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Abstract. Previous studies on computer modeling of RF ablation with cooled
electrodes modeled the internal cooling circuit by setting surface temperature
at the coolant temperature (i.e., Dirichlet condition, DC). Our objective was
to compare the temperature profiles computed from different thermal bound-
ary conditions at the electrode-tissue interface. We built an analytical one-
dimensional model based on a spherical electrode. Four cases were consid-
ered: A) DC with uniform initial condition, B) DC with pre-cooling period, C)
Boundary condition based on Newton’s cooling law (NC) with uniform initial

condition, and D) NC with a pre-cooling period. The results showed that for
a long time (120 s), the profiles obtained with (Cases B and D) and without
(Cases A and C) considering pre-cooling are very similar. However, for shorter
times (< 30 s), Cases A and C overestimated the temperature at points away
from the electrode-tissue interface. In the NC cases, this overestimation was
more evident for higher values of the convective heat transfer coefficient (h).
Finally, with NC, when h was increased the temperature profiles became more
similar to those with DC. The results suggest that theoretical modeling of
RF ablation with cooled electrodes should consider: 1) the modeling of a pre-
cooling period, especially if one is interested in the thermal profiles registered
at the beginning of RF application; and 2) NC rather than DC, especially for
low flow in the internal circuit.

1. Introduction. Internally cooled electrodes (also known as cooled-tip electrodes,
actively cooled electrodes or simply cooled electrodes) have been employed for de-
livering radiofrequency (RF) currents into biological tissue in different minimally
invasive techniques such as ablation of cardiac arrhythmias [4, 15] and tumor abla-
tion [12, 17]. Briefly, a closed-circuit internal irrigation system allows cooled liquid
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Figure 1. A: Physical situation for radiofrequency ablation with
an internally cooled semispherical electrode. B: Simplification
based on considering a spherical electrode completely imbedded
and in close contact with the biological tissue, which has an infi-
nite dimension. C: Theoretical model used in our study, which has
radial symmetry, and hence a one-dimensional approach is possi-
ble (dimensional variable is r, and the electrode radius is r0). The
different thermal boundary conditions are applied on the outer cir-
cular boundary of the electrode.

circulation inside the electrode (see Fig. 1A). In comparison with dry electrodes
(i.e., those without any kind of cooling), cooled electrodes allow lesion volume to
be enlarged, which is always useful in cardiac and tumor ablation. It is important
to point out that cooled electrodes are radically different to the irrigated type, in
which saline is infused from the electrode to the exterior through perforations [8]
(i.e., there is no close-loop hydraulic circuit). Cooled and irrigated electrodes can
also be combined to form hybrid RF applicators [3].

Previous computer modeling studies have been carried out on cardiac [11, 14] and
tumor [6]-[9] RF ablation using cooled electrodes. However, all of these modeled the
internal cooling circuit by setting surface temperature at the coolant temperature,
i.e. they employed a Dirichlet thermal boundary condition. This approach in-
volves a simplification of the true physical situation, which has not been previously
assessed. In fact, the use of other thermal boundary conditions (e.g. convective
boundary condition) could produce different results. Our objective was to compare
the temperature profiles computed from different thermal boundary conditions at
the electrode-tissue interface for the particular case of RF cardiac ablation.

2. Methods.

2.1. Description of the theoretical model. Figure 1B makes clear the simpli-
fication of the true physical situation as shown in Figure 1A. Briefly, we considered
a spherical electrode completely imbedded and in close contact with the biological
tissue, which had an infinite dimension. This model is similar to those proposed
by Erez and Shitzer [7]. The model thus presented radial symmetry and a one-
dimensional approach was possible (dimensional variable is r).
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2.2. Governing equations. The RF ablation modeling implies an electrical-ther-
mal coupled problem [1]. Regarding the electrical problem, the source term (i.e.
the Joule heat produced per unit volume of tissue, Q(r, t)) can be expressed as:

Q(r, t) =
P r0

4πr4
(H(t) − H(t − ∆t)) (1)

where P is the total applied power (W), r0 the electrode radius (m), H(t) is the
Heaviside function, and ∆t is the pulse width (for RF application). Here we are
modeling a constant power protocol, as is usually employed with cooled electrodes
[15].

