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Abstract. We study global asymptotic properties of a continuous time Leslie-
Gower food chain model. We construct a Lyapunov function which enables us
to establish global asymptotic stability of the unique coexisting equilibrium
state.

In his papers [2, 3], P.H. Leslie introduced a predator-prey model where both
interacting species are assumed to grow according to the logistic law. That is both
species grow with a rate that is initially (for small population) proportional to the
population and is limited by a carrying capacity. The novel feature of this model
is that, while the carrying capacity for the prey is a positive constant, the carrying
capacity of the predator’s environment is proportional to the prey population. This
idea leads to a model that is quite different from the Lotka-Volterra predator-prey
model. Leslie’s model stresses the fact that there are upper limits to the rates
of increase of both prey, H , and predator, P , which are not recognised in the
Lotka-Volterra model. These upper limits can be approached under favourable
conditions: for the predator, when the number of prey per predator is large; for
the prey, when the number of predators (and perhaps the number of prey also) is
small. Furthermore, the Leslie-Gower model does not posses the “screw symmetry”
that is inherent in the Lotka-Volterra model. This model was initially studied by
Leslie and Gower [4], and then by Pielow [6]. In the case of continuous time, these
considerations lead to the differential equations [6, p. 91]

dH

dt
= (r − bH − aP )H,

dP

dt
=

(

q − c
P

H

)

P. (1)

Here H(t) and P (t) are the prey and the predator populations respectively; r and q
are the growth rates of the prey and the predator respectively; a is the attack rate;
1/rb is the carrying capacity of the prey environment, and 1/qc is the efficiency of
consumption for the predator (that is H(t)/qc is the predator population that the
prey population of the size H can support). All the constants in the system (1) are
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positive. This model always has the unique coexisting fixed point Q∗ = (H∗, P ∗),
where

H∗ =
rc

aq + bc
, P ∗ =

rq

aq + bc
, (2)

which was proved to be globally asymptotically stable [1].
The Leslie-Gower model can be immediately extended to the case of a food chain.

The food chain composed of n+1 levels where the ith level depends (predates) upon
only the i − 1 level can be represented by the transfer diagram

H −→ P1 −→ P2 −→ . . . −→ Pn.

This food chain can be described by the following system of differential equations:

dH

dt
= (r − bH − aP1)H,

dP1

dt
=

(

q1 − c1
P1

H
− s1P2

)

P1,

...
dPi

dt
=

(

qi − ci

Pi

Pi−1
− siPi+1

)

Pi, (3)

...
dPn

dt
=

(

qn − cn

Pn

Pn−1

)

Pn.

Here the parameters qi, ci and si are defined by analogy to the single predator case,
namely qi is the reproduction rate of the ith predator, ci is defined so that 1/qici

is the efficiency of consumption for the ith predator, and si is the attack rate by
the ith predator. In order for the equations to be biologically meaningful these
parameters must all be positive quantities.

The global properties of this model are given by the following Theorem:

Theorem 1. The Leslie-Gower chain model (3) always has a positive (coexisting)
equilibrium state Q∗

n
= (H∗, P ∗

1 , . . . , P ∗
n
); this equilibrium state is unique and glob-

ally asymptotically stable.

Proof. (1). Existence of the positive equilibrium state. We prove this by
induction. The positive equilibrium state always exists for n = 1: the coordinates
of the equilibrium state are given by equalities (2). We assume that the statement
of Theorem holds when n = m and prove that it holds for n = m + 1 as well.

