
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2009.6.629
AND ENGINEERING
Volume 6, Number 3, July 2009 pp. 629–647

FEEDBACK STABILIZATION FOR A CHEMOSTAT WITH

DELAYED OUTPUT

Gonzalo Robledo

Faculty of Mechanical Engineering, Technion Israel Institute of Technology
Haifa, 32000 Israel1

(Communicated by Sergei Pilyugin)

Abstract. We apply basic tools of control theory to a chemostat model that
describes the growth of one species of microorganisms that consume a limiting
substrate. Under the assumption that available measurements of the model
have fixed delay τ > 0, we design a family of feedback control laws with the
objective of stabilizing the limiting substrate concentration in a fixed level.
Effectiveness of this control problem is equivalent to global attractivity of a
family of differential delay equations. We obtain sufficient conditions (upper
bound for delay τ > 0 and properties of the feedback control) ensuring global
attractivity and local stability. Illustrative examples are included.

1. Introduction. The chemostat is a continuous bioreactor with constant volume
V , which is used to culture microorganisms for experimental and industrial pur-
poses (simulation of aquatic ecosystems, wastewater treatment, production of cel-
lular mass,etc). It contains one species of microorganism that consumes a limiting
substrate. The evolution of microorganisms and substrate is described by the ODE
system [1],[18],[20]:







ṡ(t) = Dsin − Ds(t
)
− αf(s(t))x(t),

ẋ(t) = x(t)f
(
s(t)

)
− Dx(t),

s(0) ≥ 0 and x(0) > 0,

(1)

where s(t) denotes the concentration of limiting substrate at time t and x(t) denotes
the biomass density of the species of microorganism at time t. f(s) represents
the per capita growth rate of nutrient of the microorganism and so α > 0 is a
yield constant related with conversion rate of substrate in new biomass. Limiting
substrate is pumped into the chemostat at rate F > 0 with concentration sin > 0
and the mixing of substrate/biomass is pumped out of the chemostat also at rate
F > 0. The constant D = F/V is called the dilution rate.

In this work, we assume that the function f ∈ C2(R+, R+) satisfies the following
conditions (F):
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(F1) Either f is strictly increasing or unimodal (i.e. it has at most one critical point
smax < sin which is a maximum). Moreover, f is always positive, bounded,
f(0) = 0 and f ′(0) > 0.

(F2) If f is strictly increasing then it is concave. Moreover, If f is unimodal then
it is concave in an interval [0, sc), with sc > smax.

Conditions (F) are satisfied for several functions describing the microbial growth,
for example (see e.g., [1],[22])

f1(s) =
µmaxs

ks + s
, f2(s) =

µmaxs

ks + s + s2

ki

and f3(s) =
µmaxs

ks + s2
, (2)

where µmax, ks and ki are positive parameters. It is straightforward to verify that f1

(also called Michaelis-Menten function) is strictly increasing and concave. Moreover,
the functions f2 and f3 are unimodal with one inflection point sc > smax.

In this paper we follow an idea developed in [1],[6],[5],[23],[17] and consider system
(1) as a single input single output system (see e.g., [12]), that means a structure
with three elements:

(1) a Plant defined by the chemostat model;
(2) a Output y(t), given by the measurements that we are able to carry out in the

chemostat;
(3) an Input or control variable given by some parameters of the model that are

susceptible to being modified externally. For example the input concentration
of substrate sin > 0 or the dilution rate D > 0.

Systems in which input is a function of the output are called closed–loop or
feedback control systems. In this article, we will consider system (1) as a feedback
control system under the following hypothesis:

(H1) (Input hypothesis) The dilution rate D is the feedback control variable.
(H2) (Output hypothesis) The only output available is described by:

y(t) = s(t − τ), τ > 0. (3)

The requirement of a nonnegative feedback control comes from the fact that
the control variable (dilution rate) represents an input flow. So, it has to be non-
negative to have a physical meaning. In general, it is assumed that outputs are
available online from the plant. Nevertheless, time delays between inputs and out-
puts are common phenomena in industrial processes and biological systems [6],[15].
Motivated by this fact, we introduce assumption (H2).

We will design a feedback control law with the goal of stabilizing the substrate
concentration at a given level s∗, more formally:

Control Problem (CP): Given a constant s∗ ∈ (0, min{smax, sin}) satis-
fying the inequality f(s∗) < f(sin), design a dilution rate now defined as
function of y(t) that stabilizes the system (1)–(3) with respect to this refer-
ence value,i.e., lim

t→+∞
s(t) = s∗.

In this feedback control framework, dilution rate D is now a positive function de-
pendent on s(t−τ) and (1) becomes a system of differential delay equations. Hence,
control problem (CP) is equivalent to finding sufficient conditions to ensure global
attractivity of a system of differential delay equations. For a rigorous presentation
of the differential delay equations theory, we refer to [2],[8] and [13].
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Remark 1. There are no restrictions for s∗ when f is strictly increasing. On the
other hand, inequality f(s∗) < f(sin) imply that (CP) is well defined only for a
subset (0, smax) when f is unimodal.

1.1. Motivation. It is clear that by choosing D = f(s∗), the problem is solved
immediately when f is increasing and is solved for a set of initial conditions (s0, x0)
when f is unimodal (see e.g., [1],[20]). Nevertheless, the introduction of a feedback
control law can improve the performance and efficiency of the bioprocesses with
respect to this “fixed dilution” approach. To emphasize the relevance of this prob-
lem, we want to refer to two concrete applications (a more exhaustive numerical
explanation will be given in Section 5, see also [7]):
Example 1: We can consider the chemostat as a depollution device. This process
consists of a chemostat in which toxic contaminants (e.g., phenol, toluene) are
pumped into it with a fixed concentration sin higher than an acceptable level s+ >
s∗ fixed by environmental authorities. For example, s+ = 0.30mg/L is used to avoid
pollution in the water (see e.g., [7] for more details).