Regarding the thermal problem, we used the Bioheat Equation particularized to
the case of RF cardiac ablation, in which the blood perfusion and metabolic heat
were ignored [1]. For the one-dimensional case, this equation can be expressed as

− α

(

∂2T

∂r2
(r, t) +

2

r

∂T

∂r
(r, t)

)

+
∂T

∂t
(r, t) =

P α r0

4 π k r4

(

H(t) − H(t − ∆t)
)

(2)

where T is the temperature, α is the thermal diffusivity, and k is thermal conduc-
tivity.

2.3. Boundary thermal conditions at the electrode-tissue interface. Pre-
vious studies on dry electrodes have modeled the thermal behavior at the electrode-
tissue interface (i.e. in r = r0) by assuming that the boundary condition at this
point is mainly governed by the thermal inertia of the electrode [7, 13]. Since the
thermal conductivity of the electrode (k0) is much greater than that of the tissue,
the following expression was obtained:

ρ0 c0
4 π r3

0

3

∂T

∂t
(r0, t) = 4 π r2

0 k
∂T

∂r
(r0, t) (3)

where ρ0 and c0 are, respectively, the density and specific heat of the electrode.
Regarding the cooled electrodes, all previous modeling studies employed a Dirich-

let thermal boundary condition in which the temperature at the electrode-tissue
interface was fixed to the value at the coolant temperature (Tc)

T (r0, t) = Tc . (4)

Equation (4) is only a first approximation to the cooled electrode model, which
induced us to consider other ways of modeling thermal behavior at the electrode-
tissue interface. Another boundary condition is established from Newton’s cooling
law

q(r0, t) = h(Tc − T (r0, t))

where h is the convective heat transfer coefficient and q the heat flux. Since from
Fourier’s law q(r0, t) = −k ∂T

∂r
(r0, t), then the boundary condition is

− k
∂T

∂r
(r0, t) = h(Tc − T (r0, t)) . (5)

The two above-mentioned thermal boundary conditions (i.e., equations (4) and (5)),
employed the same complementary thermal condition:

lim
r→∞

T (r, t) = T0 (6)

where T0 is the temperature of the non heated tissue (37◦C).
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We had two options for the initial conditions: on one hand, a uniform value equal
to the temperature of the non heated tissue:

T (r, 0) = T0 . (7)

On the other hand, to increase the accuracy of the theoretical modeling, we had
the option of a more realistic approach in modeling the cooled electrodes. Cooled
electrodes are cooled prior to RF power delivery, i.e. RF application is initiated
after liquid irrigation reduces the temperature measured in the electrode (e.g. to
a value of 32◦C [4]). In order to model this situation, we first considered the
following governing equation which is capable of modeling a sufficiently long pre-
cooling period:

T ′′(r) +
2

r
T ′(r) = 0 . (8)

Here the heat term source was removed to model the pre-cooling period without
RF power delivery, and we also considered the steady-state situation, i.e., equation
(8) was solved for two cases of boundary conditions at r0 (eq. (4) and (5)). Once
the thermal profile (T (r)) had been obtained from (8), this was employed as the
initial condition instead of (7) to solve governing equation (2). Consequently, we
considered four cases:

• Case A: Dirichlet boundary condition (eq. 4) with uniform initial condition
(eq. 7).

• Case B : Dirichlet boundary condition (eq. 4) with a pre-cooling period (eq.
8).

• Case C : Boundary condition based on Newton’s cooling law (eq. 5) with
uniform initial condition (eq. 7).

• Case D : Boundary condition based on Newton’s cooling law (eq. 5) with
modeling a pre-cooling period (eq. 8).

The general purpose of this study was to compare the different temperature
profiles obtained from the above four cases. We particularized our study for the
case of a RF cardiac ablation in which a 7 Fr electrode is employed. We therefore
considered a value of r0 of 1.5 mm, coolant temperature (Tc) of 5◦C, and a pulse
width (∆t) of 120 s. For h, we considered three values: 1000, 2000 and 4000 W/m2K,
which correspond to forced thermal convection. Our objective was not to consider
h values which accurately matched the real values, but only to study the effect of
varying this parameter, so temperature profiles were assessed both during heating
(when RF power is applied) and subsequently. In all the cases we employed a power
of 3 W, as in previous analytical study with dry electrodes [13]. We could therefore
compare the temperature profiles obtained from cooled and dry electrodes. We also
used the same tissue characteristics as had been previously considered [13]: density
(ρ) of 1200 kg/m3, specific heat (c) of 3200 J/kg·K, and thermal conductivity (k)
of 0.70 W/m·K.

When the analytical solution had been obtained, we plotted the dimensional
temperature distribution using Mathematica 5.2 software (Wolfram Research, Inc.
Champaign, IL, USA).
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3. Analytical results.

