
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2009.6.649
AND ENGINEERING
Volume 6, Number 3, July 2009 pp. 649–661

A MODEL FOR TRANSMISSION OF PARTIAL RESISTANCE TO

ANTI-MALARIAL DRUGS

Hengki Tasman1, Edy Soewono and Kuntjoro Adji Sidarto

Industrial and Financial Mathematics Group
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

Jl. Ganesha 10, Bandung 40132, Indonesia

Din Syafruddin

Eijkman Institute for Molecular Biology
Jl. Diponegoro 69, Jakarta 10430, Indonesia

William Oscar Rogers

United States Naval Medical Research Unit 2
Jl. Percetakan Negara 29, Jakarta 10560, Indonesia

(Communicated by Zhilan Feng)

Abstract. Anti-malarial drug resistance has been identified in many regions
for a long time. In this paper we formulate a mathematical model of the spread
of anti-malarial drug resistance in the population. The model is suitable for
malarial situations in developing countries. We consider the sensitive and resis-
tant strains of malaria. There are two basic reproduction ratios corresponding
to the strains. If the ratios corresponding to the infections of the sensitive
and resistant strains are not equal and they are greater than one, then there
exist two endemic non-coexistent equilibria. In the case where the two ratios
are equal and they are greater than one, the coexistence of the sensitive and
resistant strains exist in the population. It is shown here that the recovery

rates of the infected host and the proportion of anti-malarial drug treatment
play important roles in the spread of anti-malarial drug resistance. The in-
teresting phenomena of “long-time” coexistence, which may explain the real
situation in the field, could occur for long period of time when those parame-
ters satisfy certain conditions. In regards to control strategy in the field, these
results could give a good understanding of means of slowing down the spread
of anti-malarial drug resistance.

1. Introduction. Malaria is a critical public health problem in many countries.
This disease is caused by Plasmodium spp. parasites and transmitted to humans
through the bites of infected female Anopheles mosquitoes. It is estimated that 350–
500 million clinical malaria cases occur annually, with most of these cases caused
by the infection of Plasmodium falciparum [21].

Unfortunately, Plasmodium parasites have been resistant to some anti-malarial
drugs in many regions. What we mean by anti-malarial drug resistance is “the
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ability of a parasite strain to multiply or to survive in the presence of concentrations
of a drug that normally destroys parasites of the same species or prevents their
multiplication” [6]. The spread of anti-malarial drug resistance in a population is
a major problem for the control of malaria. Currently, it is generally believed that
the widespread use of a new anti-malarial drug will inevitably be followed by the
appearance of resistance in the parasite population. Therefore, it is very important
to make a rational management of the use of anti-malarial drugs in order to slow
down the spread of the resistance [20].

Ideally, there is a parasite screening in order to give proper treatments for malaria
patients. Parasites that have been resistant to an anti-malarial drug can not be
eliminated by the drug. So, the hosts infected by the resistant strain should not
be given the drug. Unfortunately, it is too costly to do a parasite screening in
many developing countries. In these countries, malaria patients are treated without
a prior knowledge of which strain infects them, so hosts infected by the sensitive
strain or the resistant one get the same treatments.

In some instances the parasites are not fully resistant to a drug, that is, they are
in the intermediate stage of drug tolerance. If this case occurs, the parasites still
can be eliminated by the drug [13].

Mathematical modeling of malaria transmission has a long history [18, 1, 3].
Recently, some mathematical models on the spread of anti-malarial drug resistance
have been proposed and studied. The models may help identify those parameters
that are important for the spread and fixation of drug resistant alleles in the parasite
population, and may provide insight into some approaches toward controlling the
spread of drug resistance. The attempts to understand the spread of anti-malarial
drug resistance in a population using mathematical models can be classified into a
population genetic approach, such as in [9, 12, 17] and an epidemiological approach,
such as in [2, 5, 14, 16].