This chemostat also contains a microorganism (e.g., Pseudomonas Putida) that
can resist the adverse effects of organic solvents and is capable of decontamining
the tank because it is able to utilize the toxic contaminants as limiting substrate.
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Figure 1. Phenol concentration (s(0) = 5 mg/L and x(0) = 0.001
mg/L). Notice the difference between asymptotic behaviors: depo-
llution process fails using fixed dilution (left) while feedback stabi-
lization in s∗ = 0.25 mg/L is achieved (right).

The introduction of a feedback control law can drastically modify the outputs
of the model. Figure 1 shows the concentration of phenol (which is pumped into
the chemostat with concentration sin = 7.2 mg/L): in the left, the depollution pro-
cess is carried on by using a fixed dilution D = f(s∗), which fails (washout of P.
Putida and limt→+∞ s(t) = sin) for a set of initial conditions. In the right, we
introduce a feedback control law (satisfying properties described in the next section
but supposing that the measurements are available online) and phenol concentra-
tion converges to s∗ for all initial conditions and the depollution goal is obtained.
Although this control approach is effective, we are interested to know the robustness
if we account for the delay in the measurements.
Example 2: Chemostat is employed to study phytoplankton in a simulated marine
environment: indeed, several features of marine environments such as light intensity
and pH and temperature, can be reproduced externally. Moreover the use of the



632 GONZALO ROBLEDO

chemostat makes it possible to reproduce several levels s∗ of limiting substrate;
consequently we can study the metabolism of phytoplanktonic algae.
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Figure 2. Nitrate concentration in the phytoplankton culture
(s(0) = 0.4 µatg/L and x(0) = 0.5 µatg/L): use of fixed dilution
(left) and use of a feedback control (right). Notice the difference
(days) between the speed of convergence to 0.8 µatg/L (microatoms
grams by liter).

Figure 2 shows the concentration of nitrate in a culture of Dunaniella Tertiolecta.
Notice that the use of a feedback control law (satisfying properties described in the
next section but supposing the absence of delays on the measurements) can drasti-
cally improve the speed of the convergence (with respect a fixed dilution strategy)
toward the wanted level s∗. Nevertheless, as it has been pointed out in [15], there
exist delays in the measure of substrate. Hence, we are interested to know the
robustness of control laws if we account for these delays.

1.2. Some related results. Control problem (CP) has been proposed in [6, Ch.6],
where some linear feedback control laws which stabilize locally the output at s∗ are
proposed. Some related control problems for the chemostat have been considered
in [7] where (H1) is assumed, but function f and output (available online) have
uncertainties. In [17], an open loop control is considered by supposing (H1), but
the goal is to build an open loop periodic input leading to a globally attractive
periodic output.

A control problem for a competition model (two species) is studied in [23] where
(H1) is assumed and y(t) = (x1(t − τ), x2(t − τ)) ∈ R

2
+. Necessary and sufficient

conditions ensuring local stability and bifurcation analysis are presented.
The paper is organized as follows: a family of feedback control laws is proposed

in Section 2. A result of local stability is presented in Section 3 and two results of
global stability (delay independent and delay dependent) are presented in Section
4. The examples considered in this introduction are revisited in Section 5.

2. Feedback control law. Let us build the family of feedback control laws:

D
(
y(t)

)
= h

(
s∗ − s(t − τ)

)
(4)

where the function h ∈ C2(R, R+) satisfies the following properties:

(P1) h is increasing, bounded, strictly positive and h(0) = f(s∗).
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(P2) The value s∗ is the only root of the equation h(s∗ − s) − f(s) = 0 over the
interval (0, sin).

(P3) h has a unique inflection point at 0.

Remark 2. If τ = 0, then (P1)–(P2) ensure the solution of problem (CP). Notice
that if f is described by an increasing function, then property (P2) is automatically
satisfied. Finally (P1) and (P3) imply that h is convex in the negative real axis
and concave in the positive real axis.

We replace D in the system (1) by the feedback control law (4), the closed-loop
system becomes:







ṡ(t) = h(s∗ − s(t − τ))(sin − s(t)) − αf
(
s(t)

)
x(t),

ẋ(t) = x(t)f
(
s(t)

)
− h

(
s∗ − s(t − τ)

)
x(t),

x(0) > 0, 0 ≤ s(θ) = ϕ1(θ) ≤ sin for any θ ∈ [−τ, 0],

(5)

where ϕ1 is a nonnegative continuous function bounded above on the interval [−τ, 0].
By using (P1)–(P2), we can prove that the equilibria of system (5) are given

by E0 = (sin, 0) and E1 = (s∗, α−1[sin − s∗]).
Let us define

C = C
(
[−τ, 0], R2

)
and C+ = C

(
[−τ, 0], R2

+

)

the Banach space of scalar continuous functions mapping the interval [−τ, 0] into
R

2 and the cone of nonnegative continuous functions, respectively. C is equipped
with the supremum norm and C+ becomes a complete metric space (C+, d) under
the induced metric.

The initial conditions of (5) are in the space C+ ×R+ and can be included in the
space X = C+×C+. Global existence and uniqueness of the solutions of system (5)
can be easily proved (see e.g., [8, Ch.2]) and consequently, these define a continuous
semiflow φ : R+ × X 7→ X satisfying φ(0, x0) = x0 and φt+s(x0) = φ(t + s, x0) =
φ(t, φ(s, x0)).

As we pointed out in the introduction, (CP) will be solved if we build a function
h satisfying (P) and find sufficient conditions for global attractivity of solution E1

of system (5).

3. Local stability results.

Theorem 3.1. Let f and h be functions satisfying conditions (F) and (P):

(i) If f ′(s∗) ≥ h′(0), then the critical point E1 of system (5) is locally asymptot-
ically stable independently of delay τ .