3.1. Case A: Dirichlet boundary condition and uniform initial condition.

Firstly we solve the problem formulated as the governing equation (2) with con-
ditions (4), (6) and (7). In order to simplify the solution of the problem we shall
make the following change of variables

ρ =
r

r0
; ξ =

t α

r2
0

; V (ρ, ξ) =
4πkr0

P

(

T

(

r0ρ,
r2
0ξ

α

)

− T0

)

; (9)

in this way the resulting problem is

−
(

∂2V

∂ρ2
(ρ, ξ) +

2

ρ

∂V

∂ρ
(ρ, ξ)

)

+
∂V

∂ξ
(ρ, ξ) =

1

ρ4
(H(ξ) − H(ξ − ∆ξ)) (10)

V (ρ, 0) = 0 ∀ ρ > 1 (11)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (12)

V (1, ξ) = −B ∀ ξ > 0 (13)

where B = 4πkr0

P
(T0 − Tc).

Taking Laplace transform respect to ξ and denoting D(ρ, s) := L(V (ρ, ξ)) we get

−
(

∂2D

∂ρ2
+

2

ρ

∂D

∂ρ

)

+ s D =
1

ρ4

(

1 − e−s∆ξ

s

)

(14)

lim
ρ→∞

D(ρ, s) = 0 (15)

D(1, s) = −B

s
. (16)

(14) is a second order differential equation. Using the new function z(ρ, s) =
ρ D(ρ, s) this equation becomes

− ∂2z

∂ρ2
+ sz =

1

ρ3

(

1 − e−s∆ξ

s

)

(17)

whose solution is

z(ρ, s) = C1(ρ, s) eρ
√

s + C2(ρ, s) e−ρ
√

s . (18)

To determine C1(ρ, s) and C2(ρ, s) we use the variation of constants method. In
this way taking into account the change of function we obtain

D(ρ, s) =



−1 − e−∆ξs

2s
√

s

ρ
∫

1

e−u
√

s

u3
du + M1(s)





eρ
√

s

ρ
+





1 − e−∆ξs

2s
√

s

ρ
∫

1

eu
√

s

u3
du + M2(s)





e−ρ
√

s

ρ
. (19)

The expressions of M1(s) and M2(s) are obtained from the boundary conditions.
From condition (15) we have to determine M1(s) in order to verify

lim
ρ→∞



−1 − e−∆ξs

2s
√

s

ρ
∫

1

e−u
√

s

u3
du + M1(s)





eρ
√

s

ρ
= 0 .
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In this way the expression of M1(s) is

M1(s) =
1 − e−∆ξs

2s
√

s

∞
∫

1

e−u
√

s

u3
du , (20)

since equation (19) becomes

D(ρ, s) =





1 − e−∆ξs

2s
√

s

∞
∫

ρ

e−u
√

s

u3
du





eρ
√

s

ρ
+





1 − e−∆ξs

2s
√

s

ρ
∫

1

eu
√

s

u3
du + M2(s)





e−ρ
√

s

ρ

which verifies condition (15).
Introducing (20) in (19) and from condition (16) we get the expression of M2(s)

M2(s) = −1 − e−s∆ξ

2s
√

s
e2

√
s

∞
∫

1

e−u
√

s

u3
du − B

e
√

s

s
. (21)

Then, the solution of (14)-(16) is

D(ρ, s) =
1 − e−s∆ξ

2ρ





∞
∫

1

e−|u−ρ|√s

s
√

s

du

u3
−

∞
∫

1

e−(u+ρ−2)
√

s

s
√

s

du

u3



 − Be−(ρ−1)
√

s

sρ

(22)

In order to obtain the solution of the problem, V (ρ, ξ), we have to make the

inverse Laplace transform of function D(ρ, s). If Erfc(x) = 2√
π

∞
∫

x

e−w2

dw is the

complementary error function, then

L−1

[

e−φ
√

s

s
√

s

]

=
2
√

ξ√
π

e−
φ2

4ξ − φ Erfc

(

φ

2
√

ξ

)

(23)

L−1

[

e−φ
√

s

s

]

= Erfc

(

φ

2
√

ξ

)

. (24)

Using (23) for φ = |u − ρ| and φ = u + ρ − 2, we denote

V1(ρ, ξ) =

∞
∫

1

(

2
√

ξ√
π

e−
(u−ρ)2

4ξ − |u − ρ|Erfc

( |u − ρ|
2
√

ξ

))

du

2ρu3

V2(ρ, ξ) =

∞
∫

1

(

2
√

ξ√
π

e−
(u+ρ−2)2

4ξ − (u + ρ − 2)Erfc

(

u + ρ − 2

2
√

ξ

))

du

2ρu3

And from (24), for φ = ρ − 1, we denote

V3(ρ, ξ) =
B

ρ
Erfc

(

ρ − 1

2
√

ξ

)

.

