementary models, originally indicating the transi-
tion rate from compartment two to compartment one, have been
switched to a transition coefficient indicating the transition rate
from compartment two to system exterior.

above statement and its brief proof can be mathematically expressed by (5). Further
details can be found in Appendix C.

P11(t) = L−1

(
K21 + s

K10(K21 + s) + s(K21 + K12 + s)

)
= L−1(L(

∞∑
i=1

PVi
11 (t))) =

∞∑
i=1

PVi
11 (t).

(5)

4.3. PDF for residence time in two-compartment model. The PDF for a
drug molecule to be in the central compartment after an elapsed time t, with 1)
n accomplished visits to and 2) a cumulative residence time T in the peripheral
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Figure 2. The four-compartment model. Compartment one rep-
resents the central compartment and compartment two the inter-
ested compartment. A. The original model. B. Complementary
model one. C. Complementary model two. Note that, the first
complementary model is constructed in a way that guarantees all
drug molecules going to compartment two for the first time will
never go back to the rest of compartments. The second comple-
mentary model is constructed in a way that guarantees all drug
molecules starting from compartment two will never travel back to
compartment two. The use of complementary models is to simplify
the overall matrix convolution maneuvers with details illustrated
in Appendix A.

compartment can be generalized by (6).

P
Vn,T=

∑n
i=1 Xi

11 (t, T ) = (P (2)
22 (T ))∗nKn

12K
n
21(P

(1)
11 (t− T ))∗(n+1). (6)

Here xi represents the drug residence or retention time in the peripheral compart-
ment during its ith visit. Following immediately from (6), the PDF, for a drug
molecule to be in the central compartment and with a cumulative residence time of
T in the peripheral compartment during its visits, can be calculated by (7).

ptt(t, T ) =
∞∑

n=1

p
Vn,T=

∑n
i=1 xi

11 (t, T ). (7)

Its derivations can be found in Appendix D.



670 LIANG ZHAO

5. Methods and results for general multi-compartment model.

5.1. Extension to multi-compartment models. The probability and probabil-
ity density functions associated with the number of visits to and residence time
in another compartment can be easily extended to > 2 compartment models by
taking advantages of matrix operations. For convenience, > 2 compartment model
will be referred to as multi-compartment model throughout this paper and one
of such model is illustrated by Figure 2A. Basically, all of the findings for two-
compartment model can be mapped to ones for multi-compartment model with
simple modifications. Firstly, the number of visits to the peripheral compartment
in two-compartment model will be viewed as number of inter-compartment transi-
tions in multi-compartment system. Secondly, the convolution operation between
two functions in two-compartment model will be viewed as convolution operation
between two probability function matrices in multi-compartment model. The multi-
compartment counterpart to (4), which becomes the probability matrix for a drug
molecule that has traveled from compartment k to compartment j (k, j = 1, . . . , n,
with n as the number of total compartments) with i inter-compartment transitions
after an elapsed time t, is shown by (8)

P i(t) = (R(t) ·K ′)∗i ∗R(t), (8)

where,

K ′ =

K11 . . . K1n

...
. . .

...
Kn1 . . . Knn

−Diag(K11, . . . ,Knn) =

 0 . . . K1n

...
. . .

...
Kn1 . . . 0

 ,

and

R(t) =

P ′
11(t) . . . 0
...

. . .
...

0 . . . P ′
nn(t)


with P ′

ii(t) = exp
(
−(
∑j=n

j=1,j 6=i Kij)t
)
.

Here, i represents i times of inter-compartment transitions. The proof for (8) can
be simply handled by mathematical induction and is left out by this paper. The
physical interpretation for the elements of P i(t) is rather simple. That is, if a drug
molecule is administered in compartment k, its probabilities in all compartments
(from 1 to n), after i inter-compartment transitions and after an elapsed time t,
are represented by the kth row vector of P i(t). Following immediately, the general
probability function matrix can calculated by (9)

P (t) =
∞∑

i=1

P i(t) =
∞∑

i=1

(R(t) ·K ′)∗i ∗R(t). (9)

By definition, P k
ij(t) is the element of function matrix P k(t) in its ith row and jth

column with k representing k times of inter-compartment transitions. It gives the
probability of a drug molecule that is initiated from the compartment i and destined
to the compartment j after an elapsed time t and with exactly k inter-compartment
transitions in all of its possible traveling routes.
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5.2. Probability function for joint numbers of visits. The joint probability
for a drug molecule, which has visited > 1 compartments of “study interest” with
specified number of visits in each of them, can also be conveniently addressed by
matrix convolution operations. In a general multi-compartment model and given
drug is initiated at compartment one, the probability function for a drug molecule in
compartment one, which has visited compartment two n2 times and compartment
three n3 times after an elapsed time t, can be calculated by (10).