(ii) If f ′(s∗) < h′(0), then the critical point E1 of system (5) is locally asymptot-
ically stable for any τ ∈ [0, τ̄) where τ̄ is defined as follows

τ̄ =







arccos
( |f ′(s∗)|

h′(0)

)

[sin − s∗]
√

h′(0)2 − f ′(s∗)2
if f ′(s∗) < 0

π − arccos
(f ′(s∗)

h′(0)

)

[sin − s∗]
√

h′(0)2 − f ′(s∗)2
if f ′(s∗) > 0

(6)

(iii) The critical point E0 of system (5) is unstable.
(iv) If f ′(s∗) < h′(0), then a Hopf bifurcation occurs at E1 for τ = τ̄ .
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Proof. First, we make the change of variables (s, x) → (v, u) = (sin −s−αx, s−s∗)
and linearize the new system around (0, 0) obtaining

ż(t) = Az(t) + Bz(t − τ) (7)

where z(t) =
(
v(t) u(t)

)T
and the matrices A and B are

A =

[
−h(0) 0
−f(s∗) −f ′(s∗)(sin − s∗)

]

and B =

[
0 0
0 −h′(0)(sin − s∗)

]

.

By properties (P) we can verify that the matrix A+B is stable, hence the system
(7) is stable when τ = 0. Now, we have that (0, 0) is a locally asymptotically stable
critical point of system if all roots of

det(sI − A − Be−sτ ) =
(
s + h(0)

)(
s + f ′(s∗)[sin − s∗] + h′(0)[sin − s∗]e−sτ

)
= 0

have negative real part (see e.g., [2] for details).
As h(0) < 0, we only need to study the roots of the characteristic equation

p(s) + q(s)e−sτ = 0, (8)

where p(s) = s + f ′(s∗)[sin − s∗] and q(s) = h′(0)[sin − s∗].
All roots of equation (8) have negative real part when τ = 0 and move continu-

ously to the right in the complex plane when τ increases (see e.g., [4]). Consequently,
the linear system becomes unstable if and only if for some τ̄ > 0, there exists an
imaginary solution of equation (8).

Let iR be the set of purely imaginary numbers. If iωc ∈ iR is a root of equation
(8), then it follows that |p(iωc)|

2 − |q(iωc)|
2 = 0, which implies

ωc = [sin − s∗]
√

h′(0)2 − f ′(s∗)2.

If f ′(s∗) > h′(0), it follows that (8) cannot have roots in iR, which implies that
all roots have negative real part for any τ > 0 and statement (i) follows.

If f ′(s∗) < h′(0), by taking real and imaginary parts of (8) at s = jωc it is easy
to see that

ωc = h′(0)[sin − s∗] sin(ωcτ), (9)

cos
(
τ [sin − s∗]

√

h′(0)2 − f ′(s∗)2
)

= −
f ′(s∗)

h′(0)
. (10)

As ωc > 0, equations (9)–(10) imply that for k = 0, 1, . . .

ωc ∈

{
(2kπ, π/2 + 2kπ) when f ′(s∗) < 0
(π/2 + 2kπ, π + 2kπ) when f ′(s∗) > 0.

Hence, statement (ii) follows by using identity arccos(−x) = π − arccos(x) when
f ′(s∗) > 0.

Second, we make the change of variables (s, x) → (v, u) = (sin − s− αx, s− sin)
and linearize the new system around (0, 0) obtaining

ż(t) = Az(t) + Bz(t − τ), (11)

where z(t) =
(
v(t) u(t)

)T
and the square matrices A and B are defined as follows

A =

[
−h(s∗ − sin) 0

−f(sin) f(sin) − h(s∗ − sin)

]

and B =

[
0 0
0 0

]

.

By properties (P) it follows that f(sin) > h(s∗ − sin), hence (sin, 0) is unstable
and statement (iii) follows.
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Finally, let s be a root of equation (8). Notice that implicit function theorem
and equation (8) imply

ds

dτ
=

sq(s)e−sτ

p′(s) + q′(s)e−sτ + τp(s)
= −s

[

p′(s)

p(s)
−

q′(s)

q(s)
+ τ

]−1

.

Let W (ωc) = SgnRe
{

ds
dτ

}

at s = iωc. As q′(s) = 0 and p′(s) = 1 it follows that

W (ωc) = −SgnRe

{

iωc

[

1

p(iωc)
+ τ

]−1}

= −SgnRe

{

iωc

[

1

p(iωc)
+ τ

]}

since Sgn(Re{z}) = Sgn(Re{z−1}). Thus

W (ωc) = SgnIm

{

1

ωc

[

1

iωc + f ′(s∗)[sin − s∗]

]}

= Sgn
1

ω2
c + f ′(s∗)2[sin − s∗]2

> 0.

Finally, by Hopf bifurcation theorem (see e.g.,[8, Ch.11]) we can see that a family
of periodic solutions bifurcate from E1 at τ = τ̄ and (iv) follows.

Remark 3. Let us recall that the control function h has to be designed for us, then
local stability can be always be obtained with reasonable choices of h. Moreover, the
method employed to determine τ̄ and W (ωc) has been developed and generalized
for systems of n differential delay equations in [16].

4. Global stability results. In order to shorten the statement of theorems, we
will first state some notations to be employed. By properties (F) and (P), there
exists an interval I ⊂ (0, min{smax, sin}) containing s∗ such that the map t 7→
f−1

(
h(s∗ − s)

)
= ρ(s) is well defined and ρ : I 7→ I follows. Moreover ρn(r) =

ρ ◦ . . . ◦ ρ(r)
︸ ︷︷ ︸

n times

.

Remark 4. The following properties of ρ are elementary:

(i) ρ is decreasing and has a fixed point at s∗.
(ii) If f ′(s∗) > h′(0) (f ′(s∗) < h′(0)) then |ρ′(s∗)| < 1 (resp. |ρ′(s∗)| > 1).
(iii) There is a unique number l1 ∈ (0, s∗) satisfying l1 = ρ(sin).
(iv) If the inequality

h(s∗ − l1) < f
(
min{smax, sin}

)
=

{
f(sin) if f is increasing,
f(smax) if f is unimodal.

