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Abstract. A recent paper (Math. Biosci. and Eng. (2008) 5:389-402) pre-
sented an SEIR model using an infinite delay to account for varying infectivity.
The analysis in that paper did not resolve the global dynamics for R0 > 1.
Here, we show that the endemic equilibrium is globally stable for R0 > 1. The
proof uses a Lyapunov functional that includes an integral over all previous
states.

1. Introduction. A recent paper [16] presented an SEIR model for an infectious
disease that included infection-age structure to allow for varying infectivity. The
incidence is of mass action type, but because of the varying infectivity, has the form
βS(t)

∫ ∞

0
k(a)i(t, a)da. Nevertheless, the authors gave a thorough analysis leaving

out only the elusive global stability of the endemic equilibrium.
That issue is resolved in this paper using a Lyapunov functional related to the

type of Lyapunov function used for ordinary differential equation (ODE) ecological
models [3, 4] in the 1980s and used more recently for ODE epidemiological models
[6, 10, 11, 12, 13, 14, 15]. In [5], an ODE model of arbitrary dimension that includes
varying infectivity is studied using the same type of Lyapunov function. For each of
these models, the Lyapunov function is a sum of terms of the form f(y) = y−1−lny,
where y is a variable of the system. The model studied in this paper has infinite
delay, and so it is necessary to include in the Lyapunov functional a term that
integrates over all previous states.

We now provide a brief outline of the paper. In Section 2 we describe the equa-
tions that are to be studied. Section 3 includes results by Röst and Wu from [16],
providing the context in which this paper is to be read. Many of these results are
then used in Section 4 where the global stability of the endemic equilibrium is shown
— the key result of this paper.

2. Model equations. A population is divided into classes: susceptible, exposed,
infectious, and recovered, denoted by S, E, I, and R, respectively. The infectious
class is structured by age of infection (i.e. time since entry into class I). The
density of individuals with infection-age a at time t is given by i(t, a) with I(t) =∫ ∞

0
i(t, a)da.
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Constant recruitment into S is given by Λ. Incidence is of mass action type
with baseline coefficient β. The relative infectivity of individuals of infection-age a
is k(a), where k is an integrable function taking values in the interval [0, 1]. The
natural death rate is d, the disease-related death rate is r, the average latency period
is 1/µ and the average period of infectivity is 1/r.

The original model equations [16] are

dS(t)

dt
= Λ − βS(t)

∫ ∞

0

k(a)i(t, a)da − dS(t)

dE(t)

dt
= βS(t)

∫ ∞

0

k(a)i(t, a)da − (µ + d)E(t)

dI(t)

dt
= µE(t) − (d + δ + r)I(t)

dR(t)

dt
= rI(t) − dR(t)

(1)

and (
∂

∂t
+

∂

∂a

)
i(t, a) = −(d + δ + r)i(t, a) (2)

with the boundary condition

i(t, 0) = µE(t).

Solving (2) gives

i(t, a) = µe−(d+δ+r)aE(t − a).

This allows equation (1) to be rewritten as

dS(t)

dt
= Λ − µβS(t)

∫ ∞

0

k(a)e−(d+δ+r)aE(t − a)da − dS(t)

dE(t)

dt
= µβS(t)

∫ ∞

0

k(a)e−(d+δ+r)aE(t − a)da − (µ + d)E(t),

(3)

where the equations for dI
dt

and dR
dt

are omitted because they decouple.
In order to specify the initial conditions for (3), we introduce the following no-

tation. Given a non-negative function E defined on the interval (−∞, T ], for any
t ≤ T we define the function Et : R≤0 → R≥0 by Et(θ) = E(t + θ) for θ ≤ 0.

For equation (1), the initial condition would specify S(0), E(0), R(0) ≥ 0 and
i(0, ·) : R≥0 → R≥0. For equation (3), an equation with infinite delay, the initial
condition must specify S(0) ≥ 0 and E0 : R≤0 → R≥0.

Due to the infinite delay, it is necessary to determine an appropriate phase space.
For any ∆ ∈ (0, d + δ + r), let

C∆ =
{
ϕ : R≤0 → R such that ϕ(θ)e∆θ is bounded and uniformly continuous

}

and

Y∆ = {ϕ ∈ C∆ : ϕ(θ) ≥ 0 for all θ ≤ 0} .

Define the norm on C∆ and Y∆ by

‖ϕ‖ = sup
θ≤0

∣∣ϕ(θ)e∆θ
∣∣ .

It follows immediately that ϕ(0) ≤ ‖ϕ‖.
Fixing ∆ ∈ (0, d+δ+r), we take the phase space for equation (3) to be R≥0×Y∆.