P conditions given above
11 (t) =

∑
K1iKij . . .Kkl·P ′

11(t)∗P ′
ii(t)∗· · ·∗P ′

kk(t)∗P ′
11(t). (10)

In (10),
∑

K1iKij . . .Kkl corresponds to all possible inter-compartment traveling
routes for the drug to initiate from and return to compartment 1 (i.e.,

∑
(route

of 1 → i → j → · · · → k → 1)) in condition with “2” appearing in the subscripts
of these transition coefficients for 2.n2 times and 3 appearing for 2.n3 times. Note
that, for any arbitrary traveling route, say 1 → i → j → k → 1, its corresponding
transitions coefficients must be K1i.Kij .Kjk.Kkl and its corresponding convolution
operations must be P ′

11(t) ∗ P ′
ii(t) ∗ P ′

jj(t) ∗ P ′
kk(t) ∗ P ′

11(t). The same procedures
can be followed to obtain any arbitrary joint probability functions.

5.3. PDF’s for joint residence times in multi-compartment model. The
joint PDF for a drug molecule that has visited > 1 compartments of “study in-
terest”, with both a specified number of visit to and a corresponding cumulative
residence time in each of them, can also be conveniently addressed by convolution
operations. In a general n-compartment (n > 2) model and given drug is initiated
at compartment one, the PDF for a drug molecule in compartment one, which has
visited compartment two exactly n2 times with a cumulative residence time T2 and
compartment three exactly n3 times with a cumulative residence time T3, can be
calculated by (11).

P conditions given above
11 (t, T2, T3)

=
∑

K1iKij . . .KklP
′
11(t− T2− T3)∗2 ∗ P ′

ii(t− T2− T3) ∗ · · ·

∗ P ′
kk(t− T2− T3).P ′

22(T2)∗n2.P ′
33(T3)∗n3.

(11)

In (11),
∑

K1iKij . . .Kkl corresponds to all possible inter-compartment traveling
routes for a drug molecule to be both initiated from and destined to compartment
one in condition with “2” appearing in the subscripts of transition coefficients for
2.n2 times and 3 appearing for 2.n3 times. For more general cases, the arbitrarily
chosen compartments “two” and “three” in the above example can be replaced by
any number of compartments of study interest and the same procedures should be
followed to obtain the corresponding joint PDF.

6. Exponential convolution expansion of probability functions in a linear
system. As illustrated by (9), the probability function for a drug molecule in any
compartment can be decomposed to a series of components representing the proba-
bilities for the drug molecule that has made i (an integer ranging from 0 to positive
infinity) times of inter-compartment transitions in its traveling route. This type of
decomposition will be named as convolution expansion and is illustrated by (12)

P (t) =
∞∑

i=0

P i(t). (12)
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Here, P i(t) = (R(t)K ′)∗iR(t) as defined in (8). Further derivations can show that
each element of the n-by-n matrix Pn(t), after performing convolution operations,
is a function expressed as Pn

ij(t) = f(P ′
11(t), . . . , P

′
nn(t), t), where P ′

ii(t0 is the same
as defined in (8).