(12)

is satisfied, then there is a number L1 ∈ (s∗, min{smax, sin}) satisfying ρ(l1) =
L1, which means h(s∗ − l1) = f(L1).

Theorem 4.1 (Delay independent results). Let f and h be functions satisfying
conditions (F) and (P). Assume that inequalities f ′(s∗) ≥ h′(0) and (12) are
satisfied. If

|ρ(s) − s∗| < |s − s∗| for any s ∈ [l1, L1] (13)

is satisfied, then the critical point E1 of system (5) is globally attractive and delay
independent.

Theorem 4.2. Let f and h be functions satisfying conditions (F) and (P). More-
over, inequality f ′(s∗) < h′(0) and equation (6) are satisfied. If either
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(i) If inequality (12) is satisfied and delay τ > 0 satisfies

τ <
1

[sin − l∗][f ′(l∗) + h′(0)]
, (14)

where [l∗, L∗] ⊂ [l1, L1] are defined as follows:

lim
n→+∞

ρ2n(l1) = l∗ and lim
n→+∞

ρ2n(L1) = L∗.

(ii) If inequality (12) is not satisfied but delay τ > 0 satisfies

τ <
1

[sin − l1][f
′(l1) + h′(0)]

, (15)

then the critical point E1 of system (5) is globally attractive.

Remark 5. Once again, we recall that the control function h is designed for us
and equations (12)–(13) can be verified with reasonable choices of h. Indeed these
assumptions can be interpreted geometrically (in term of graphs of ρ).

The proof of theorems will be divided into two steps. First, we will prove that
(under some compactness and persistence properties of the semiflow) the asymptotic
behavior of system (5) is equivalent to the asymptotic behavior of a scalar differential
delay equation. Second, we will find sufficient conditions ensuring global attractivity
of the scalar equation.

4.1. Reduction of system. It is straightforward to prove that under the trans-
formations (x, s) → (v, s) = (sin − s − αx, s), the system (5) is equivalent to:







ṡ(t) =
{
sin − s(t)

}{
h(s∗ − s(t − τ)) − f

(
s(t)

)}
− v(t)f

(
s(t)

)
,

v̇(t) = −h
(
s∗ − s(t − τ)

)
v(t),

v(0) ≥ 0, 0 ≤ s(θ) = ϕ1(θ) for any θ ∈ [−τ, 0].

(16)

The following results are standard in chemostat and differential delay equations
literature. For convenience, proofs are provided in the appendix.

Lemma 4.3. The solutions of system (5) define a semiflow φt on X, which has
the following properties:

(i) vt = sin − st − αxt → 0 when t → +∞ (here, st = s(t + θ),xt = x(t + θ) with
θ ∈ [−τ, 0]).

(ii) There exists a global attractor set A ⊂ X for the semiflow φt. That means, a
set A maximal compact invariant that attracts each bounded set in X.

(iii) There exists a number δ > 0 such that for any solution of system (5) with
initial condition ϕ = (ϕ1, ϕ2), there exists a number T0(ϕ) such that s(t) <
sin − δ and x(t) > δ when t > T0.

Proof. See Appendix.

By Lemma 4.3, we have that E0 = (sin, 0) is a repeller. This is equivalent to
saying that the biomass x(t) is uniformly persistent, i.e., there exists a number
δ0 > 0 (independent of initial conditions) such that lim inf

t→+∞
xt > δ0 (see e.g., [20]).

Hence, without loss of generality we will assume only initial conditions (st, xt) ∈ A
such that st < sin.

It is easy to see that local (global) stability of critical point E1 of system (5) is

equivalent to local (global) stability of critical point Ẽ1 = (s∗, 0) of system (16).
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From Lemma 4.3, we can deduce that v(t) → 0 when t → +∞, hence it interests to
us ask if the asymptotical behavior of the scalar differential delay equation:

{

ṡ(t) =
{
sin − s(t)

}{
h(s∗ − s(t − τ)) − f

(
s(t)

)}
,

s(θ) = ϕ(θ) ≥ 0 for any θ ∈ [−τ, 0]
(17)

is related to the asymptotic behavior of system (16). An affirmative answer is given
by the following result:

Lemma 4.4. If Ẽ1 is a locally asymptotically stable solution of system (16) and the
trivial solution s ≡ s∗ of the differential delay equation (17) is globally attractive,

then Ẽ1 is a globally attractive solution of system (16).

Proof. Without loss of generality, we suppose that initial conditions are in A. Let
~u0 ∈ Ω be an initial condition of system (16) where Ω is an open subset of A. Let
φt be the semiflow defined by (16). By Lemma 4.3, we have that φt is positively
invariant in the compact set A ⊂ X .

Let (w̄, v̄) ∈ ω(~u0), the ω–limit of ~u0 defined by

ω(~u0) =
{

(û, v̂) ∈ A : ∃tn → +∞ such that lim
n→+∞

φtn
(~u0) = (û, v̂)

}

.

By Lemma 4.3, one easily checks that lim
t→+∞

v(t) = 0. Consequently, it is straight-

forward to verify that v̄ = 0.
Let us define ~u1 = (w̄, 0) ∈ ω(~u0). As ω(~u0) is an invariant set (see e.g.[9]), we

have that φt(~u1) ∈ ω(~u0) for any t ≥ 0. By hypothesis, it follows that lim
t→+∞

φt(~u1) =

(s∗, 0), which implies (s∗, 0) ∈ ω(~u0). Using this fact, combined with local asymp-

totically stability of Ẽ1, we can conclude that φt(~u0) enters the basin of attraction
of (s∗, 0) in a finite time and the Lemma follows.

The idea behind the proof is now clear: as local asymptotic stability of solution
(s∗, 0) from equation (16) is ensured by Theorem 3.1, it follows by Lemma 4.4 that
sufficient conditions for global attractivity of s∗ in (17) hold also for E1 in (5).