In this paper we propose a new model to explore the effect of the proportion
of treatment to the spread of the resistance. We think that the model is more
appropriate for malarial situations in developing countries. The proposed model in
this paper is similar, but different from the model of [14] in handling the treatment
scenario and incorporation of the full vector-host dynamics. In [14], the resistant
strain is assumed to be fully resistant to the anti-malarial drug, so treatment is given
only to the hosts infected by the sensitive one. Here, we consider the intermediate
stage of drug tolerance and the hosts infected by the resistant one also get treatment.

2. Model formulation. It is known that vertical transmission of the malaria pa-
rasite cannot occur in the vectors [8]. In the host population, the infected mothers
pass passive immunity to their babies. This immunity is transient, that is, it is
effective only for the first three to six months of life. Although the infants could
have immunity, they are not protected against infection, but the parasite density is
reduced and the length of parasitaemia is shortened [19].

We assume the following things. The host and vector populations are constant for
all time. The latent period of infected hosts is ignored. There is no superinfection,
in the sense that the infected hosts can not have a new infection during the period of
illness. The anti-malarial drug resistance occurs to a single drug and is believed to
arise as a consequence of mutation(s) in a single gene of the parasite. The parasite
population in an infected host contains the sensitive allele a and the resistant allele
A. The resistant allele is partially resistant to the drug. Some fraction fa (fA) of
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the sensitive- (resistant-) infected host subpopulations is under treatment. It is also
assumed that the virulence of the parasite is somewhat negligible, so that the death
rate is not exclusively associated with the disease.

Let the variables S̃, Ẽ, Ĩ, and R̃ denote the susceptible, exposed, infected and
recovered (temporary immune) subpopulations respectively and the indices H , V ,
a, A, U and T denote host, vector, sensitive-infected (in the sense that the frequency
of sensitive allele a is greater than of the resistant allele A), resistant-infected (in
the sense that the frequency of resistant allele A is greater than of the sensitive
allele a), untreated and treated respectively.

We use the transmission scheme of anti-malarial drug resistance as in Figure 1
below. The description of the parameters can be seen in Table 1.
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Figure 1. A transmission diagram of an anti-malarial drug resistance.

Description Parameter
Life span of host 1/δH

Temporary immune period of host 1/η
Life span of vector 1/δV

sensitive resistant
infection infection

Per capita infection rate of host λHa λHA

Per capita infection rate of vector λV a λV A

Natural recovery period of host 1/γHaU 1/γHAU

Treatment recovery period of host 1/γHaT 1/γHAT

Incubation period of vector 1/τa 1/τA

Table 1. Parameters used in Figure 1 and their description.
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For the biological interest, the parameters and the variables are non-negative. We
assume that γHaT > γHaU , since recovery rates should be faster for the sensitive-
infected hosts under treatment than for those without treatment. We also assume
that γHAT ≤ γHaT , since the drug should kill more sensitive strains than the
resistant ones. For the resistant-infected recovery rates, we assume that γHAU <
γHAT , where the resistant strain is partially resistant to the drug, so the drug still
has the ability to kill the resistant strain.

Using the above assumptions and the transmission diagram, we formulate the
following eleven-dimensional system of differential equations:

dS̃H

dt
= δH ÑH + η R̃H − (λHa ĨV a + λHA ĨV A)

S̃H

ÑH

− δH S̃H ,

dĨHjT

dt
= fj λHj ĨV j

S̃H

ÑH

− (δH + γHjT ) ĨHjT ,

dĨHjU

dt
= (1 − fj)λHj ĨV j

S̃H

ÑH

− (δH + γHjU ) ĨHjU ,

dR̃H

dt
=

∑

j∈{a,A}
k∈{T,U}

γHjk ĨHjk − (δH + η) R̃H , (1)

dS̃V

dt
= δV ÑV − S̃V

ÑH

∑

j∈{a,A}
k∈{T,U}

λV j ĨHjk − δV S̃V ,

dẼV j

dt
= λV j S̃V

ĨHjT + ĨHjU

ÑH

− (δV + τj) ẼV j ,

dĨV j

dt
= τj ẼV j − δV ĨV j ,

where j ∈ {a, A}, ÑH = S̃H + R̃H +
∑

j∈{a,A}
k∈{T,U}

ĨHjk and ÑV = S̃V + ẼV a + ẼV A +

ĨV a + ĨV A.
Model (1) is well-posed in the non-negative region R

11
≥0 because the vector field

on the boundary does not point to the exterior. So, if it is given an initial condition
in the region, then the solution is defined for all time t ≥ 0 and remains in the
region. Moreover, the solution is bounded since the host and vector populations are
constant for all time.