Any initial condition (S(0), E0) ∈ R≥0×Y∆ gives a solution (S(t), Et) that remains
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in the phase space for all time. Furthermore, if (S(t), E(t)) is bounded for t ≥ 0,
then the positive orbit Γ+ = {(S(t), Et) : t ≥ 0} has compact closure in R≥0 × Y∆.

Relevant developments of infinite delay equations, including determining the
phase space, can be found in [1, 8, 9] and references found therein.

3. Previous results. In their paper, the authors of [16] give a thorough analysis
of equation (3). They find the equilibria, calculate the basic reproduction number
R0 and show that the system is point dissipative. The disease-free equilibrium is
shown to be globally stable for R0 < 1. For R0 > 1 the disease-free equilibrium
is unstable, there is a unique endemic equilibrium, which is locally asymptotically
stable, and the system is permanent. They also do a final size calculation.

All that remains to complete the analysis is to determine the global behaviour
for R0 > 1. This is done in Section 4 of this paper, where it is shown that the
endemic equilibrium is globally stable for R0 > 1. In preparation for that, we now
give results from [16].

Theorem 3.1. Equation (3) is point dissipative. That is, there exists M > 0 such
that for each solution of (3) there is a T > 0 such that S(t) ≤ M and ‖Et‖ ≤ M
for all t ≥ T .

Note that ‖Et‖ ≤ M implies E(t) ≤ M .
The basic reproduction number [2] for the model is

R0 =
βΛµ

d(µ + d)

∫ ∞

0

k(a)e−(d+δ+r)ada.

For all values of the parameters, there is a disease-free equilibrium P0 = (S0, 0)
where S0 = Λ/d. For R0 ≤ 1, P0 is the only equilibrium. For R0 > 1, there is a
unique endemic equilibrium P ∗ = (S∗, E∗) where

S∗ =
S0

R0
=

Λ

dR0
and E∗ =

Λ

µ + d

(
1 −

1

R0

)
.

Note that while we write an equilibrium of (3) as a point (S̄, Ē) ∈ R
2, more formally,

an equilibrium point is a point (S̃, Ẽ) ∈ R≥0 × Y∆ satisfying S̃ = S̄ and Ẽ(θ) = Ē

for all θ ≤ 0. The equilibrium solution is given by (S(t), Et) = (S̃, Ẽ) ∈ R≥0 × Y∆

for each t. Related to this is an equilibrium of (1) for which S(t), E(t), I(t) and R(t)
are constant functions and for which i(t, a) = ī(a) = µĒe−(d+δ+r)a is independent
of time t.

Theorem 3.2. If R0 < 1, then all solutions converge to the disease-free equilibrium,
which is locally asymptotically stable.

As with many finite dimensional models, if R0 is larger than one, then the disease-
free equilibrium attracts disease-free states and repels states for which disease is
present. Let ã = inf

{
a :

∫ ∞

a
k(σ)dσ = 0

}
. For a system with a truly infinite delay,

we have ã = ∞, whereas, for a system with a bounded distributed delay, we have
0 < ã < ∞.

For a state (S̃, Ẽ) ∈ R≥0 × Y∆, we say that disease is present if Ẽ(−a) > 0 for

some a ∈ [0, ã). Recall that elements of Y∆ are continuous. Thus, if Ẽ is positive at

some point, then Ẽ is positive on an interval about that point. If disease is present

for (S̃, Ẽ), then the solution of (3) with initial condition (S̃, Ẽ) will satisfy E(t) > 0

for some t > 0. If Ẽ does not satisfy the given condition (i.e. Ẽ(−a) = 0 for all
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a ∈ [0, ã)), then the solution of (3) will have E(t) identically zero for t ≥ 0, and will
converge to P0. For a solution for which disease is present for the initial condition,
we say the disease is initially present.

Theorem 3.3. Suppose R0 > 1. Then the disease-free equilibrium is unstable and
the endemic equilibrium is locally asymptotically stable. Furthermore, the system is
persistent; that is, there exists η > 0 such that for any solution for which the disease
is initially present, we have

lim inf
t→∞

S(t) ≥ η and lim inf
t→∞

E(t) ≥ η.

Remark 1. In [16], it is implicitly understood that ã = ∞ meaning that the
system has a true infinite delay. However, for a bounded distributed delay, which
gives ã < ∞, the proofs in [16] still hold, as do the new results of this paper.

4. Global stability for R0 > 1. Let X(t) = (S(t), Et) be a solution of equation
(3) for which disease is initially present. It is shown in the proof of Theorem 6.1
of [16] that the semi-flow induced by equation (3) has properties that imply the
existence of a global compact attractor (see Theorem 3.4.6 of [7]). Combined with
Theorem 3.1 and Theorem 3.3, it follows that the ω-limit set Ω of X is non-empty,
compact, and invariant. It follows that Ω is the union of orbits of equation (3).