Notice that equation (17) can be related to equation

ṡ(t) = s(t)
{
p(s(t − τ)) − g(s(t))

}

that is studied in [13, Ch.4], where g is increasing and unbounded whereas function p
is either strictly increasing (with p(s) → 0 when s → +∞) or unimodal. Sufficient
conditions ensuring global stability are presented. In spite of f and g does not
satisfy these assumptions, we apply some ideas presented in [13] and combine them
with one-dimensional map techniques in order to prove global stability of equation
(17).

4.2. Some properties of equation (17). Without loss of generality, we will as-
sume that initial conditions ϕ of equation (17) satisfy ||ϕ||∞ < sin. It is straightfor-
ward to prove that ||st||∞ < sin for any t > 0 and that sin is an unstable equilibria
of (17).

Lemma 4.5. If s(t) is non–oscillatory with respect to s∗ ( i.e., there is a number
T > 0 such that s(t)−s∗ has constant sign for t > T +τ), it follows that lim

t→+∞
s(t) =

s∗.
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Proof. We will prove that there is a number T̄ ≥ T such that s(t) is monotone for
any t > T̄ .

First, assume that s(t) < s∗ for any t > T + τ . As f is always increasing in
(0, s∗), it follows that

h(s∗ − s(t − τ)) − f(s(t)) > h(0) − f(s(t)) = f(s∗) − f(s(t)) > 0

and ṡ(t) > 0 for any t > T + τ .
Second, assume that s(t) > s∗ for any t > T + τ . Notice that

h(s∗ − s(t − τ)) − f(s(t)) < h(0) − f(s(t)) = f(s∗) − f(s(t)) < 0

is always verified when f is increasing. Moreover, it is still verified when f is
unimodal and f(s∗) < f(sin). Hence, ṡ(t) < 0 for any t > T + τ .

Now, without loss of generality, we assume that s(t) > s∗ and ṡ(t) < 0 for any
t > T̄ + τ (the other case can be proved similarly). Then, it follows that

lim
t→+∞

s(t) = l ≥ s∗ and lim
t→+∞

ṡ(t) = 0. (18)

If l > s∗, then by using (P2) we can prove that

lim
t→+∞

ṡ(t) = (sin − l)
{
h(s∗ − l) − f(l)

}
< 0

obtaining a contradiction with (18), hence l = s∗ and the Lemma follows.

By Lemma 4.5, we have only to consider the case when solutions of equation (17)
are oscillatory with respect to s∗. This means, there exists a sequence {vn} → +∞
when n → +∞ satisfying s(vn) = 0 for any integer n > 1.

If the solution s(t) is oscillatory, we can assume that

lim inf
t→+∞

s(t) = m ≤ s∗ ≤ M = lim sup
t→+∞

s(t). (19)

It is straightforward to prove that 0 ≤ m and M ≤ sin. By the fluctuation lemma
(see e.g., [10, Lemma 4.2]) there exist two sequences of real numbers {tn},{rn} →
+∞ when n → +∞ such that for any integer n ≥ 1 it follows that:

ṡ(tn) = 0 i.e. h(s∗ − s(tn − τ)) − f(s(tn)) = 0, (20)

ṡ(rn) = 0 i.e. h(s∗ − s(rn − τ)) − f(s(rn)) = 0, (21)

lim
n→+∞

s(tn) = lim
n→+∞

Mn = M and lim
n→+∞

s(rn) = lim
n→+∞

mn = m. (22)

Without loss of generality, we can suppose that s(tn) > s∗ and s(rn) < s∗ for
any integer n ≥ 1. Furthermore, by equations (20)–(22) combined with properties
of sequences s(tn),s(rn) and functions f ,h for any integer n ≥ 1 it follows that:

h(s∗ − m) > h(s∗ − s(tn − τ)) = f(Mn),

h(s∗ − M) < h(s∗ − s(rn − τ)) = f(mn).

Finally, letting n → ∞ we obtain that

f(M) ≤ h(s∗ − m) and h(s∗ − M) ≤ f(m). (23)

By (23), combined with the fact that h is increasing, M < sin and h(s∗ − sin) =
f(l1), we can conclude that

f(l1) < h(s∗ − M) ≤ f(m)

as m ≤ s∗ < smax and f is strictly increasing in (0, smax), we have that l1 ≤ m.
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4.3. Proof of Theorem 4.1. The idea of the proof is the following: by using
l1 ≤ m, we will prove that M < L1 and build a one dimensional discrete dynamical
system

un+1 = ρ(un) with ρ : [l1, L1] → [l1, L1]. (24)

Following some ideas developed in [14] and references therein, we will verify that
the attractor of map (24) gives upper and lower bounds for the unknown constants
m and M defined above.

By equation (23) combined with l1 ≤ m we have that

f(L1) = h(s∗ − l1) > h(sin − m) ≥ f(M).

As f is increasing in (0, min{smax, sin}) and L1 < min{smax, sin}, the last in-
equality implies that M ≤ L1.

Moreover, let l2 = ρ(L1), which means f(l2) = h(s∗ − L1). By min{smax, sin} >
L1 ≥ M and equation (23), it follows that

h(s∗ − sin) ≤ h(s∗ − min{smax, sin}) < h(s∗ − L1) < h(s∗ − M) ≤ f(m)

and using this inequality combined with equalities stated above it follows

f(l1) ≤ f(l2) ≤ f(m),

which implies that l2 ∈ [l1, m] and ρ(L1) = l2 ≥ l1.
Hence, we have that the map ρ : [l1, L1] 7→ [l1, L1] is well defined, decreasing, and

has a unique fixed point s∗ that is locally stable because f ′(s∗) > h′(0). By using
these facts combined with [m, M ] ⊂ [l1, L1] and equation (23) we can prove that

[m, M ] ⊆ ρ
(
[m, M ]

)
⊆ . . . ⊆ ρk

(
[m, M ]

)
⊆ [l1, L1]. (25)

By (13) it follows that |ρ′(s)| < 1 for any s ∈ [l1, L1]. Hence, s∗ is a globally
stable fixed point of ρ which implies:

[m, M ] ⊆ lim
k→+∞

ρk
(
[m, M ]

)
= s∗,

hence m = M = s∗ and the Theorem follows by using Lemma 4.4. �

Following the lines of the proof but dropping inequality (13), other results can
be obtained.