Since the host and vector populations are constant, we can eliminate the equa-
tions for R̃H and S̃V in model (1). Next, we scale model (1) using transformations

SH = S̃H

ÑH
, IHjk =

ĨHjk

ÑH
, RH = R̃H

ÑH
, SV = S̃V

ÑV
, EV j =

ẼV j

ÑV
and IV j =

ĨV j

ÑV
, where

j ∈ {a, A}, k ∈ {T, U}. Thus, we obtain the following nine-dimensional system of
differential equations:

dSH

dt
= δH (1 − SH) + η RH − SH (βHa IV a + βHA IV A),

dIHjT

dt
= fj βHj SH IV j − σHjT IHjT ,

dIHjU

dt
= (1 − fj)βHj SH IV j − σHjU IHjU , (2)
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dEV j

dt
= λV j (IHjT + IHjU )SV − (δV + τj)EV j ,

dIV j

dt
= τj EV j − δV IV j ,

where j ∈ {a, A}, RH = 1 − SH −∑ j∈{a,A}
k∈{T,U}

IHjk , SV = 1 −∑j∈{a,A} EV j + IV j ,

βHj =
λHj ÑV

ÑH
is the scaled infection rate and σHjk = δH + γHjk is the death-

adjusted recovery rate. Model (2) has the region of biological interest

Ω =
{

(SH , IHaT , IHaU , IHAT , IHAU , EV a, EV A, IV a, IV A) ∈ [0, 1]9 :

SH +
∑

j∈{a,A}
k∈{T,U}

IHjk ≤ 1,
∑

j∈{a,A}

EV j + IV j ≤ 1
}

.

In the following we will study model (2), because the reduced model inherits all
properties of model (1).

3. Model analysis. Basic reproduction ratio is an important threshold in math-
ematical epidemiology. This threshold is given by the spectral radius of a next
generation matrix K of a model. Using the method in [7], the next generation
matrix K of model (2) is given by
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















0 0
faβHa

δV
0 0 0

0 0
(1−fa)βHa
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0 0 0

λV aτa
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λV aτa
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0 0 0 0

0 0 0 0 0
fAβHA

δV

0 0 0 0 0
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δV

0 0 0
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0










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
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
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





.

The element kij of K denotes the expected number of new infective with index i,
caused by an infective with index j. The indices {1, 2, 3, 4, 5, 6} of i and j correspond
to {IHaT , IHaU , IV a, IHAT , IHAU , IV A} respectively. For our model, there are two
basic reproduction ratios, one is for the infection caused by the sensitive strain, and
the other one is caused by the resistant strain.

Let us define parameters

R0j =
βHj λV j τj

δV σHjU (δV + τj)

(

1 − fj

(

1 − σHjU

σHjT

))

, j ∈ {a, A}. (3)

The square root of R0a and R0A are the basic reproduction ratios of the sensitive
and resistant infection respectively. These ratios represent the expected numbers of
secondary cases of the sensitive (resistant) infection per primary case of the sensitive
(resistant) infection in a ‘virgin’ population during the infectious period of primary
case [10]. The ratios also determine whether the sensitive strain or the resistant one
will eventually fix in population after an initial infection occurs.

The parameter R0a is similar to the basic reproduction ratio RS in [14]. Here, the
basic reproduction ratio of the sensitive infection uses a square root sign, because
the model incorporates the vector explicitly. So, it gives a finer result.