That is, if (S̃, Ẽ) ∈ R≥0 × Y∆ is an omega limit point of X , then there is a solution

through (S̃, Ẽ) such that every point on the solution is in Ω.

Lemma 4.1. Suppose R0 > 1 and Z(t) = (φ(t), ϕt) is a solution to equation (3)
that lies in Ω. Then η ≤ φ(t) ≤ M and η ≤ ϕ(t) ≤ M for all t ∈ R.

Proof. Fix ǫ > 0 and T ∈ R, and let Z̃ = Z(T ) = (φ(T ), ϕT ). Then Z̃ ∈ Ω is an
omega limit point of X . Thus, there exists a sequence {tn} that increases to infinity

such that X(tn) → Z̃.
Then S(tn) → φ(T ). By Theorem 3.1 and Theorem 3.3, we have η− ǫ ≤ S(tn) ≤

M for large n, and so the same inequalities apply to φ(T ). Also, 0 ≤ |E(tn)−ϕ(T )| ≤
‖Etn

− ϕT ‖, which goes to 0 as n → ∞. Thus, since η − ǫ ≤ E(tn) ≤ M for large
enough n, the same is true for ϕ(T ).

Because the choice of T was arbitrary, as was the choice of ǫ > 0, the desired
result follows for all t ∈ R.

Theorem 4.2. Suppose R0 > 1 and Z(t) = (φ(t), ϕt) is a solution to equation (3)
that lies in Ω. Then Z converges to the endemic equilibrium; that is,

lim
t→∞

(φ(t), ϕ(t)) = (S∗, E∗) .

Proof. We begin by normalizing. Let s(t) = φ(t)/S∗, x(t) = ϕ(t)/E∗ and xt =
ϕt/E∗. Then

ds(t)

dt
=

Λ

S∗
− µβE∗s(t)

∫ ∞

0

k(a)e−(d+δ+r)ax(t − a)da − ds(t)

dx(t)

dt
= µβS∗s(t)

∫ ∞

0

k(a)e−(d+δ+r)ax(t − a)da − (µ + d)x(t).

(4)
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The endemic equilibrium for (4) is p∗ = (s∗, x∗) = (1, 1). Thus, by evaluating both
sides of (4) at p∗, we have

0 =
Λ

S∗
− µβE∗

∫ ∞

0

k(a)e−(d+δ+r)ada − d

0 = µβS∗

∫ ∞

0

k(a)e−(d+δ+r)ada − (µ + d).

(5)

Let

f(y) = y − 1 − ln y,

and let
Us(t) = f(s(t))

Ux(t) = αxf(x(t))

U+(t) =

∫ ∞

0

α(a)f(x(t − a))da,

where

αx =
E∗

S∗
and α(a) = µβE∗

∫ ∞

a

k(σ)e−(d+δ+r)σdσ.

We will study the behaviour of the Lyapunov functional

U(t) = Us + Ux + U+.

We note that αx is positive, as is α(a) for each a ∈ [0, ã). The function f has
domain R>0 and range R≥0. We also note that f has only one extreme value,
which is the global minimum: f(1) = 0. Thus, U(t) ≥ 0 with equality if and only
if s(t) = x(t) = 1 and x(t − a) = 1 for almost all a ∈ [0, ã). Lemma 4.1 implies U
is well-defined; that is, U+ is finite for all t.

For clarity, we calculate the derivatives of each of Us, Ux and U+ separately and
then combine them to get dU

dt
. Also, instances of s(t) and x(t) will be written as s

and x, respectively.

dUs

dt
=

(
1 −

1

s

)
ds

dt

=
s − 1

s

(
Λ

S∗
− µβE∗s

∫ ∞

0

k(a)e−(d+δ+r)ax(t − a)da − ds

)
.

Subtracting the right-hand side of the first equation of (5) gives

dUs

dt
=

s − 1

s

(
µβE∗

∫ ∞

0

k(a)e−(d+δ+r)a (1 − sx(t − a)) da + d (1 − s)

)

= −d
(s − 1)2

s
+ µβE∗

∫ ∞

0

k(a)e−(d+δ+r)a

(
1 − sx(t − a) −

1

s
+ x(t − a)

)
da.

(6)
In calculating dUx

dt
, we use the second equation of (5) to replace (µ + d) with the

integral, obtaining

dUx

dt
= αx

(
1 −

1

x

) (
µβS∗s

∫ ∞

0

k(a)e−(d+δ+r)ax(t − a)da − (µ + d)x

)

=
E∗

S∗

(
1 −

1

x

)
µβS∗

∫ ∞

0

k(a)e−(d+δ+r)a (sx(t − a) − x) da

= µβE∗

∫ ∞

0

k(a)e−(d+δ+r)a

(
sx(t − a) − x −

sx(t − a)

x
+ 1

)
da.