Corollary 1. If equation (12) is satisfied, f is a Michaelis–Menten function and
h has negative Schwarz derivative (i.e. Sh = h′′′/h′ − 3/2(h′′/h′)2 < 0) then the
critical point E1 of system (16) is globally attractive and delay independent.

Proof. We know that ρ : [l1, L1] 7→ [l1, L1] is decreasing with s∗ a unique fixed point
that is locally stable. If we prove that (Sρ) < 0 for any s ∈ [l1, L1], then Proposition
3.3 from [14] implies that s∗ is a global attractor of the map ρ and letting k → ∞
in equation (25) implies that m = M = s∗.

It is straightforward to prove that (Sf)(s) = (Sf−1)(s) = 0. Moreover, by the
formula for the Schwarzian derivative of the composition of two C3 functions (see
e.g., [14]), we have

(Sρ)(s) = (Sh)(s∗ − s) < 0

and the result follows.

Remark 6. We point out that this last result is not arbitrary because the functions
h satisfying (P) and (Sh) < 0 can be designed as follows:

h(s) = f(s∗) + kg(s), with 0 < k < f(s∗),
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where g (with g(0) = g′′(0) = 0 and (Sg) < 0) is a differentiable approximation of
the saturation function with slope 1/a > 0:

sat(t) =







−1 if r < −1
t/a if t ∈ [−1, 1]
1 if t > 1,

and is employed in several control designs. For example, g(t) = π/2 arctan(t) and
g(t) = tanh(t) approximates sat(t) and have negative Schwarzian derivative.

4.4. Proof of Theorem 4.2. We will give the proof separately for cases (i) and
(ii).
Case (i): As inequality (12) is verified, we can follow the lines of the precedent proof
and build the map ρ : [l1, L1] 7→ [l1, L1], which now has an unstable fixed point at
s∗ because f ′(s∗) < h′(0).

Following the lines of precedent proof, we can prove by induction that the se-
quences li = ρ(Li−1) and Li = ρ(li) satisfy

l1 ≤ . . . ≤ li ≤ li+i ≤ m and M ≤ Li+1 ≤ Li ≤ . . . ≤ L1, (26)

and we can conclude that

[m, M ] ⊂ lim
k→+∞

ρk
(
[l1, L1]

)
= [l∗, L∗] = I∗.

By definition of m and M , it follows that the attractor of equation (17) is a
subset of [m, M ] ⊆ [l∗, L∗]. Hence, without loss of generality, we only consider
initial conditions in I∗ which contains [m, M ].

Let us recall that we are only considering solutions s(t) of equation (17) that
are oscillatory about s∗. By fluctuation Lemma we have that given a number
T > 0, there exists numbers rn,tn > T satisfying equations (20)–(22) such that
s(rn) < s∗ < s(tn), hence we can conclude that

h(s∗ − s(rn − τ)) = f(s(rn)) < f(s∗) = h(0),

h(s∗ − s(tn − τ)) = f(s(tn)) > f(s∗) = h(0),

as h is an increasing function, we have that s(rn − τ) > s∗ > s(tn − τ). Hence,
there exists two numbers θ,θ′ ∈ (−τ, 0) satisfying

s(rn + θ) = s(tn + θ′) = s∗. (27)

Let us define
u = lim sup

t→+∞
|s(t) − s∗|.

If u > 0, by using equation (14) we can conclude that there exists ε > 0 such
that

(u − ε) > τ [sin − l∗][f(l∗) + h(0)](u + ε). (28)

Let T0 > T such that, for t ≥ T0 − 2τ the following inequality

|s∗ − s(t)| < u + ε

is satisfied.
First, let us assume that there is a number rn > T0 such that

s∗ − s(rn) > u − ε.

Notice that

s∗ − s(rn) =

∫ rn

rn+θ

{sin − s(t)}{h(0) − h
(
s∗ − s(t − τ)

)
} dt
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+

∫ rn

rn+θ

{sin − s(t)}{f
(
s(t)

)
− f(s∗)} dt

≤ τ [sin − l∗]
{

max
ξ∈I∗

|h′(ξ)| + max
ξ∈I∗

|f ′(ξ)|
}

(u + ε).

As f is concave in (0, smax) and h has an inflection point at 0,it follows that:

u − ε < [sin − l∗][f(l∗) + h(0)]τ(u + ε),

which contradicts equation (28), hence u = 0.
Now, if we assume that there is a number tn > T0 such that

s(tn) − s∗ > u − ε,

the proof runs as before, hence u = 0 and the Theorem follows.
Case (ii): If f equation (12) is not satisfied, we cannot use the map ρ to find bounds
for m and M . Nevertheless, we replace I∗ by [l1, sin] and the proof runs as before.
�

5. Numerical examples. In this section we revisit the examples mentioned in the
introduction.

5.1. Depollution of phenol in the water. We consider biological degradation
of phenol in the water by using Pseudomonas putida with growth described by

f(s) = µmax
s

ks + s2
,

where the parameters are defined below (see also [22]):

Parameter Value Units

µmax 15.96 Day−1

ks 1.82 mg/L
sin 7.2 mg/L
α 1 non dimensional

Our goal is to stabilize the phenol concentration around s∗ = 0.25mg/L. Hence,
we build the feedback control law:

D(y(t)) = 2.11952 + 2 tanh
(
η[s∗ − s(t − τ)]

)
. (29)

We verify that (P1)–(P2) are satisfied. By Theorem 3.1 it follows that E1 is
a locally stable and delay–independent solution of system (5) if and only if η ≤
3.957566.

First, let us assume η = 3. We verify that f(l1) = h(s∗ − sin) for l1 = 0.0136311
and 3.3397547 = h(s∗ − l1) < f(smax) = 5.8438016. Moreover,f(L1) = h(s∗ − l1) is
satisfied by L1 = 0.4172869.