In a linear system, each element of P (t) can also be expressed by Pij(t) =
g(P ′

11(t), . . . , P
′
nn(t), t), where “g” indicates a function. With further derivation,

the probability for a drug molecule to be in compartment s, after an elapsed time
t and given it is initiated in compartment k, can be calculated by (13)

Pks(t) =
∞∑

i=1

AiP
′
ii(t) =

∞∑
i=1

Aie
−(∑j=n

j=1,j 6=i Kij)t, (13)

where Ai =
∑∞

j=1 aijt
j−1 (a polynomial function of time) and all aij ’s are con-

stants. The expansion form shown by (13) will be named as Exponential Con-
volution Expansion. The following example will demonstrate how it works. In a
three-compartment model with 1) all compartments are mutually communicative,
2) compartment one as the only compartment of drug elimination, and 3) pharma-
cokinetic parameters of K12 = 0.5, K13 = 1, K10 = 2.1, K21 = 5, K23 = 2, K31
= 0.8, and K32 = 0.1, the probability for a drug molecule to start from and end in
compartment one after an elapsed time t can be described by the tri-exponential (14)

P11(t) = 0.13e−7.62t + 0.75e−3.38t + 0.12e−0.50. (14)

It is important to note that (14) is obtained by solving the conventional phar-
macokinetic differential equation system after proper translation into probabilistic
formulas. That is

d(P11(t))/dt = −(K12 + K13)P11(t) + K21P12(t) + K31P13(t)

d(P12(t))/dt = −(K21 + K23)P12(t) + K12P11(t) + K32P13(t)

d(P13(t))/dt = −(K31 + K32)P13(t) + K13P11(t) + K23P12(t).

Alternatively, based on (13) that describes Exponential Convolution Expansion,
P11(t) can be expanded as the summation of probabilities for a drug molecule with i
accomplished inter-compartment transitions (i = 0, 1, 2, . . . ,+∞). The exponential
convolution expansion form of P11(t), given i ranging from 0 to 7 and omits the
rest, is described by (15)

P11(t) ≈(0.95− 0.53t + 0.0062t2 + 0.00045t3)e−3.6t

+ (0.067− 0.049t + 0.048t2)e−7t + (−0.025 + 0.051t + 0.010t2)e−0.9t.

(15)

Note that 3.6 = K12 + K13 + K10, 7 = K21 + K23, and 0.9 = K32 + K31 for
the magnitudes of the exponential powers in (15). This pattern will always be
the case regardless the upper limit values that i assumes, which is demonstrated
by (8)). Values of P11(t), calculated by (14) and (15), are plotted against time
simultaneously in Figure 3. It graphically demonstrates that exponential convolu-
tion expansion perfectly approximates the exact solution. Noteworthy, the PDF for
any specified cumulative residence time T in the compartment of “study interest”
can also be decomposed into a series of PDF’s associated with defined numbers of
inter-compartment transitions. This type of expansion has been left out by this
paper.

The probabilities associated with numbers of inter-compartment transition are
not a monotone function of transition number. That is, elements of Pn(t) are not
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Figure 3. Exponential convolution expansion of probability func-
tion. Given a drug molecule is administered in compartment one in
a three-compartment model, the probability function against time
for it to be in compartment one is approximated by exponential
convolution expansion. The line on the top and the line on the
bottom represent the true probability function and the approxi-
mated probability function, respectively.

monotone increasing or decreasing function of n. For example, the probabilities
for a drug molecule with 3 and 5 inter-compartment transitions are less than the
probabilities for a drug molecule with 4 and 6 transitions in a three-compartmental
model, respectively, as shown by Figure 4A. However, for a two-compartment model,
the probability for a drug molecule to be in compartment one with bigger number
of visits to compartment two is always less, as shown by Figure 5.

The PDF’s associated with numbers of inter-compartment transitions are not
a monotone function of transition number as well. As shown by Figure 6, the
magnitude of densities for a drug molecule to be in compartment one, with defined
numbers of visits to and a cumulative residence time T in compartment two, does
not monotonely decrease with increasing number of visits. Corresponding to the
chosen set of transition coefficients, the density initially increases with increasing
number of visits up to the seven and then decreases with increasing number of visits.

7. Discussion. The derived methods in this paper provide new approaches to cal-
culate probability and probability density functions for a drug molecule with arbi-
trary requirements in its residence time and inter-compartment traveling route in
a multi-compartment system. In practice, the probability function and the drug
concentration can be easily converted to each other. For example, the probabil-
ity for a drug molecule, to be in the central compartment after an elapsed time t,
equals the ratio of drug amount in the central compartment at time t to the total
dose administered to the central compartment at time 0 (C(t).V d/Dose, with V d as
the apparent volume of distribution). It is felt that the number of drug molecules
are usually quite large and therefore little concern is given to use pharmacokinetic
equations to describe stochastic behavior.