The parameter R0j is a strictly decreasing function with respect to the treatment
fraction fj , where j ∈ {a, A}. The increase (decrease) of fj will decrease (increase)
R0j linearly. Hence, increasing treatment fraction fj can be used as a strategy to
decrease the parameter R0j .
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Let us define r0a = βHa λV τa

δV σHaU (δV +τa) . The square root of r0a is the basic reproduc-

tion ratio for malaria infection in the absence of a resistant strain and treatment in
the population. Moreover, we have the relation

R0a = r0a

(

1 − fa

(

1 − σHaU

σHaT

))

. (4)

From Equation (4) we obtain that the treatment reduces the basic reproduction
ratio of malaria infection in the absence of a resistant strain and treatment. In the
absence of a resistant strain, there is a critical sensitive-treatment proportion

fcrit
a =

(

1

1 − σHaU

σHaT

)

(

1 − 1

r0a

)

. (5)

The critical parameter (5) is useful in disease eradication, that is, when fa is greater

than fcrit
a , then the disease will eventually disappear from the population, because

R0a < 1. In a case where the population is only infected initially by a resistant
strain, a similar argument holds.

Model (2) has three boundary equilibria, these are, the disease-free equilibrium
Ed = (1, 0, 0, 0, 0, 0, 0, 0, 0), the sensitive infection equilibrium Ea = (Sa

H , Ia
HaT ,

Ia
HaU , 0, 0, Ea

V a, Ia
V a, 0, 0), and the resistant infection equilibrium EA = (SA

H , 0, 0,
IA
HAT , IA

HAU , 0, 0, EA
V A, IA

V A), where

Sj
H =

Kj + R0j Lj

R0j (Kj + Lj)
,

Ij
HjT =

fj σHjU βHj τj (R0j − 1) (δH + η)

R0j (Kj + Lj)
,

Ij
HjU =

(1 − fj)σHjT βHj τj (R0j − 1) (δH + η)

R0j (Kj + Lj)
,

Ej
V j =

δV σHjT σHjU (R0j − 1) (δH + η)

Kj + R0j Lj

,

Ij
V j =

τj σHjT σHjU (R0j − 1) (δH + η)

Kj + R0j Lj

and

Kj = βHj τj [η ((1 − fj)σHjT + fj σHjU ) + σHjT σHjU ],

Lj = (δH + η) (δV + τj)σHjT σHjU ; j ∈ {a, A}.

The equilibrium Ed always exists. Meanwhile, the equilibria Ea and EA exist if
and only if R0a and R0A is greater than one respectively. Moreover, if Ej exists,
we have the relation

R0j =
1

Sj
H Sj

V

=
1

Sj
H

(

1 − Ej
V j − Ij

V j

) .

The last equation gives the relation between the square of the basic reproduction
ratio and the equilibrium states of the susceptible host and vector subpopulations.
We obtain that the greater the square of basic reproduction ratio, the less the
susceptible host or vector subpopulations in the equilibrium state.

For R0a = R0A > 1 there is a one-dimensional manifold of interior equilib-
ria. The manifold contains endemic coexistent equilibria. If we parameterize
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this manifold with m, which corresponds to IV A, then one of the equilibria is
Ec =

(

Sc
H , Ic

HaT , Ic
HaU , Ic

HAT , Ic
HAU , Ec

V a, Ec
V A, Ic

V a, m
)

, where

Ic
V a =

σHaT σHaU τa (R0a − 1) (δH + η)

Ka + R0a La

− m σHaT σHaU τa (KA + R0A LA)

σHAT σHAU τA (Ka + R0a La)
,

Ec
V j =

δV Ic
V j

τj

, Sc
H =

(δH + η)

δH + η + m KA

σHAT σHAU τA
+

Ic
V a

Ka

σHaT σHaU τa

,

Ic
HjT =

fj βHj Ic
V j Sc

H

σHjT

, Ic
HjU =

(1 − fj)βHj Ic
V j Sc

H

σHjU

, j ∈ {a, A}.

When the coexistent equilibrium Ec exists, it depends on the parameters and initial
condition.

The parameter m satisfies

R0A =
1

Sc
H Sc

V

=
1

Sc
H

(

1 − Ec
V a − Ec

V A − Ic
V a − Ic

V A

) .