Taking into account that if L−1[f(s)] = F (t), then L−1[e−asf(s)] = H(t−a)F (t−a)
the solution of problem is

V (ρ, ξ) = V1(ρ, ξ) − V2(ρ, ξ) −H(ξ −∆ξ)(V1(ρ, ξ − ∆ξ) − V2(ρ, ξ − ∆ξ)) − V3(ρ, ξ).
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3.2. Case B: Dirichlet boundary condition and modeling a pre-cooling

period. In this case the problem consists of finding the solution of the governing
equation (2) with the boundary conditions (4) and (6). The initial condition we
need is established considering the stationary problem from equation (8):

T ′′(r) +
2

r
T ′(r) = 0 ; T (r0) = Tc ; lim

r→∞
T (r) = T0 . (25)

The solution of this problem

T (r) =
r0(Tc − T0)

r
+ T0 (26)

is now the initial condition. According to the changes established in (9) the problem
is

−
(

∂2V

∂ρ2
(ρ, ξ) +

2

ρ

∂V

∂ρ
(ρ, ξ)

)

+
∂V

∂ξ
(ρ, ξ) =

1

ρ4
(H(ξ) − H(ξ − ∆ξ)) (27)

V (ρ, 0) = −B

ρ
∀ ρ > 1 (28)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (29)

V (1, ξ) = −B ∀ ξ > 0 . (30)

Again, taking Laplace transform respect to ξ and denoting D(ρ, s) := L(V (ρ, ξ))
we get

−
(

∂2D

∂ρ2
+

2

ρ

∂D

∂ρ

)

+ s D +
B

ρ
=

1

ρ4

(

1 − e−s∆ξ

s

)

(31)

lim
ρ→∞

D(ρ, s) = 0 (32)

D(1, s) = −B

s
. (33)

Note that in this case equation (31) has an additional term, B/ρ.
Following the same steps than in Case A we get the general solution of the

problem (31)-(33)

D(ρ, s) =
eρ

√
s

ρ





ρ
∫

1

e−u
√

s

2
√

s

(

B − 1 − e−s∆ξ

su3

)

du + M1(s)



 +

e−ρ
√

s

ρ





ρ
∫

1

eu
√

s

2
√

s

(

B − 1 − e−s∆ξ

su3

)

du + M2(s)



 . (34)

From condition (32), as in the previous case, we have to determine M1(s) in order
to verify

lim
ρ→∞

eρ
√

s

ρ





ρ
∫

1

e−u
√

s

2
√

s

(

B − 1 − e−s∆ξ

su3

)

du + M1(s)



 = 0 .

Since
ρ

∫

1

e−u
√

s

√
s

du =
e−

√
s − e−ρ

√
s

s
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we get

M1(s) = (1 − e−s∆ξ)

∞
∫

1

e−u
√

s

2s
√

s

du

u3
− Be−

√
s

2s
, (35)

and in this way

D(ρ, s) = − B(2 − e−(ρ−1)
√

s)

2sρ
+

M2(s)e
−ρ

√
s

ρ
+

1 − e−s∆ξ

2ρ





∞
∫

ρ

e−(u−ρ)
√

s

s
√

s

du

u3
+

ρ
∫

1

e−(ρ−u)
√

s

s
√

s

du

u3



 . (36)

Introducing (35) in (34), from condition (33) we obtain

M2(s) = −Be
√

s

2s
− e

√
s(1 − e−s∆ξ)

2

∞
∫

1

e−(u−1)
√

s

s
√

s

du

u3
. (37)

Then, the solution of (31)-(33) is

D(ρ, s) = − B

sρ
+

1 − e−s∆ξ

2ρ





∞
∫

1

e−|u−ρ|√s

s
√

s

du

u3
−

∞
∫

1

e−(u+ρ−2)
√

s

s
√

s

du

u3



 .

The Laplace inverse transform of D(ρ, s) is made using (23) and (24) in the same
way than in Case A. Finally, the dimensionless temperature

V (ρ, ξ) = V1(ρ, ξ) − V2(ρ, ξ) − H(ξ − ∆ξ)(V1(ρ, ξ − ∆ξ) − V2(ρ, ξ − ∆ξ)) − B

ρ
.