674 LIANG ZHAO

Figure 4. Probability function for number of transitions in a
three- compartment model. Given a drug molecule is initiated in
compartment one in a three-compartment model, the probability
functions for it to be in compartment one with specified numbers of
inter-compartment transitions in its traveling route are plotted si-
multaneously. A. Corresponding to unit time 1, the plotted curves
from top to bottom represent probability functions for a drug mol-
ecule with 0, 3, 5, and 7 inter-compartment transitions in its trav-
eling route, respectively. B. Corresponding to unit time 2, the
plotted curves from top to bottom represent probability functions
for a drug molecule with 2, 4 and 6 inter-compartment transitions
in its traveling route, respectively.

Figure 5. Probability function for number of visits (transitions)
in a two- compartment model. Given a drug molecule is initiated
in compartment one in a two-compartment model, the probabil-
ity functions against time for it to be in compartment one with
specified numbers of visits to compartment two are plotted simul-
taneously. Corresponding to unit time 10, plotted curves from top
to bottom represent probability functions for a drug molecule with
0, 1, 2, 3, 4, and 5 visits to compartment two.
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Figure 6. PDF for cumulative residence time. Given a drug mol-
ecule is initiated in compartment one in a two-compartment model,
the probability densities for it to be in compartment one with spec-
ified number of visits to and a common cumulative residence time
T (T = 50 time units) in compartment two are plotted simulta-
neously. Curves in the left panel, from bottom to top, represent
the density functions for a drug molecule with 1, 2, 3, 4, 5, 6, and
7 accomplished visits to compartment two, respectively; Curves in
the right panel, from top to bottom, represent the density func-
tions for a drug molecule with 7, 8, 9, and 10 accomplished visits
to compartment two, respectively.

Compared with using saddlepoint approximation, using convolution expansion
to capture the residence time distribution gains flexibility and convenience. Sad-
dlepoint approximations have been the conventional tool for approximating the
density or tail probability using the cumulant generating function (CGF). It has
been shown to yield good accuracy when estimating very small tail probabilities
or densities because its error rate is directly proportional to the magnitude of the
density or distribution function. However, when being used to approximate the
probability density function for cumulative residence time, saddlepoint approxima-
tion is computationally intensive. It involves a broad spectrum of procedures such as
producing the cumulant generating function, solving partial differential equations,
obtaining determinants of the covariance matrix composed of the second derivatives
of CGF [21]. In semi-Markovian cases, Cofactor rule needs to be engaged to ex-
trapolate this approximation approach from a two-compartment model to a general
multi-compartment model. In comparison, the convolution expansion approach, as
shown by this paper, can be conveniently carried out to describe the residence time
distribution in any interested compartment, either by one visit or cumulatively by
many visits, jointly or not jointly studied with residence time distributions in other
compartments, and with or without any specified traveling route. Convolution cal-
culation is the main computational requirement to implement this approximation
method. Finally, the convolution expansion of probability or density functions, as
summations of probability or density functions associated with all possible traveling
routes, are engaged with physical meanings and their calculations can be facilitated
with corresponding Laplace Transformations, a technique that culminated in works
of Benet & Turi [2] and Nakashima & Benet [16] to solve pharmacokinetic differen-
tial equations.

Convolution expansion of probability and probability density functions is a unique
and powerful methodological extension to conventional approximation algorithms
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used in pharmacokinetics-pharmacodynamics. In situations when the number of
compartments in a linear system is too big to allow obtaining closed form solutions,
the exponential convolution expansion technique can be exploited and significantly
reduce the computation time by providing an “approximated” closed form solu-
tion, as manifested by equation (9). In addition, convolution expansion is not a
type of expansion similar to Taylor Series. It features itself in the following man-
ners. Firstly, it does not have the problem of error propagation associated with
the conventional numerical approximation methods. Error propagation can happen
when numerically solving differential equations and can pose a problem when the
dependent variable corresponds to a independent variable that is far from its ori-
gin, or numerically calculate a drug concentration corresponding to a large time.
Secondly, both its approximation accuracy and precision are controlled by “con-
volutionally” expanding the probability or drug concentration profile function up
to a component associated with a sufficiently high number of inter-compartment
transitions. Thirdly, approximation based on convolution expansion can be used to
predict probabilities and densities corresponding to a time beyond the study range,
where approximations based on Taylor Series Expansion will fail.