Moreover, the lower and upper bounds of m is given by

0 < m <
τA σHAT σHAU (δH + η) (R0a − 1)

KA + R0A LA

.

Consider the limiting values of parameter m. If m = 0, then the equilibrium Ec

coincides with the equilibrium Ea. And, if

m =
τA σHAT σHAU (δH + η) (R0a − 1)

KA + R0A LA

,

then the equilibrium Ec is the equilibrium EA. So, the manifold connects the
equilibria Ea and EA. This will be confirmed with numerical simulation in the
next section.

The following proposition gives the stability criteria of the disease-free equilib-
rium Ed.

Proposition 1. The disease-free equilibrium Ed is locally asymptotically stable if

R0a, R0A < 1 and it is unstable if R0a > 1 or R0A > 1. Moreover, if R0a, R0A ≤ 1,
then Ed is globally asymptotically stable in Ω.

Proof. The local stability of the disease-free equilibrium Ed is a corollary of Theo-
rem 2 in [11].

In proving the global asymptotical stability of Ed in Ω for R0a, R0A ≤ 1, we
construct a Liapunov function V : Ω → R, where

V (SH , IHaT , IHaU , IHAT , IHAU , EV a, EV A, IV a, IV A) =
∑

j ∈{a,A}

δV (δV + τj) (σHjU IHjT + σHjT IHjU ) +

βHj

(

(1 − fj)σHjT + fj σHjU

)(

τj EV j + (δV + τj) IV j

)

.

It can be seen that V (x) ≥ 0 for x ∈ Ω. Moreover, V (x) = 0 if and only if
x ∈ {(SH , 0, 0, 0, 0, 0, 0, 0, 0) : 0 ≤ SH ≤ 1}. The last set is a positive invariant set
under the flow generated by the vector field of model (2). In this positive invariant

set, we have dSH

dt
= (δH + η) (1 − SH) and SH → 1 as t → ∞. Moreover, the
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derivative of V along solution curves of model (2) is given by

V̇ = −δV

∑

j ∈{a,A}

βHj (δV + τj)
(

(1 − fj)σHjT + fj σHjU

)

(1 − SH) IV j +

σHjT σHjU (δV + τj) (IHjT + IHjU ) (1 − R0j SV ),

which is less or equal to zero in Ω.
Let M be a subset of Ω, where M satisfies V̇ = 0. Thus, the set M is defined by

(1 − SH) IV j = 0, IHjT = IHjU = 0 if R0j < 1 and

(1 − SH) IV j = 0, (IHjT + IHjU )(1 − SV ) = 0 if R0j = 1,

where j ∈ {a, A}.
From the inspection of model (2), it can be seen that {Ed} is the largest invariant

set under the flow generated by the vector field of model (2) that is contained in M .
Therefore, by Theorem VIII of [15] the equilibrium Ed is globally asymptotically
stable in Ω for R0a, R0A ≤ 1.

From the biological point of view, Proposition 1 implies that malaria disease
caused by the sensitive and resistant strains will eventually disappear from any
initial size of population when R0a, R0A ≤ 1.

Let the equilibrium Ea = (Sa
H , Ia

HaT , Ia
HaU , 0, 0, Ea

V a, Ia
V a, 0, 0) exists, that is if

R0a > 1. By using the coordinate system (SH , IHaT , IHaU , EV a, IV a, IHAT , IHAU ,
EV A, IV A), the linearization of model (2) at point Ea gives the Jacobian matrix

A =

(

A1 A3

0 A2

)

,

where

A1 =

















−Ia
V aβHa − δH − η −η −η 0 −Sa

HβHa

faIa
V aβHa −σHaT 0 0 faSa

HβHa

(1 − fa)Ia
V aβHa 0 −σHaU 0 (1 − fa)Sa

HβHa

0 Sa
V λV a Sa

V λV a −δV − Ia
HaλV a − τa −Ia

HaλV a

0 0 0 τa −δV

















,

A2 =













−σHAT 0 0 fASa
HβHA

0 −σHAU 0 (1 − fA)Sa
HβHA

Sa
V λV A Sa

V λV A −δV − τA 0

0 0 τA −δV













,

Ia
Ha = Ia

HaT + Ia
HaU and Sa

V = 1 − Ea
V a − Ia

V a. The stability of equilibrium Ea is
determined by the eigenvalues of matrices A1 and A2.