3.3. Case C: Boundary condition based on Newton’s cooling law and

uniform initial condition. In this section the problem consists of finding the
solution of the governing equation (2) taking into account the initial condition (7)
and the boundary conditions (5) and (6).

To simplify the solution of the problem we make the change of variables of (9).
In this way the resulting problem is

−
(

∂2V

∂ρ2
(ρ, ξ) +

2

ρ

∂V

∂ρ
(ρ, ξ)

)

+
∂V

∂ξ
(ρ, ξ) =

1

ρ4
(H(ξ) − H(ξ − ∆ξ)) (38)

V (ρ, 0) = 0 ∀ ρ > 1 (39)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (40)

p
∂V

∂ρ
(1, ξ) − V (1, ξ) − B = 0 ∀ ξ > 0 (41)

where p = k
hr0

.

Taking Laplace transform respect to ξ and denoting D(ρ, s) := L(V (ρ, ξ)) we get

−
(

∂2D

∂ρ2
+

2

ρ

∂D

∂ρ

)

+ s D =
1

ρ4

(

1 − e−s∆ξ

s

)

(42)

lim
ρ→∞

D(ρ, s) = 0 (43)

− D(1, s) + p
∂D

∂ρ
(1, s) − B

s
= 0 . (44)
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As equation (42) and condition (43) are the same than in Case A, following the
same steps than in that section we get

D(ρ, s) =





1 − e−∆ξs

2s
√

s

∞
∫

ρ

e−u
√

s

u3
du





eρ
√

s

ρ
+





1 − e−∆ξs

2s
√

s

ρ
∫

1

eu
√

s

u3
du + M2(s)





e−ρ
√

s

ρ
.

M2(s) is obtained using condition (44)

M2(s) =
1 − e−s∆ξ

2s
√

s
e2

√
s p (

√
s − 1) − 1

p (
√

s + 1) + 1

∞
∫

1

e−u
√

s

u3
du − B e

√
s

s (p (
√

s + 1) + 1)
.

In this way the solution of (42)-(44) is

D(ρ, s) =
1 − e−s∆ξ

2ρ





∞
∫

1

e−|u−ρ|√s

s
√

s

du

u3
−

∞
∫

1

e−(u+ρ−2)
√

s

s
√

s

du

u3
+

∞
∫

1

2 p e−(u+ρ−2)
√

s

s (p (
√

s + 1) + 1)

du

u3



 − B e−(ρ−1)
√

s

ρs (p (
√

s + 1) + 1)
.

The Laplace inverse transform of the first and second term of D(ρ, s) is made
using (23) and (24) in the same way than in Case A. In order to make the other
terms Laplace inverse transform we use the formula:

L−1

[

e−φ
√

s

s(
√

s + β)

]

=
1

β

(

Erfc

(

φ

2
√

ξ

)

− eβ(φ+βξ)Erfc

(

φ

2
√

ξ
+ β

√

ξ

))

. (45)

Using (45) for φ = u + ρ − 2 and β = a = 1 + 1
p
, we denote

V4(ρ, ξ) =
1

aρ

∞
∫

1

(

Erfc

(

u + ρ − 2

2
√

ξ

)

− ea(aξ+ρ−1)Erfc

(

a
√

ξ +
u + ρ − 2

2
√

ξ

))

du

u3
.

And from (45) for β = a = 1 + 1
p

and φ = ρ − 1 we denote

V5(ρ, ξ) =
B

ρ p a

(

Erfc

(

ρ − 1

2
√

ξ

)

− ea(aξ+ρ−1)Erfc

(

a
√

ξ +
ρ − 1

2
√

ξ

))

.

In this way the solution of the problem is

V (ρ, ξ) =V1(ρ, ξ) − V2(ρ, ξ) + V4(ρ, ξ)−
H(ξ − ∆ξ) (V1(ρ, ξ − ∆ξ) − V2(ρ, ξ − ∆ξ) + V4(ρ, ξ − ∆ξ)) − V5(ρ, ξ) .

3.4. Case D: Boundary condition based on Newton’s cooling law and

modeling a pre-cooling period. In this section our problem is formulated con-
sidering the governing equation (2) and the boundary conditions (5) and (6) like in
Case B. Moreover, now the initial condition is established considering the stationary
problem from equation (8):

T ′′(r) +
2

r
T ′(r) = 0 ; lim

r→∞
T (r) = T0 ; −k T ′(r0) = h (Tc − T (r0)) .