Starting from an m level chain in which, by assumption, all equilibrium popula-

tions H(m)∗, P
(m)∗
i

, i = 1, . . . , m are positive, we convert the system to an m + 1
level chain by introducing a population of top level (m+1) predators and allow the
system to equilibrate. It can readily be seen that the positive region R

m+1
+ is an

invariant set of this system. That prevents the sign of Pi for all i = 1, . . . , m chang-
ing. Thus, from the assumption of a positive equilibrium in the m level system, it

follows that in the m + 1 level system all P
(m+1)∗
i

for i = 1, . . . , m are positive or
zero. Consider the final differential equation

dPm+1

dt
= (a −

bPm+1

Pm

)Pm+1. (4)
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Figure 1. Level curves of the Lyapunov function ln H
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In order for equilibrium population at P ∗
m+1 = 0 (rather than P ∗

m+1 > 0) to be
attained we must have

lim
P∗

m+1
→0

a −
bP ∗

m+1

P ∗
m

≤ 0. (5)

This requires limP∗

m+1
→0 P ∗

m
≤ 0, whereas by assumption that the m-level system

has a positive equilibrium state the converse holds. Thus the existence of an m level
positive equilibrium state implies the existence of an m+1 level positive equilibrium
state. This completes this section of the proof.

(2). Global asymptotic stability of the positive equilibrium state. A
Lyapunov function

V (H, P1, . . . , Pn) =

(

ln
H

H∗
+

H∗

H

)

+

n
∑

i=1

Bi

(

ln
Pi

P ∗
i

+
P ∗

i

Pi

)

,

where Bici = Bi−1si−1P
∗
i−1 and B1c1 = aH∗, is defined and continuous for all

H, P1, . . . , Pn > 0. The function V (H, P1, . . . , Pn) satisfies

∂V

∂H
=

1

H

(

1 −
H∗

H

)

,
∂V

∂Pi

=
Bi

Pi

(

1 −
P ∗

i

Pi

)

,

and hence the fixed point Q∗
n

is the only extremum of this function. It is easy to
see that the point Q∗

n
is the global minimum of V (H, P1, . . . , Pn) in R

n+1
+ . (Fig. 1

shows the level curves of this function for n =1.)
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The function V (H, P1, . . . , Pn) satisfies

dV

dt
= r − bH − aP1 − r

H∗

H
+ bH∗ + a

H∗P1

H

+B1

(

q1 − c1
P1

H
− s1P2 − q1

P ∗
1

P1
+ c1

P ∗
1

H
+ s1

P ∗
1 P2

P1

)

+

n−1
∑

i=2

Bi

(

qi − ci

Pi

Pi−1
− siPi+1 − qi

P ∗
i

Pi

+ ci

P ∗
i

Pi−1
+ si

P ∗
i
Pi+1

Pi

)

+Bn

(

qn − cn

Pn

Pn−1
− qn

P ∗
n

Pn

+ cn

P ∗
n

Pn−1

)

= r +

n
∑

i=1

Biqi + bH∗ − bH − r
H∗

H
+ B1c1

P ∗
1

H

−aP1 −

n
∑

i=2

Bi−1si−1Pi −

n
∑

i=1

Biqi

P ∗
i

Pi

+

n
∑

i=2

Bici

P ∗
i

Pi−1

+a
H∗P1

H
− B1c1

P1

H
+

n−1
∑

i=1

Bisi

P ∗
i
Pi+1

Pi

−

n
∑

i=2

Bici

Pi

Pi−1
.