The probability functions for a drug molecule with certain accomplished visits
to other compartments also provide more flexible options to address a broad range
of pharmacodynamic patterns (Fig 4-5). It can potentially become the alternatives
to the conventionally used pharmacodynamic models, such as effect-compartment
model proposed by Sheiner et al. [17] and indirect-response models proposed by
Dayneka et al. [4] and Krzyzanski & Jusko [8], to model drug efficacy and safety
endpoints. For example, when the peak drug concentration precedes the maximum
effects, the effects-vs-concentration loop becomes counterclockwise and a hysteresis
pattern of drug action is identified. Such delayed effect-concentration relation-
ship has been conventionally described by the effect-compartment model or by the
indirect-response model when the effect delay can not be addressed by a linear sys-
tem. Alternatively, it can be modeled by associating the extent of drug efficacy
or toxicity positively to the number of drug visits to the physiologically relevant
compartment, or empirically to the peripheral compartment. That is because the
probability function for a drug molecule with higher number of visits to other com-
partment/compartments usually has longer delays for its peak value. With this
alternative, non-linearity assumptions for transfer rates associated with the effect
compartment for over-delayed effects can be avoided. When peak drug concen-
tration precedes the maximum effects, the effect-vs-concentration loop becomes
clockwise and a proteresis pattern of drug action is identified. Proteresis is rare
in pharmacodynamics and it is sometimes explained by the development of drug
tolerance due to down regulation or reduction of drug affinity or accumulation of
antagonist metabolite. Nevertheless, drug tolerance can be modeled with a positive
relationship to the number of drug visits to the physiologically relevant compart-
ment, or empirically to the peripheral compartment. The same concept can be
used to model drug safety endpoints. Noteworthy, the PDF’s for drug residence
times also assume a broad range of dynamic patterns against time and can also
be exploited to model various hysteresis and proteresis patterns, depending on the
understanding of pharmacological actions.

In summary, this paper originally defined matrix convolution and used it to cap-
ture probability and probability density functions for a drug molecule with any de-
fined inter-compartment traveling route and number of visits to other compartment,
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in or not in conjunction with residence times in physiologically related compart-
ments. It also originally identified that the conventional pharmacokinetic formula
to describe drug concentration can be de- composed by Convolution Expansion.
The in-depth translation of stochastic concepts and further development of those
concepts can feed into various pharmacokinetic and pharmacodynamic needs and
opens up a new territory for pharmacokinetists and modeling and simulation experts
to explore. Their potential usages can be very rewarding.
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Appendix A. Usage of complementary models to calculate specific prob-
ability and probability density functions. In practice, the calculation of any
interested probability functions can be greatly simplified by taking advantage of
probability matrices inferred from the two complementary models. One example
is shown by Figure 2 where compartment one is chosen as the drug-dosing com-
partment and compartment two as the interested peripheral compartment. For
instance, it is assumed that the probabilities for a drug molecule to be in compart-
ments one and four at time t who has visited compartment two exactly n times
during travel is of research interest. Based on the first complementary model (Fig-
ure 2B), the probability for a drug molecule, who starts from compartment one and
ends in compartment one or four after an elapsed time t without paying any visit to
compartment two, is P

(1)
11 (t) or P

(1)
14 (t), respectively. Based on the second comple-

mentary model (Figure 2C), the probability for a drug molecule, who starts from
compartment two and ends in compartment two after an elapsed time t without
paying any visit to compartment one or four, is P

(2)
22 (t). In a system with constant

transition coefficients and given drug is initiated in compartment one, the proba-
bilities for it to be in compartments one and four with n visits to compartment two
during travel can be calculated by (A1)

(Pn visits to comp.2
11 (t),Pn visits to comp.2

14 (t))

= (P (1)
11 (t), P (1)

14 (t))∗
[
K12K21 K12K24

K42K21 K42K24

]n

∗ (P (2)
22 (t))∗n

[
P

(1)
11 (t) P

(1)
14 (t)