(46)
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The solution of this problem

T (r) = −r2
0 h (T0 − Tc)

(k + hr0) r
+ T0 (47)

is now the initial condition we need.
According to the changes made in (9) the problem we want to solve is

−
(

∂2V

∂ρ2
(ρ, ξ) +

2

ρ

∂V

∂ρ
(ρ, ξ)

)

+
∂V

∂ξ
(ρ, ξ) =

1

ρ4
(H(ξ) − H(ξ − ∆ξ)) (48)

V (ρ, 0) = −B q

ρ
∀ ρ > 1 (49)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (50)

p
∂V

∂ρ
(1, ξ) − V (1, ξ) − B = 0 ∀ ξ > 0 (51)

where q = r0 h
k+h r0

.

Taking Laplace transform respect to ξ and denoting D(ρ, s) := L(V (ρ, ξ)) we get

−
(

∂2D

∂ρ2
+

2

ρ

∂D

∂ρ

)

+ s D +
B q

ρ
=

1

ρ4

(

1 − e−s∆ξ

s

)

(52)

lim
ρ→∞

D(ρ, s) = 0 (53)

− D(1, s) + p
∂D

∂ρ
(1, s) − B

s
= 0 . (54)

Equation (52) is similar to (31), and condition (53) is the same than (32). Then,
following the same steps than in Case B we obtain the general solution of problem
(52)-(54)

D(ρ, s) =
eρ

√
s

ρ





ρ
∫

1

e−u
√

s

2
√

s

(

Bq − 1 − e−s∆ξ

su3

)

du + M1(s)



 +

e−ρ
√

s

ρ



−
ρ

∫

1

eu
√

s

2
√

s

(

Bq − 1 − e−s∆ξ

su3

)

du + M2(s)



 . (55)

where

M1(s) = (1 − e−s∆ξ)

∞
∫

1

e−u
√

s

2s
√

s

du

u3
− B qe−

√
s

2s
. (56)

Introducing (56) in (55) and from condition (54) we obtain

M2(s) =
1 − e−s∆ξ

2s
√

s
e2

√
s p (

√
s − 1) − 1

p (
√

s + 1) + 1

∞
∫

1

e−u
√

s

u3
du

− B q e
√

s

2s
+

B (q(p + 1) − 1) e
√

s

s (p (
√

s + 1) + 1)
.
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Figure 2. Temperature profiles during RF application (120 s) for
Dirichlet thermal boundary conditions at the electrode-tissue inter-
face. A: without considering a pre-cooling period (plots correspond
with 5, 10, 30, 60 and 120 s); B: considering a pre-cooling period
(plots correspond with 0, 5, 10, 30, 60 and 120 s). x-axis starts at
r0.

Putting the expressions of M1(s) and M2(s) into (55) and taking into account that
(p + 1)q − 1 = 0 we get

D(ρ, s) =
1 − e−s∆ξ

2ρ





∞
∫

1

e−|u−ρ|√s

s
√

s

du

u3
−

∞
∫

1

e−(u+ρ−2)
√

s

s
√

s

du

u3
+

∞
∫

1

2 p e−(u+ρ−2)
√

s

s (p (
√

s + 1) + 1)

du

u3



 − B q

s ρ
.

We have made the computation of the Laplace inverse transform of all the terms
in D(ρ, s) in the previous sections. In this way, the solution of the problem (48)-(51)
is

V (ρ, ξ) =V1(ρ, ξ) − V2(ρ, ξ) + V4(ρ, ξ)−

H(ξ − ∆ξ)(V1(ρ, ξ − ∆ξ) − V2(ρ, ξ − ∆ξ) + V4(ρ, ξ − ∆ξ)) − q B

ρ
.

4. Computer results. Figure 2 shows temperature profiles during RF application
for Dirichlet thermal boundary conditions at the electrode-tissue interface. The
results show that the profiles obtained with and without pre-cooling are very similar
for a long time (120 s). However, for shorter times (< 30 s), the Case A model (i.e.
without pre-cooling) overestimates the temperature, specially at points away from
the electrode-tissue interface. In fact, the temperature at the interface is very similar
for both models (Cases A and B) at all times. On the other hand, we observed a
clear disagreement between these cases when r → ∞: in Case A, the temperature
profiles tend towards T0 from higher values. In contrast, in Case B, this tendency
occurs from lower values. This behavior is also observed in Figure 3 which shows the
temperature profiles after RF application. Moreover, during this period of post-RF
application Case A slightly overestimates the temperature at points away from the
electrode-tissue interface.