By the definition of Bi, the equalities

a
H∗P1

H
− B1c1

P1

H
= 0,

n−1
∑

i=1

Bisi

P ∗
i
Pi+1

Pi

−

n
∑

i=2

Bici

Pi

Pi−1
= 0

hold. Furthermore, recollecting that

r = bH∗ + aP ∗
1 , qi = ci

P ∗
i

P ∗
i−1

+ siP
∗
i+1, qn = cn

P ∗
n

P ∗
n−1

hold at Q∗
n
, we obtain

n
∑

i=1

Biqi = B1c1
P ∗

1

H∗
+

n
∑

i=2

Bici

P ∗
i

P ∗
i−1

+

n
∑

i=1

BisiP
∗
i+1 = aP ∗

1 + 2

n
∑

i=2

Bi−1si−1P
∗
i
,

r
H∗

H
− B1c1

P ∗
1

H
= bH∗H∗

H
,

and

n
∑

i=1

Biqi

P ∗
i

Pi

−

n
∑

i=2

Bici

P ∗
i

Pi−1
= Bnqn

P ∗
n

Pn

+

n−1
∑

i=1

Bi

(

qi − siP
∗
i+1

) P ∗
i

Pi

= aP ∗
1

P ∗
1

P1
+

n
∑

i=2

Bici

P ∗
i

P ∗
i−1

P ∗
i

Pi

= aP ∗
1

P ∗
1

P1
+

n
∑

i=2

Bi−1si−1P
∗
i

P ∗
i

Pi

.
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Therefore,

dV

dt
= bH∗

(

2 −
H∗

H
−

H

H∗

)

+aP ∗
1

(

2 −
P ∗

1

P1
−

P1

P ∗
1

)

+

n
∑

i=2

Bi−1si−1P
∗
i

(

2 −
P ∗

i

Pi

−
Pi

P ∗
i

)

= −bH

(

1 −
H∗

H

)2

+ aP1

(

1 −
P ∗

1

P1

)2

+

n
∑

i=2

Bi−1si−1Pi

(

1 −
P ∗

i

Pi

)2

.

That is, for this model dV

dt
< 0 strictly holds for all H, P1, . . . , Pn > 0, except the

fixed point Q∗
n

where dV

dt
= 0. Therefore, by the Lyapunov asymptotic stability

theorem [5], the fixed point Q∗ is globally asymptotically stable.
(3). Uniqueness of the positive equilibrium state. At any equilibrium

state, dV

dt
= 0 must hold. For this model, however, the fixed point Q∗

n
is the only

point in R
n+1
+ where dV

dt
= 0 holds.

This completes the proof.

Apart from the positive equilibrium state Q∗
n where all n + 1 species coexist,

this system also has n equilibrium states Q∗
k

(where k = 0, 1, . . . , n − 1), which
corresponds to the reduced m-species food chains

H −→ P1 −→ P2 −→ . . . −→ Pk.

Biologically these correspond to the case in which some external intervention has
reduced the population of the ith species to zero (we have proved above that this
system is uniformly persistent, and hence that can never occur for this model via the
natural evolution of the system) leading to the extinction of the i+1th level species
that feeds on species i, and then to all higher levels of the food chain. For each of
these equilibrium states, H, P1, . . . , Pk > 0 while Pk+1 = . . . = Pn = 0. Thus, Q∗

0

corresponds to the predator-free case and has the coordinates H0 = r/b, P1 = . . . =
Pn = 0; Q∗

1 coincides with the equilibrium state (2) of the two-species model (1).
The following Corollary immediately follows from the Theorem:

Corollary 1. Apart from the positive equilibrium state Q∗
n
, the system has n non-

negative equilibrium states Q∗
k

(where k = 0, 1, . . . , n−1). Each of these equilibrium
states is unstable in R

n

≥0, but globally asymptotically stable in the k-dimensional

invariant subspace R
k
+ = {H, P1, . . . , Pk > 0; Pk+1 = . . . = Pn = 0}.

In conclusion, we have to note that, apart from the mentioned n + 1 equilibrium
states that are located in the nonnegative region R

n

≥0, the system has other n − 1
points with the coordinates that satisfy the equalities

r = bH + aP1, qi = ci

Pi

Pi−1
+ siPi+1, qn = cn

Pn

Pn−1
.

Indeed, it is readily seen that this system of algebraic equations is equivalent to a
polynomial of the degree n and that this system has no complex solutions. However,
the existence of these equilibria do not contradict the Theorem since these points
are located outside of the non-negative region R

n

≥0, which is the phase space of the
system. The origin is an unstable equilibrium state of the system as well.

These results demonstrate both the practicality and the usefulness of perform-
ing a stability analysis on non-trivial ecosystem models. We have shown, using a
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Leslie-Gower food chain model as an example, that it is possible to enumerate and
characterize the stability properties of all the equilibrium states of the model.
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