We can see with the help of a computer that equation (13) is satisfied and by
Theorem 4.1, it follows that the feedback control law (29) with η = 3 stabilizes the
phenol concentration at s∗ = 0.25mg/L independently of delay.

Figure 3 shows numerical simulations for phenol concentration (carried out with
MATLAB DDE23 [19]) for τ = 0.5 and τ = 3.5 and initial condition (ϕ1, ϕ2) =
(5, 0.001).

Second, let us assume η = 5. By Theorem 3.1, it follows that critical point E1 is
locally asymptotically stable for any τ < τ̄ ≈ 0.058483 days.
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Figure 3. Output of system (η = 3): τ = 0.5 (left) and τ = 3.5 (right).

We verify that l1 = 0.013631 and L1 = 0.486552 and the map ρ2 has two new
stable fixed points l∗ = 0.066998 and L∗ = 0.45246 in [l1, L1] \ {s

∗}. By statement
(i) of Theorem 4.2, it follows that if

τ <
1

[sin − l∗][f ′(l∗) + h′(0)]
≈ 0.007495 days

then the feedback control law (29) with η = 5 stabilizes the phenol concentration
at s∗ = 0.25mg/L.

Figure 4 shows numerical simulations of phenol concentration for η = 5 and
initial condition (ϕ1, ϕ2) = (5, 0.001). The figure shows that our delay bound is
conservative. Indeed, our result says that if τ < 0.007495 then E1 is globally stable
while figure 4 suggest that if E1 is locally stable then is globally stable. This kind
of result is usual in scalar delay equations (Wright’s conjecture, Smith’s conjecture
[13],[21]) and has triggered a considerable quantity of research with the goal of
understanding the relationships between global and local stability.
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Figure 4. Output of system (η = 5): τ = 0.008 (left) and τ =
0.058 (right)

5.2. Culture of phytoplankton. We will consider Dunaniella tertiolecta growth
in a chemostat with nitrate as the limiting substrate. We will work with a growth
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function given by the Michaelis-Menten function

f(s) = µmax
s

ks + s
,

where the parameters are shown below (see also [3],[24] for more details):

Parameter Value Units

µmax 1.6 Day−1

ks 0.02 µatg/L
sin 2 µatg/L
α−1 1 nondimensional

Our goal is to stabilize the nitrate concentration in a neighborhood of s∗ =
0.8µatg/L, for this task we build the feedback control law:

D(y(t)) = 1.561 + tanh
(
η[s∗ − s(t − τ)]

)
, η > 0. (30)

We verify that (P1)–(P2) are satisfied. By Theorem 3.1 it follows that critical
point (s∗, α−1[sin − s∗]) of system (5) is locally stable and delay independent if and
only if η ≤ 0.0475907.

First, let us assume that η = 0.04. We verify that f(l1) = h(s∗ − sin) is satisfied
with l1 = 0.348 and 1.5798 = h(s∗ − l1) < f(sin) = 1.58416, which means that
inequality (12) is satisfied. Finally as (Sh)(r) = −2, it follows by Corollary 1 that
the feedback control (30) stabilizes the output y(t) in s∗ for any τ > 0.

Figure 5 shows numerical simulations for phytoplankton concentration with de-
lays τ = 1.8 and τ = 5 and considering initial condition (ϕ1, ϕ2) = (0.4, 0.5).
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Figure 5. Output of system (η = 0.04): τ = 1.8 (left) and τ = 5 (right)

Second, we will assume that η = 1: By using Theorem 3.1, it follows that criti-
cal point is locally stable for any τ < τ̄ ≈ 1.3502 days.

Notice that f(l1) = h(s∗ − sin) for l1 = 0.0166687 and inequality (12) is
not satisfied. We can verify that f ′(l1) = 23.799902 and h′(0) = 1.

By statement (ii) of Theorem 4.2 it follows that if

τ <
1

[sin − l1][f ′(l1) + h′(0)]
≈ 0.02033 days

then the feedback control law (30) with η = 1 stabilizes the phytoplankton concen-
tration at s∗ = 0.8µatg/L.
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Notice that for this initial condition (and others not described in the article),
an observation of Figure 6 shows that the same remarks stated for the precedent
example (conservativeness of delay bound and relationship with local stability) are
valid also for this case.
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Figure 6. Output of system (η = 1): τ = 0.02 (left) and τ = 1.1 (right)

6. Discussion. We consider the simplest chemostat model as an Input–Output sys-
tem and consider dilution rate as the feedback control variable whereas we suppose
that measurements of outputs are available with delay. We build a family of control
laws which stabilize asymptotically the output in a reference level s∗. The control
model is described by a system of differential delay equations with a unique steady
state and we prove that it is globally attractive and locally asymptotically stable.

Theorems 4.1 and 4.2 give sufficient conditions for global attractivity, delay-in-
dependent (Theorem 4.1) and delay-dependent (Theorem 4.2). In the examples
presented in the previous section we determined that our sufficient conditions for
delay-dependent stability are conservative in comparison with numerical results,
which suggests that our delay margins (14) and (15) can be improved. The im-
provement of these conditions is a future research direction. Other potential re-
search directions are to study (CP) problem under some uncertainty assumptions
stated in [7] and the stability of periodic solutions issued from the Hopf bifurcation
(Theorem 3.1) that have been observed numerically.

7. Appendix: Proof of Lemma 1.

7.1. Technical results. To prove Lemma 4.3, we need the following definitions
and results:

Definition 7.1. ([9, chapt.3]) Let φt be a semiflow defined in a complete metric
space (X, d). The semiflow φt is:

(a) Point dissipative on X if there exists a bounded set B that attracts each point
of X (i.e. lim

t→+∞
d(x, B) = x for any x ∈ X).

(b) Conditionally completely continuous for t ≥ t1 if, for each t ≥ t1 and each
bounded set B ⊂ X for which φs(B) (with s ∈ [0, t]) is bounded, we have that
φt(B) is precompact for any t > t1.