The eigenvalues of matrix A1 are somewhat difficult to obtain analytically, be-
cause they relate to a quintic characteristic polynomial. But, numerical simulation
with the parameter values which we consider indicates that all eigenvalues of the
matrix have negative real parts if R0a > 1.

Next, the matrix −A2 is an M-matrix. The real part of all eigenvalues of matrix
−A2 is positive if and only if det(−A2) > 0 (see [4]). Furthermore, all eigenvalues of
A2 have negative real parts if and only if det(A2) > 0. The determinant of matrix
A2 is

det(A2) =
δV σHAT σHAU (δV + τA) (R0a − R0A)

R0a

.

Thus, if R0a > R0A, then the equilibrium Ea is locally asymptotically stable. And,
it is unstable if R0a < R0A. Hence, we obtain the following property.
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Suppose that the equilibrium Ea exists. If R0a > R0A, then the equilibrium Ea

is locally asymptotically stable. Furthermore, if R0a < R0A, then equilibrium Ea

is unstable.

By observing the symmetry property that exists between the coordinate of equi-
libria Ea and EA, we can get a similar property as the following. Suppose that the
equilibrium EA exists. If R0a < R0A, then the equilibrium EA is locally asymptot-
ically stable. Moreover, if R0a > R0A, then the equilibrium EA is unstable.

For R0a = R0A > 1, the stability of equilibrium Ec is difficult to obtain ana-
lytically. The linearization of model (2) at equilibrium Ec produces a nine-degree
characteristic polynomial. But, numerical exploration with parameter values which
we consider indicates that the equilibrium Ec is locally asymptotically stable. This
can be seen in the next section.

The behavior of the equilibria can be summarized on a bifurcation diagram as
depicted in Figure 2.

0 1

1

R0A

R0a

Ed (g)
Ed (u)

EA (s)

Ed (u)

Ea (s)

Ed,a (u)

Ed,A (u)

EA (s)

Ea (s)

R0a = R0A

Ed,a,A (u)

Ec (s)

Figure 2. Bifurcation diagram. The scripts g, s, and u stand for
globally asymptotically stable, locally asymptotically stable, and
unstable respectively.

4. Numerical simulations. In the following numerical simulations we use ÑH =
10000, 1/δH = 70 y, 1/γHaU = 1/γHAU = 200 d, 1/γHaT = 4 d, 1/γHAT = 21 d,
λHa = λHA = 438/y, 1/η = 1 y for the host population. For the vector population,

we take ÑV = 1000, λV a = λV A = 730/y, 1/δV = 30 d, 1/τa = 1/τA = 14 d.
Figure 3 illustrates the typical dynamics of the infected host subpopulations. In

case R0A > R0a (the left figure), we see that the resistant strain fixes (the resistant-
infected host subpopulations approach some positive numbers) and the sensitive one
vanishes in the population after a long period of time. Furthermore, for R0a > R0A

(the right figure) the sensitive strain fixes and the resistant one eventually declines
to zero in the population.
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Figure 3. Dynamics of the infected host subpopulations. Left
figure: we use fa = fA = 0.97. For this simulation, R0a ≈ 16.09
and R0A ≈ 43.047. Right figure: we take fa = 0.8 and fA = 0.97.
For this simulation, R0a ≈ 70.182 and R0A ≈ 43.047.
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Figure 4. Projection of dynamics of model (2) on the planes
IHaT − IHaU and IHAT − IHAU . Here, we use fa = 0.9 and
fA ≈ 0.988 to obtain R0A = R0a ≈ 3.836. The circle and square
box represent the sensitive and resistant equilibrium states respec-
tively. Each sign at the end of the curves represents the equilibrium
state of each orbit. The time of integration is 30 years.