Figure 4 shows the temperature profiles during RF application for a boundary
thermal condition at the electrode-tissue interface based on Newton’s cooling law.
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Figure 3. Temperature profiles after RF application (120 s) for
Dirichlet thermal boundary conditions at the electrode-tissue inter-
face. A: without considering a pre-cooling period; B: considering a
pre-cooling period. Plots correspond with 120, 125, 130, 150, 180
and 240 s. x-axis starts at r0.

Once more, the most noticeable result is the overestimation in the computed tem-
perature at points away from the electrode-tissue interface when the pre-cooling
period is not considered (Case C versus D), especially for shorter times. This dis-
agreement is more evident for higher h values. Regarding the temperature profiles
after RF application (see Fig. 5), the disagreements between Cases C and D are
smaller than during the heating phase. Once more, the non pre-cooling case (Case
C) slightly overestimates the temperature at points away from the electrode-tissue
interface.

On the other hand, on comparing Dirichlet boundary conditions (Cases A and
B) to those associated with Newton’s cooling law (Cases C and D), we observed
that when the convective heat transfer coefficient (h) is increased in Cases C and
D, the temperature profiles obtained become more similar to those from Dirichlet’s
solution. However, for the range of h values considered in our study (1000 − 4000
W/m2K) the temperature profiles obtained in Cases A and B (Dirichlet) are signif-
icantly lower than those obtained in Cases C and D.

We also conducted computer simulations varying coolant temperature Tc be-
tween 5 and 20 ◦C [9]. The results showed that with at higher coolant temperature,
temperature profiles are usually slightly higher. Figure 6 shows the temperature
profiles at 120 s for the four boundary conditions considered and for three values of
coolant temperature.

Finally, in order to obtain conclusions from a clinical point of view, we plotted
the time progress of maximal tissue temperature Tmax and temperature at the tip of
the cooled electrode (Ttip, at r = r0) (Fig. 7). Figure 7 shows the time progress of
the depth (distance from the electrode surface) at which Tmax was registered. These
parameters are important since, on one hand, Ttip can be measured when cooled
electrodes are employed clinically, and on the other, both Tmax and its location
could be used as indicators of lesion depth. Regarding the effect of the convective
heat transfer coefficient h (which models the internal flow rate), we observed that
lower values bring about higher Ttip and Tmax temperatures. In contrast, Tmax

depth increases with h (i.e. with higher internal flow rates). However, the shift of
Tmax inside the tissue does not automatically imply increased lesion size (assessed,
for instance, by using the 50 ◦C isotherm), due to the temperatures here being
considerably lower at high h values (see Fig. 7).
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Figure 4. Temperature profiles during RF application (120 s) for
boundary condition at the electrode-tissue interface based on New-
ton’s cooling law with different values of convective heat transfer
coefficient: 1000 W/m2K (A and B), 2000 W/m2K (C and D),
and 4000 W/m2K (E and F). Figures A, C and E are without
pre-cooling period (plots correspond with 5, 10, 30, 60 and 120 s).
Figures B, D and F are with pre-cooling period (plots correspond
with 0, 5, 10, 30, 60 and 120 s). x-axis starts at r0.

5. Discussion. This study was conducted to compare the temperature profiles ob-
tained during RF ablation with cooled electrodes when different thermal boundary
conditions at the electrode-tissue interface are considered. We chose an analytical
approach similar to that proposed by Erez and Shitzer [7] for a dry electrode. We
then modified this model by changing the thermal boundary condition at the in-
terface. We also solved the time-dependence of the heat source in the governing
equation, which not only provide the temperature profile during the heating phase
(RF application) but also during the subsequent cooling phase (after RF applica-
tion). In this aspect, our study offers an improvement on the previously published
analytical model [7].

Previous RF cardiac ablation modeling studies with cooled electrodes employed a
Dirichlet thermal boundary condition [11, 14] and did not consider any pre-cooling
period. Our results indicate that, whatever the type of boundary condition, this



624 M. J. RIVERA, J. A. LÓPEZ MOLINA, M. TRUJILLO AND E. J. BERJANO

Figure 5. Temperature profiles after RF application (120 s pulse)
for boundary condition at the electrode-tissue interface based on
Newton’s cooling law with different values of convective heat trans-
fer coefficient: 1000 W/m2K (A and B), 2000 W/m2K (C and D),
and 4000 W/m2K (E and F). Figures A, C and E are without pre-
cooling period. Figures B, D and F are with pre-cooling period.
Plots correspond with 120, 125, 130, 150, 180 and 240 s. x-axis
starts at r0.

period should be included in the modeling, especially if temperature profiles for
initial RF application (< 30 s) are under study.