(7)
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We now calculate the derivative of U+(t).

dU+

dt
=

d

dt

∫ ∞

0

α(a)f(x(t − a))da

=

∫ ∞

0

α(a)
d

dt
f(x(t − a))da

= −

∫ ∞

0

α(a)
d

da
f(x(t − a))da.

Using integration by parts, we get

dU+

dt
= −α(a)f(x(t − a))|∞a=0 +

∫ ∞

0

d

da
(α(a)) f(x(t − a))da.

By Lemma 4.1, since the solution Z(t) is in the omega limit set Ω, we have η
E∗

≤

x(t) ≤ M
E∗

for all t ∈ R. Thus, f(x(t − a)) is bounded above and below. Then,

noting that 0 ≤ α(a) = µβE∗
∫ ∞

a
k(σ)e−(d+δ+r)σdσ ≤ µβE∗

∫ ∞

a
e−(d+δ+r)σdσ =

µβE∗

(d+δ+r)e
−(d+δ+r)a → 0, it follows that lima→∞ α(a)f(x(t − a)) = 0. Also, at a = 0

we get α(a)f(x(t − a)) = α(0)f(x(t)), and so

dU+

dt
= α(0)f(x(t)) +

∫ ∞

0

d

da
(α(a)) f(x(t − a))da.

Filling in for α(0), evaluating the derivative d
da

α(a) = −µβE∗k(a)e−(d+δ+r)a, and
then combining the two resulting integrals gives

dU+

dt
= µβE∗

∫ ∞

0

k(a)e−(d+δ+r)a
(
f(x(t)) − f(x(t − a))

)
da

= µβE∗

∫ ∞

0

k(a)e−(d+δ+r)a
(
x − lnx − x(t − a) + ln x(t − a)

)
da.

(8)

Adding equations (6), (7), and (8), we obtain

dU

dt
= −d

(s − 1)2

s
− µβE∗

∫ ∞

0

k(a)e−(d+δ+r)aC(a)da,

where

C(a) = −2 +
1

s
+

sx(t − a)

x
+ lnx − lnx(t − a)

=

(
1

s
− 1 + ln s

)
+

(
sx(t − a)

x
− 1 − (ln s + lnx(t − a) − lnx)

)

= f

(
1

s

)
+ f

(
sx(t − a)

x

)

≥ 0.

Thus, dU
dt

≤ 0 with equality if and only if s(t) = 1 and x(t − a)/x(t) = 1 for almost
all a ∈ [0, ã). It follows that U(t) is a non-increasing function that is bounded below
by zero, and therefore limt→∞ U(t) exists.

Next, we show that limt→∞ s(t) = 1. To do this, we first note that dU
dt

≤ −g(t) ≤

0 where g(t) = d (s(t)−1)2

s(t) . Suppose that s(t) does not converge to 1. Then there

exist ǫ > 0 and a sequence {tn} that increases to infinity such that g(tn) ≥ ǫ for each
n. Note that the bounds on Z given by Lemma 4.1 imply that the derivative ds

dt
is

bounded, and so there exists τ > 0 such that g(t) ≥ ǫ
2 for t ∈ In = (tn − τ, tn + τ).

Then, we have dU
dt

≤ − ǫ
2 for all t ∈ ∪In, which is a set of infinite measure. Hence,
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U decreases to −∞, which contradicts the fact that U is bounded below. Thus, s(t)
must converge to 1.

Finally, we show that limt→∞ x(t) = 1. To do this, let y(t) = s(t)+αxx(t). Then

dy

dt
=

ds

dt
+ αx

dx

dt

=
Λ

S∗
− ds − αx(µ + d)x

=
Λ

S∗
+ µs − (µ + d)y

Since s(t) converges to 1, this is an asymptotically autonomous ordinary differential
equation for which solutions of the limiting equation go to a hyperbolic equilib-
rium. Thus, limt→∞ y(t) = 1

µ+d

(
Λ
S∗

+ µ
)
. Using (5), it follows that limt→∞ x(t) =

limt→∞
1

αx

(y(t) − s(t)) = 1.

Since limt→∞(s(t), x(t)) = (1, 1), it follows that limt→∞(φ(t), ϕ(t)) = (S∗, E∗),
completing the proof.

Theorem 4.3. If R0 > 1, then all solutions of equation (3) for which the disease
is initially present converge to the endemic equilibrium; that is,

lim
t→∞

(S(t), E(t)) = (S∗, E∗) .

Proof. Let Z(t) be a solution in Ω, the omega limit set of X . By Theorem 4.2, Z(t)
converges to the endemic equilibrium P ∗. Since Ω is closed, we have P ∗ ∈ Ω and so
X gets arbitrarily close to P ∗. By Theorem 3.3, P ∗ is locally asymptotically stable
and therefore X converges to P ∗.

We note that the results here include systems with bounded distributed delay.
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