In Figure 4 we give the typical dynamics of the infected host subpopulations for
R0A = R0a > 1. The figure shows the projection of dynamics of model (2) on planes
IHaT − IHaU and IHAT − IHAU . For this simulation, we use some fixed parameters
and eleven initial conditions. We observe in this case that both of the resistant and
sensitive strains approach some positive numbers, that is, both strains coexist in
the population. This result confirms the existence of one-dimensional manifold of
equilibria which connects the sensitive infection equilibrium Ea (represented by the
• sign) and the resistant-infection equilibrium EA (represented by the � sign). It
also confirms the stability of the manifold.

Let γHAT = γHAU

m
, where m is the intermediate stage of drug tolerance and

0 < m ≤ 1. The greater of m, the more tolerant the parasites to the drug, so the
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drug kills less parasites. If m = 1, the parasites has been fully tolerant to the drug,
so the drug kills no parasites.

Figure 5 illustrates the effect of varying the intermediate stage of drug tolerance
m and the treatment fraction fA on the basic reproduction ratio

√
R0A. From this

result, we observe that the less intermediate stage of drug tolerance, the more the
decrease of the basic reproduction ratio

√
R0A.
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Figure 5. The basic reproduction ratio
√

R0A as the intermediate
stage of drug tolerance m and treatment fraction fA vary.
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R0A as the stage of tol-
erance m and treatment fraction fA vary. The numbers on the
curves in the right figure is the value of

√
R0A.

Figure 6 also illustrates the effect of varying the treatment fraction fA and the
stage of drug tolerance m on the basic reproduction ratio

√
R0A. The left graph

illustrates the effect in the three-dimensional graph. Meanwhile, the right graph
is the contour plot of the left graph. From the right graph, we observe that for
any fixed ratio

√
R0A, increasing fA will increase parameter m. It means that the

parasites are more tolerant to the drug, so the drug kills less parasites.
Figure 7 illustrates the effect of varying fa or fA on the infected host population

around the coexistent case. The initial condition for these simulations are the
coexistent equilibrium, except for the evolution of coexistent case. From this result,
varying fa or fA can destroy the existence of coexistent equilibrium. It should be
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careful in changing fa or fA, because it will determine which strain will eventually
fix in the population.
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Figure 7. Dynamics of the infected host population. The solid
curve corresponds to the coexistent case (fa = 0.9, fA ≈ 0.98613).

5. Conclusion. In this paper we formulate a deterministic model for the spread
of anti-malarial drug resistance in a population. Here, we consider that the Plas-

modium spp. parasite is partially resistant to an anti-malarial drug. The model
incorporates the vector population explicitly in the model. In the model, both of
the host and vector populations are constant for all time. The model is suitable
with malarial situations in developing countries, where there is no parasite screen-
ing prior to a treatment. It also allows some treatment fractions for the infective
subpopulations. Although the model is constructed for malaria disease, it can be
used for some other diseases with some adaptations.

For the model, we obtain parameters R0a and R0A as in equation (3). These
parameters correspond to the basic reproduction ratios, one for the sensitive strain
infection (

√
R0a), the other one for the resistant strain infection (

√
R0A). These

ratios determine the existence and the stability of the equilibria of the model. The
stability of the equilibrium corresponds to which malarial strain will eventually fix
in the population.

When both R0a and R0A are less than or equal to one, both of the strains can
be eradicated from any initial size of population. If one of them is greater than
one, then the strain which has the greater ratio will fix in the population. The
coexistence of the sensitive and resistant strains in the long term can happen if and
only if the two ratios are equal and they are greater than one. If this coexistent
case occurs, the initial condition determines the equilibrium state in the long term.

Figure 6 illustrates the effect of varying the resistant-treatment fraction and the
intermediate stage of drug tolerance on the basic reproduction ratio

√
R0A. We

observe that for any fixed ratio
√

R0A, increasing the fraction will increase the
intermediate stage, so the drug kills less parasites.
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