P
(1)
41 (t) P

(1)
44 (t)

]∗n
= (P (1)

11 (t), P (1)
14 (t))∗(AP

(2)
22 (t)P )∗n,

(A1)

where, A =
[
K12K21 K12K24

K42K21 K42K24

]
,P =

[
P

(1)
11 (t) P

(1)
14 (t)

P
(1)
41 (t) P

(1)
44 (t)

]
, and the calculated prob-

abilities are in a row vector. If the PDF of a drug molecule in compartments one
and four that not only has paid n visits to compartment two but also had sojourned
with a cumulative residence time T is in need, the above expression can be simply
modified to (A2).

(Pn visits to comp.2 with residence time T
11 (t, T ),Pn visits to comp.2 with residence time T

14 (t, T ))

= P
(2)
22 (T )∗n.((P (1)

11 (t− T ),P (1)
14 (t− T ))An) ∗ P (t− T )∗n.

(A2)

Noteworthy, (A1) is originated from (8). (A2) is derived from (A1) by following
rules as discussed in Appendix E.
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Appendix B. Probability function for number of visits in two-compart-
ment model. Given drug is initiated in compartment one, XVi

11 (t) and PVi
11 (t) are

used to denote the amount and probability, respectively, for drug molecules at
compartment one that have visited the compartment of “study interest” exactly i
times after an elapsed time t. The compartment of “study interest” is compartment
two or the peripheral compartment in this case. At time t, the fraction of the total
administered drug amount or the probability for a drug molecule in compartment
one (the central compartment in terminology of Pharmacokinetics), that has visited
the compartment two (the peripheral compartment) exactly once, will be researched
first. Between time t and time t+∆t, the amount of drug (∆AMT) that is traveling
to compartment two for the first time can be described by (A3).

∆AMT = DoseP (1)
11 (t)K12∆t. (A3)

It is assumed that the drug molecule is initiated from compartment two. Based on
the second complementary model, the probability function, for this drug molecule
to be residing in compartment one without revisiting compartment two, is denoted
by P

(2)
21 (t). XV1

11 (t) can be calculated by (A4).

XV1
11 (t) = DosePV1

11 (t) =
∫ t

0

dAMTP
(2)
21 (t) =

∫ t

0

Dose P
(1)
11 (tt)K12P

(2)
21 (t− tt)dtt

= DoseK12P
(1)
11 (t) ∗ P

(2)
21 (t).

(A4)

Here, operator ∗ indicates operation of convolution. Further derivation on (A4)
leads to (A5).

XVt
11 (t) = DoseK12K21P

(1)
11 (t) ∗ P

(2)
22 (t) ∗ P

(1)
11 (t). (A5)

It means, the probability of a drug molecule in central compartment that has trav-
eled to compartment two exactly once, given drug is initiated in compartment one
and after an elapsed time t, can be shown by (A6).

PV1
11 (t) = K12P

(1)
11 (t) ∗ P

(2)
21 (t) = K12K21P

(1)
11 (t) ∗ P

(2)
22 (t) ∗ P

(1)
11 (t). (A6)

The probability for a drug molecule, who is currently at the central compartment
and has visited compartment two exactly twice given the same condition as for (A6),
can be further derived as shown by (A7).

PV2
11 (t) = K12P

V1
11 (t) ∗ P

(2)
21 (t) = K12(K12P

(1)
11 (t)P (2)

21 (t)) ∗ P
(2)
21 (t)

= K2
12P

(1)
11 (t) ∗ P

(2)
21 (t) ∗ P

(2)
21 (t) (A7)

= K2
12K

2
21

(
P

(1)
11 (t) ∗ P

(2)
22 (t)

)∗2 ∗ P
(1)
11 (t)

Here superscript ∗2 is the convolution power of order 2. In view of the patterns as
revealed by (A6) and (A7) and by principle of mathematical induction, PVn

11 (t)can
be calculated by (A8).

PVn
11 (t) = K12P

Vn−1
11 (t) ∗ P

(2)
21 (t) = K12(K12P

(1)
11 (t) ∗ P

(2)
21 (t)) ∗ P

(2)
21 (t)

= Kn
12P

(1)
11 (t) ∗

(
P

(2)
21 (t)

)∗n (A8)

= Kn
12K

n
21

(
P

(1)
11 (t) ∗ P

(2)
22 (t)

)∗n ∗ P
(1)
11 (t)
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Appendix C. Proof of decomposition of probability function in two com-
partment model.