It should also be borne in mind that if a cooled electrode is programmed with low
flow in the internal circuit, i.e. when a low h value is involved, the thermal profiles
obtained from Dirichlet and Newton’s cooling law could be very different. In fact,
using a Dirichlet condition, the temperature at the electrode is always fixed by to
coolant temperature, something which is not observed in a real situation [19, 2],
when electrode temperature is seen to increase during ablation.

Our computer simulations also considered the effect of varying coolant tempera-
ture Tc. Such as shown in Figure 6, temperature profile values rose with Tc. This
finding is not in agreement with that obtained by Haemmerich et al [9] in an RF
hepatic ablation analytical model. They observed that Tc did not have any effect
on temperature profiles [9]. However, our results are not directly comparable to the
results obtained by these authors, since they only solved the steady-state solution
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Figure 6. Effect of coolant temperature Tc on the temperature
profiles at 120 s. Three values of Tc are shown (5, 10 and 20 ◦C)
for the four boundary conditions at the electrode-tissue interface:
Dirichlet condition without (A) and with pre-cooling period (B);
and the condition based on Newton’s cooling law without (C) and
with pre-cooling period (D). In this case a value of 2000 W/m2◦C
was employed for convective heat transfer coefficient.

Figure 7. Left: Time progress of maximal temperature reached in
the tissue Tmax and temperature measured at the tip of the cooled
electrode (Ttip, at r = r0) for the case D (boundary condition
based on Newton’s cooling law and modeling a pre-cooling period).
Right: Time progress of Tmax location (assessed as distance from
electrode surface). Tmax was considered to be the relative maxi-
mum temperature reached near the electrode surface, and hence,
before RF was applied, this value was even lower than the temper-
ature of the non heated tissue (T0 = 37 ◦C). The plots shown three
cases of values of convective heat transfer coefficient h: 1000, 2000
and 4000 W/m2◦C.
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in cylindrical geometry, which is very different case to our model. Finally, we also
verified (data not shown) that the value of Tc did not influence the conclusions
reached concerning the different boundary conditions obtained in our study.

Regarding the computer simulations of the time progress of Ttip and Tmax, our
results indicate that both values are directly related to each other. In fact, this
behavior could be useful during RF cardiac ablation if the RF power is modulated
to achieve Ttip of 40 ◦C, which has been defined as the approximate upper safety
limit [5]. Our results also suggest that internal flow rate (i.e. parameter h) has
a strong influence on temperature profile, in particular on the value of Tmax and
its location. For instance, when a low flow rate is employed, temperatures are
higher and Tmax is located closer to the electrode surface. The limit situation of
an extremely low flow rate would be a dry electrode (i.e. without internal cooling)
with very similar Ttip and Tmax values, so that Tmax would be located almost on
the electrode surface.

Finally, on comparing our temperature profiles to those previously reported for
dry electrodes (see Fig. 4 in [13]), we clearly observed the cooling effect at the
electrode-tissue interface, and hence lower temperatures for the same conditions of
applied power, tissue characteristics, electrode geometry and ablation time.

This analytical study has several limitations. The problem solved was linear,
since no change of electrical conductivity with temperature was considered [1].
Taking this change into account, the analytical solution would become extremely
complex. The electrode geometry (spherical) was not exactly the same as a real
electrode (hemispherical), nor did we include the cooling effect of blood circulating
around part of the electrode surface. In spite of these limitations, we think that the
conclusions of this study should be taken into account not only in modeling studies
of RF cardiac ablation, but also in other RF ablation modeling studies using cooled
electrodes, such as tumor ablation [6, 9].

6. Conclusions. Theoretical modeling of RF ablation using internally cooled elec-
trodes should consider: 1) a thermal boundary condition (at the electrode-tissue in-
terface) based on Newton’s cooling law rather than a Dirichlet condition, especially
for low flow in the internal circuit; and 2) the modeling of a pre-cooling period,
especially if one is interested in the thermal profiles registered in the initial period
of RF application. We verified that these conclusions remained true for coolant
temperatures values between 5 and 20 ◦C.
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