(c) Completely continuous for t ≥ t1 if it is conditionally completely continuous
and, for each t ≥ 0, the set φs(B) (with s ∈ [0, t]) is bounded.
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Proposition 1 (Theorem 3.4.8 [9]). If a semiflow is point dissipative and condi-
tionally completely continuous then there exists a maximal set invariant, attractive
and compact.

Definition 7.2 ([11]). Let φt be a semiflow defined in a compact metric space
(X, d) and let X0 ⊂ X be a closed and invariant set. An application P : X 7→ R is
an Average Lyapunov function if satisfies

(a) P (u) > 0 for u ∈ X \ X0 and P (u) = 0 for u ∈ X0.

(b) Ṗ = Ψ(u)P with Ψ: X 7→ R continuous.

Proposition 2 (Corollary 2 [11]). Let P be an Average Lyapunov function and let
Λ

Λ =
{

ri ∈ X0 : φt(ri) = ri for any t ∈ R

}

.

If lim
t→+∞

φt(u) = ri and Ψ(ri) > 0 for any u ∈ X0 and ri ∈ Λ, then X0 is a

repeller.

7.2. Proof of Lemma 4.3. First, we take some initial condition (ϕ1, ϕ2) satisfy-
ing:

|sin − ϕ1(θ) − αϕ2(θ)| ≤ K for any θ ∈ [−τ, 0]

for some K > 0. Moreover, let us build the functional v(t) = sin − s(t) − αx(t),
where (st, xt) is a solution of the system (5). It is straightforward to prove that v(t)
satisfies the following differential equation:

{

v̇(t) = −h
(
s∗ − s(t − τ)

)
v(t), for t > 0

v(θ) = η(θ) = ϕ1(θ) + αϕ2(θ) − sin, θ ∈ [−τ, 0].

It is a simple exercise to prove that for any t ≥ 0 it follows that:

|v(t)| = |sin − ϕ1(0) − αϕ2(0)| exp
(

−

∫ t

0

h(s∗ − s(r − τ)) dr
)

.

By using (P1), we can prove that there exists a constant hmin = min{h(s∗ −
u) : u ∈ R} > 0 satisfying:

||sin − st − αxt||∞ ≤ Ke−hmint for any t > 0 and θ ∈ [−τ, 0]. (31)

Now, letting t → ∞ we have that for any initial condition (ϕ1, ϕ2) it follows that
lim

t→+∞
d
(
φt(ϕ1, ϕ2), K0

)
= 0, where the bounded set K0 is defined by:

K0 =
{

(ϕ1, ϕ2) ∈ C+ × C+ : ϕ1 + αϕ2 = sin

}

,

which implies statement (i) and point dissipativity.
Second, we will prove that φt is completely continuous for any t > τ and state-

ment (ii) will be a consequence of Prop.1. Indeed, we take any initial condition
(ϕ1, ϕ2) in a bounded set B ⊂ X . We will see that the orbits of system (5) form a
precompact set for any t ≥ τ .

By using point dissipativity properties, we define the constants K1 and K2:

K1 = sup
t≥0

{

||st||∞ : s0 = ϕ1 ∈ B
}

and K2 = sup
t≥0

{

||xt||∞ : x0 = ϕ2 ∈ B
}

.

Notice that, the set φt(B) is equicontinuous for any t ≥ τ . Indeed, there exists
a number δ(ε) = min{ε/C1, ε/C2} where C1,C2 are defined by:

C1 = max
|u|≤K1

{h(s∗ − u)sin + αf(u)K2} and C2 = K2 max
|u|≤K1

{f(u)− h(s∗ − u)}
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such that for any pair θ′, θ′′ ∈ [−τ, 0] satisfying |θ′ − θ′′| < δ, we have |st(θ
′) −

st(θ
′′)| < ε and |xt(θ

′) − xt(θ
′′)| < ε. Hence, by Arzelà–Ascoli Theorem, it follows

that φt(B) is precompact for t ≥ τ , which implies that φt is completely continuous
and statement (ii) follows by Proposition 1.

Hereafter and without loss of generality, we can assume in this proof that the
initial conditions of the system (5) are in the compact set A.

Let us define the subset A0 =
{
(ϕ1, ϕ2) ∈ A : ϕ2 = 0

}
and notice that the set

A0 is closed and positively invariant under the semiflow φt. We will prove that A0

is a repeller by using Proposition 2.
Let us build the functional P : A 7→ R defined by P (φt(~ϕ)) = xt(0). This

functional satisfies the following properties:

(a) P (φt(~ϕ)) ≡ 0 if ~ϕ ∈ A0 and P (φt(~ϕ)) > 0 if ~ϕ ∈ A \ A0.

(b) Ṗ = Ψ(φt(~ϕ))P where Ψ: A 7→ R is a continuous function defined by:

Ψ(φt(~ϕ)) = f(st(0)) − h
(
s∗ − st(−τ)

)
.

(c) By using (P1)–(P2) combined with Ψ(φt(E0)) = f(sin) − h(s∗ − sin) > 0
and the fact that for any initial condition in A0, we can conclude that there
exists a number ρ > 0 such that ||st − sin||∞ ≤ |ϕ0 − sin|e

−ρt for any t > 0
and it follows that lim

t→+∞
(st, xt) = E0.

Notice that properties (a)-(b) imply that P is an average Lyapunov function and
the sets A,A0 (with Λ = {E0}) satisfy the properties of Proposition 2. Hence, it
follows that A0 is a repeller set and statement (iii) follows �.
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[4] J. Chiasson, A method for computing the interval of delay values for which a differential–delay

system is stable, IEEE Trans. Automat. Contr., 33 (1988), 1176–1178.
[5] P. De Leenheer and H. Smith, Feedback control for chemostat models, J. Math. Biol., 46

(2003), 48–70.
[6] D. Dochain (Ed.) “Automatique des Bioprocédés,” Hermes, Paris, 2001.
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