Proof. In the case of a two-compartment linear model as depicted by Figure 1A,
Laplace transform of PVn

11 (t) yields (A9).

L(PVn
11 (t)) =

Kn
12K

n
21

(K10 + K12 + s)n+1(K21 + s)n
. (A9)

Summing up all of the Laplace transforms of L(PVi
11 (t))’s (i = 0, 1, . . . ,∞) yields

results as shown by (A10).

∞∑
i=1

L(PVi
11 (t)) =

∞∑
i=0

Ki
12K

i
21

(K10 + K12 + s)i+1(K21 + s)i
(A10)

=
1

(K10 + K12 + s)

∞∑
i=0

(
K12K21

(K10 + K12 + s)(K21 + s)

)i

a<1=
1

(K10 + K12 + s)

(
1

1− K12K21
(K10+K12+s)(K21+s)

)

=
K21 + s

K10(K12 + s) + s(K12+K21 + s)
.

In derivations shown in (A10), a = K12K21
(K10+K12+s)(K21+s) . The results above verify

that the
∑∞

i=1 L(PVi
11 (t)) is exactly the Laplace transform of the drug concentration

in the central compartment normalized by its initial value, as obtained by solving
deterministic differential equations shown in most pharmacokinetic textbooks. It
means, the probability for a drug molecule in the central compartment at time
t, given drug is initiated at the central compartment, is the summation of the
probabilities for it to have exactly i times of accomplished visits to the peripheral
compartment (i = 0, 1, . . . ,∞). This statement can be mathematically expressed
by (A11).

P11(t) = L−1

(
K21 + s

K10(K12 + s) + s(K12+K21 + s)

)
= L−1

(
L

( ∞∑
i=1

(PVi
11 (t))

))

=
∞∑

i=1

PVi
11 (t).

(A11)

In general, the probability function against time for a drug molecule to be in any
chosen compartment can be decomposed into the summation of a series of proba-
bilities for that drug molecule to be with defined numbers of visits to other com-
partments.

Appendix D. PDF for residence time in two-compartment model. Given
a drug molecule is initiated in the central compartment, the probability function
for it to be in the central compartment after an elapsed time t with exactly one
accomplished visit to and a residence time of > T in the peripheral compartment
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can be addressed by (A12).

PV1
11 (t, T ) =

∫ T

0

∫ t−TT

0

P
(1)
11 (tt)K12dttP

(2)
22 (TT )K21dTTP

(2)
11 (t− TT − tt) (A12)

=
∫ T

0

[∫ t−TT

0

P
(1)
11 (tt)K12P

(2)
22 (TT )K21P

(2)
11 (t− TT − tt)dtt

]
dTT

=
∫ T

0

K12K21P
(2)
22 (TT )

[∫ t−TT

0

P
(1)
11 (tt)P (2)

11 (t− TT − tt)dtt

]
dTT

=
∫ T

0

K12K21P
(2)
22 (TT )

[
P

(1)
11 (t− TT ) ∗ P

(2)
11 (t− TT )

]
dTT

The corresponding PDF with regard to T is derived by (A13).

PV1
11 (t, T ) =

dPV1
11 (t, T )
dT

= K12K21P
(2)
22 (T )(P (1)

11 (t− T ) ∗ P
(2)
11 (t− T )) (A13)

P
(1)
11 (t−T )=P 2

11(t−T )
= K12K21P

(2)
22 (T )(P (1)

11 (t− T ))∗2.

Notice that in the above equation, uppercase P is used to represent probability
function. Lowercase p is used to represent PDF. PV1

11 (t, T ) indicates the probability
for a drug molecule, which starts from compartment one and return to compartment
one with a residence time of < T during its only visit in compartment two, after an
elapsed time t. With simple algebraic manipulation, the PDF for a drug molecule
to be in the central compartment after an elapsed time t, with two accomplished
visits to the peripheral compartment and a residence time of x and y during the
first and second visit respectively, can be derived as shown by (A14).

PV2
11 (t, x, y) = K2

12K
2
21P

(1)
11 (t− x− y)∗3P (2)

22 (x)P (2)
22 (y). (A14)

With constraint of T = x + y, (A14) becomes (A15).

PV2
11 (t, T = x + y) =

∫ T

0

K2
12K

2
21P

(1)
11 (t− T )∗3P (2)

22 (x)P (2)
22 (T − x)dx (A15)

=
∫ x=t

x=0

P
(2)
22 (x)P (2)

22 (T − x)dxK2
12K

2
21P

(1)
11 (t− T )∗3 (A16)

= P
(2)
22 (T ) ∗ P

(2)
22 (T )K2

12K
2
21P

(1)
11 (t− T )∗3. (A17)

Given a drug molecule is initiated in the central compartment, (A15) is the PDF for
it to be in the central compartment after an elapsed time t, with two accomplished
visits to and a cumulative residence time T in the peripheral compartment. In
view of patterns as revealed by (A14) and (A15) and by principle of mathematical
induction, the PDF for a drug molecule to be in the central compartment after an
elapsed time t, with n accomplished visits to and with a cumulative residence time
T in the peripheral compartment can be generalized by (A18).

P
Vn,T=

∑n
i=1 xi

11 (t, T ) =
(
P

(2)
22 (T )

)∗n
Kn

12K
n
21P

(1)
11 (t− T )∗(n+1). (A18)

Appendix E. Linkage between probability and probability density func-
tions. For each element in the n-by-n probability matrix given by (8), it can be
decomposed to be a function of P ′

ii(t)’s (i = 1, . . . , n, as defined in (8)) and transi-
tion coefficients (the elements of matrix K). By definition, P k

ij(t) is the probability
function describing the probability for a drug molecule to travel from compartment
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i to compartment j with k times of inter-compartment transitions after an elapsed
time t. As a rule of thumb, converting the probability function for a drug mol-
ecule, with any defined traveling route or routes, to its corresponding PDF for a
drug molecule with not only the same inter-compartment traveling route or routes
but also a combination of defined residence times in its visited compartments (e.g.,
denoted by P# of transitions,T2 in comp.2,T3 in comp.3

ij ), can be conveniently carried out
by performing the following four conversion steps. For instance, it is assumed that
P ′

ij(t)’s (i = x, y, . . .) correspond to the compartments of “study interest” (e.g.,
compartments two and three in (11)); P ′

jj(t)’s (j = v, w, . . .) correspond to the rest
of compartments (e.g., compartments other than two and three in (11)). For illus-
tration purpose, the case represented by (10) and (11) will be used as an example.

Step 1: collect all P ′
jj(t)’s in (10) and keep their sequential order of convolution

operations.
Step 2: for each P ′

ii(t), collect all of its terms in (10) and group them into one
“new” component with convolution power of order k; k is the number of P ′

ii(t)
collected (i.e., P ′

22(T2)∗n2 and P ′
33(T3)∗n3 in (11)).

Step 3: use ordinary product operations as denoted by “.” (1) between any pair
of the “new” components (i.e., P ′

22(t)
∗n2 and P ′

33(t)
∗n3) and (2) between any

of these “new” components and collected P ′
jj(t)’s,.

Step 4: substitute time “t” in the “new” components with the specified cumula-
tive residence times (i.e., P ′

22(t)
∗n2 to P ′

22(T2)∗n2 and P ′
33(t)

∗n3 to P ′
33(T3)∗n3);

substitute time “t” in the P ′
jj(t)’s with “t−T”. T is the sum of cumulative res-

idence times in all of the compartments of “study interest” (e.g., T = T2+T3
in (11)).

A four-compartment model, as shown by Figure 2A, can be used for illustration.
For instance, the PDF for a drug molecule in compartment one that has visited
compartment two and three exactly once with cumulative residence times of T2 and
T3 respectively after an elapsed time t, given drug is administered at compartment
one and has made three inter-compartment transitions can be calculated by

p3,T2 in comp 2,T3 in comp 3
11 (t, T2, T3) = (K12K23K31+

K13K32K21)P ′
11(t− T2− T3)∗2P ′

22(T2)P ′
33(T3).
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