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Abstract. The mathematical modeling of tumor growth is an approach to
explain the complex nature of these systems. A model that describes tumor
growth was obtained by using a mesoscopic formalism and fractal dimension.
This model theoretically predicts the relation between the morphology of the
cell pattern and the mitosis/apoptosis quotient that helps to predict tumor
growth from tumoral cells fractal dimension. The relation between the tumor
macroscopic morphology and the cell pattern morphology is also determined.
This could explain why the interface fractal dimension decreases with the in-
crease of the cell pattern fractal dimension and consequently with the increase
of the mitosis/apoptosis relation. Indexes to characterize tumoral cell prolif-
eration and invasion capacities are proposed and used to predict the growth
of different types of tumors. These indexes also show that the proliferation
capacity is directly proportional to the invasion capacity. The proposed model
assumes: i) only interface cells proliferate and invade the host, and ii) the frac-
tal dimension of tumoral cell patterns, can reproduce the Gompertzian growth
law.

1. Introduction. A neoplasm is an abnormal mass of tissue that grows faster than
the normal tissue, is unrelated to the normal tissue, and this growing persists in
the same excessive manner after cessation of the stimuli that evoked the change. In
general, benign tumors are well differentiated, while malignant neoplasm or cancer
is composed of undifferentiated cells [17]. Malignant tumors are locally invasive,
infiltrating the surrounding normal tissues and frequently producing metastasis.

It has been experimentally observed that the morphology of in vitro tumors does
not change with time and has a linear growth [3],[4]. This behavior can be explained
if it is considered that the tumoral cells compete for the available space in a way
that only the cells in the interface can reproduce and proliferate by invading the
host.

A mesoscopic formalism was used to obtain a theoretical equation that describes
the relation between the fractal dimension of the tumor interface and the quotient
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between mitosis and apoptosis constant rates [11], which quantifies the tumor ca-
pacity to invade and infiltrate healthy tissue [16]. Another result was an empirical
scale-up equation that simulates the macroscopic morphology of the tumor [10].

The diagnosis of a tumor malignancy and aggressiveness is a key factor in es-
tablishing an adequate therapy. The morphology of this tissue is too complex to
be described using Euclidian geometry [5],[14],[16]. Conversely, the morphology of
the tumor pattern can be characterized by its fractal dimension [15], in relation
to the cell density. Thus, experimental studies have been conducted to determine
the relation between tissue fractal dimension [1],[6],[8], cell fractal dimension [19],
interface fractal dimension, and others aspects of tumor malignancy and prognosis,
[12],[13],[18],[20]. Most of these studies are based on statistical correlations and do
not arrive at conclusive results.

We propose in this paper a new mesoscopic model to describe the behavior of
cells inside the tumor. This paper will: i) establish a relationship between the
fractal dimension of the cell pattern, the fractal dimension of the interface, and the
quotient between mitosis and apoptosis rates; ii) develop an equation to describe the
dynamic behavior of the tumor from the cell pattern fractal dimension, which can
explain the Gompertzian dynamics; and iii) propose indexes to quantify invasion
and proliferation capacities of in vitro tumors.

After this introduction, in the second section, a relation between the fractal
dimension of the pattern cell and the quotient between mitosis and apoptosis rate
is presented. In the third section, a model to predict the dynamic behavior of
the tumor is obtained, and parameters to quantify the proliferation and invasive
capacity of the in vitro tumor are proposed. In the fourth section, the theoretical
equations are applied to describe the proliferative and invasive capacities of in vitro
tumors using reported experimental results, and obtained predictions are discussed.

2. The relation between cell pattern fractal dimension and dynamic quo-

tient. A mesoscopic formalism [21] is used to obtain the relation between the cell
pattern’s fractal dimension and the mitosis-apoptosis quotient. The following sup-
positions were assumed: i) the system is an area Ω of tissue inside the tumor where
there is no necrosis; ii) the microscopic variable is the n number of tumor cells with
individual area α present on Ω; iii) the macroscopic variable is the fraction of tissue
Φ composed by tumor cells; iv) the relation between n and Φ is given by:

Φ =
nα

Ω
; (1)

v) the transition probability per unit of time Tn+1/n associated with cells reproduc-

tion depends on the constant rate u
[

t−1
]

and it is established a priori as:

Tn+1/n = un; (2)

vi) the transition probability per time unit Tn−1/n related to cells death depends

on the constant rate b
[

t−1
]

and the available space Ω, and this probability is

Tn−1/n = b
(

1 +
nα

Ω

)

n; (3)

vi) because of the area Ω is considered constant and, due to the limitation of space,
the number n of cells are in a stationary state.
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Considering transition probabilities (2) and (3), the master equation ME (4)
[9],[21], which describes the probability behavior P (n; t) of having n number of cells
in time t, is:

∂P (n; t)

∂t
=
(

E−1 − 1
)

unP (n; t)

+
(

E+1 − 1
)

b
(

1 +
nα

Ω

)

nP (n; t)

P (n0; 0) = 1, (4)

where Ea is the step operator.
The behavior of the expected value 〈Φ〉 and the variance σΦ are deduced through

the solution of the master equation (4). Due to the non-linearity of this ME (in
the sense of its transition probability per time unit), an exact analytic solution is
not possible [21], and so it is necessary to use approximate methods. In this case
the first two terms of Van Kampen’s expansion will be used [9],[21]. Taking into
account the established suppositions we obtained:

0 = (u 〈Φ〉 − b 〈Φ〉 (1 + 〈Φ〉)) , (5)

0 = 2 (u− b− 2b 〈Φ〉)σΦ +
(α

Ω

)

(u 〈Φ〉 + b (1 + 〈Φ〉) 〈Φ〉) , (6)

and consequently:

〈Φ〉 = (k − 1) , (7)

σΦ = ε

(

(k + 1) 〈Φ〉 + 〈Φ〉
2
)

2 (1 − k + 2 〈Φ〉)
, (8)

where:

k =
u

b
, (9)

ε =
α

Ω
. (10)

According to equation (9), the parameter k is related to the relation between
mitosis and apoptosis rate, and therefore it is called dynamic quotient. This quotient
physically represents the proliferation index of a tumor. The parameter ε (equation
(10)) is related to the observation scale of the system, and therefore it is called
mesoscopic scale factor; it describes the relation between the size of an individual
tumoral cell and the size of observed tissue inside the tumor.

In order to characterize the pattern cells morphology from equations (7) and (8),
the variance σΦ is written as a function of a parameter, which can be related to the
fractal dimension Df of the cells pattern at the microscopic level. That is why we
selected ε in such way that the magnitude of internal fluctuations is similar to the
magnitude of the expected value. Then, we considered:

Φn→1 ∼ ε, (11)

so the equation (8) can be rewritten as:
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σΦ→1 = ε

(

(k + 1) ε+ ε2
)

2 (1 − k + 2ε)
∼ εa. (12)

To obtain a as a theoretical function of the dynamic quotient k and the fractal
dimension Df , we took into account that Df is calculated using the box counting
method within a limit where the size of the observed box is equivalent to the size
of an individual cell. Therefore, a is calculated according to the following relation
[11]:

a = lim
ε→1

(

d ln (σΦ→1)

dε

)(

d ln ε

dε

)

−1

=
(5. 5 − k (k + 0.5))

3 − 0.5k (k − 1)
. (13)

As the system is considered in a stationary stable state, the probability function
P (Φ) is normal or Gaussian [21], in such way that, when internal fluctuations are
appreciable, this function can be written as:

PΦ∼ε ∼
1

(2πεa)
0.5 exp

(

−
(〈ε〉 − ε)

2

2εa

)

. (14)

If PΦ∼ε is visualized from the ensemble viewpoint [21], the expected value of
PΦ∼ε is a measure of the pattern cell density ρ (Z) observed on an area Ω = Z2 ,
where Z is a characteristic length. Therefore:

ρ (Z) ∼

∫

1

(2πεa)
0.5 exp

(

−
(〈ε〉 − ε)

2

2εa

)

P (ε) dε

ρ (Z) ∼
1

(Za)
0.5 . (15)

All tumors have two basic components: (1) cells that constitute their parenchyma,
and (2) supportive stroma made up of connective tissue and blood vessels [17]. The
amount λ of parenchyma, which is proportional to the number of cells, can be
estimated as:

λ ∼ ρ (Z)Ω

λ ∼
1

(Za)
0.5Z

2 ∼ ZD. (16)

From equations (13), (15) and (16), the following theoretical equation is obtained:

Df =
1

2

k (5 − 2k) + 13

(k + 2) (3 − k)
. (17)

If the dynamics behavior of the tumor radius is known, the tumoral parenchyma
growth can be calculated from the tumor radius growth in time using the following
equation:

λ (t) ∼ (R (t))
Df . (18)
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3. Dynamics behaviour of the tumor. To determine the relation between λ

and other macroscopic variables associated with the tumor growth, the following
assumptions are: i) the observed macroscopic variable r is a virtual line, which is
the tumor radius; ii) the microscopic variable m is the number of cells of length l

inside the virtual line:

r = ml; (19)

iii) the transition probability per unit of time Tm+1/m associated with cells prolif-

eration depends only on the mitosis constant rate u
[

t−1
]

associated with interface
cells, and it is established a priori as:

Tm+1/m = u; (20)

iv) the transition probability per unit of time Tm−1/m associated with the death

of interface cells depends on the apoptosis constant rate b
[

t−1
]

and the relation
between r and the value Ω∗, related to the finite size of the host. This probability
is written as:

Tm−1/m = b
(

1 +
r

Ω∗

)

. (21)

The master equation ME (22), obtained from equations (20) and (21), describes
the behavior of the probability P (m; t) of having m number of cells in time t, is:

∂P (m; t)

∂t
=
(

E+1 − 1
)

uP (m; t) +
(

E−1 − 1
)

b
(

1 +
r

Ω∗

)

P (m; t) (22)

P (m; 0) = 1.

The ME (22) is linear and therefore its solution is a function of normal or Gauss-
ian distribution [9],[21]. The expected value of the tumor radius R is given by:

dR

dt
=

(

ψ − η − η
R

Ω∗

)

R (0) = R0, (23)

where ψ and η
[

L.t−1
]

are the macroscopic parameters associated with mitosis and
apoptosis rates, respectively, and they are related to the microscopic rates by:

ψ = ul, (24)

η = bl. (25)

To obtain the solution of equation (23) we defined the following dimensional
variables and parameters:

φ =
R

Ω∗
; (26)

τ∗ =
η

Ω∗
t; (27)

kc =
ψ

η
, (28)
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where the adimensional parameter kc is the dynamic quotient on the tumor-host
interface and η

Ω∗

[

t−1
]

is the inverse of a constant related to the time that the tumor
takes to achieve its maximum radius value. The differential equation (23) is written
as:

dφ

dτ∗
= (kc − 1 − φ) (29)

φ (0) ≈ 0,

and its exact solution is:

φ (τ∗) = (kc − 1) (1 − exp (−τ∗)) . (30)

If we relate equation (18) to equation (30), an expression which describes the
evolution of the parenchyma tumor can be obtained:

x = ((k − 1) (1 − exp (−τ∗)))
Df , (31)

where x is an adimensional variable describing the quotient between the parenchyma
size λ and the maximum value of λ when t→ ∞ .

Equation (31) is an exact solution of the following differential equation:

dx

dτ∗
= Dx

(

(k − 1)x−
1

D − 1
)

. (32)

If we define a variable y:

y = lnx,

then equation (32) can be expressed as:

dy

dτ∗
= Df

(

(k − 1)

(

exp

(

−
y

Df

))

− 1

)

. (33)

If the right side of equation (33) is expanded in a power series of y and only the
first two terms are hold, (33) turns into:

dy

dτ∗
= − (k − 1) y +D (k − 2) + C1, (34)

where C1 is a constant that considers the terms of the expansion from the third and
on. Defining the parameters:

A1 = (k − 1) , (35)

A2 = (k − 1)D
, (36)

and proposing y = lnx, then we arrive to the equation:

dx

dt
= −A1x ln

x

A2
. (37)

The next step is to find a relation between the macroscopic morphology of the
tumor, described by the interface fractal dimension df , and the microscopic mor-
phology described by the cell pattern fractal dimension Df . According to the linear
master equation (22), the temporal behavior of the radius variance is given by:
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dσ

dt
= −2

η

Ω∗
σ + l

(

ψ + η + η
R

Ω∗

)

(38)

σ (0) = σ0.

Then, equation (38) is expressed as a function of the adimensional variables and
parameters:

τ =
2η

Ω∗
t, (39)

β =
σ

(Ω∗)2
, (40)

ǫ =
2l

Ω∗
, (41)

and, as there is a linear relation between the expected value R of the tumor radius
and the expected value Pe of the tumor perimeter, the equation (38) is expressed
as:

dβ

dτ
= −β + εm (kc + 1 + γ) (42)

β (0) = 0,

where εm is the macroscopic scale factor on the interface, related to the interface
scale of observation, γ is an adimensional variable related to the distance between
two points on the interface, and β0.5 is an adimensional variable related to the
height difference h between these points. As γ = φ we write:

γ (τ ) = (kc − 1) (1 − exp (−τ )) . (43)

The exact solution of equation (42) is:

β (γ) = 2kcεm − εm

(

kc − 1 − γ

kc − 1

)(

(kc − 1) ln

(

kc − 1 − γ

kc − 1

)

+ 2kc

)

. (44)

The term ln
(

kc−1−γ
kc−1

)

in equation (44) is expanded in a power series of γ and

the first term is taken, then we arrive to the following expression:

β ∽

(

εmγ
3kc − γ − 1

kc − 1

)

. (45)

To characterize the roughness of the tumor-host interface, the distance γ must
be appreciable in comparison with the observation scale:

γ ∽ εm,

and the local roughness exponent αloc can be estimated as:

αloc = lim
εm→1

(

d ln (hγ→εm
)

dεm

)(

d ln εm

dεm

)

−1

αloc =
6kc − 5

6kc − 4
. (46)
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Taking into account that the exponent αloc is related to the interface fractal
dimension df according to [3]:

df = 2 − αloc, (47)

tthe following equation is obtained to relate the fractal dimension df to the dynamic
quotient on the interface kc:

df = 1.5
kc − 0.5

1.5kc − 1
. (48)

If it is assumed that the dynamic quotient kc on the interface is equal to the dy-
namic quotient k inside the tumor, i.e., k = kc, the relation between the macroscopic
morphology pattern and the microscopic morphology pattern inside the tumor is
given by:

df =

1. 004 5

(

Df + 6. 666 7× 10−2

√

(Df )
2
− 2. 2Df + 1. 29 − 1. 22

)

(Df − 1. 241 1)
. (49)

To find a scale-up relation for the simulation in silico of the macroscopic mor-
phology, we take into account that the adimensional variable h can be expressed as
a function of the interface width and the total perimeter of the tumor, in such way
that we write:

W

2πR
=

(

L2 3kc − L− 1

kc − 1

)0.5

∼ Lαloc , (50)

where L is related to the number of boxes necessary to calculate the fractal dimen-
sion df . In this case:

L = 10−n. (51)

In order to estimate exponent n in equation (51), we considered that it must be
two times greater than the biggest exponent of L (1.5) in equation (50), so n = 3
and following relation is obtained:

W

2πR
= 103(df−2), (52)

which is equivalent to the empirical relation reported in other publications [10].
The diagnoses of a tumor proliferation capacity and invasion capacity is very

complex because these terms include many factors, such as the tumor aggressive-
ness, which is related to its rate growth, and the tumor invasion capacity, which is
associated with the fractal dimension Df [16], among others factors. According to
the theoretical equations obtained, we proposed an index to quantify the proliferate
capacity of the tumor when it grows in vitro and it is possible to measure its growth
rate V and its interface fractal dimension df :

Λ =

(

1

η
(V − (V exp (−η)))

)Df

, (53)

where:

η =

(

6V (df − 1)

3 − 2df

)

, (54)



THE TUMOR GROWTH AND CELLS PATTERN MORPHOLOGY 555

and Df is calculated from equation (49). The physical meaning of index Λ is the
size of the tumor parenchyma when t = Ω∗, where Ω∗ is the maximum characteristic
length of the host.

The invasion capacity can be calculated according to:

Γ = (k − 1)
Df , (55)

and Γ physically means the size of the tumor parenchyma when t = ∞.

4. Results and discussion. The analysis of experimental biologic data shows
that the fractal dimension of the cell pattern in a sane tissue is lower than in
tumor tissues. Larger organ size results in higher fractal dimension, which is logical
considering that the density of the tissue is preserved longer so that more cells
per unit of volume are contributing to the growth [16]. In this sense, the fractal
dimension Df increases along with the proliferation index k, indicating a higher
cells proliferation. The range of values of Φ is (0,1) and, according to equation (7),
k has a range between (1,2). The behavior of the fractal dimension Df with respect
to the proliferation index k is shown in Figure 1.

Figure 1. Behavior of the cell pattern fractal dimensionDf versus
proliferation index k

Cancer diagnosis is based on microscopic images of cell patterns and, if the
fractal dimension Df of the microscopic images is adequately determined, then the
particular proliferation index can be calculated according to equation (17), and
the adimensional dynamic behavior of the tumor can be predicted from equation
(31). In this case, it is possible to distinguish quantitatively the tumor invasive
capacity in each particular case. As illustrated in Figure 2, the invasion capacity is
associated with a greater growth rate, if we assume that the changes in the cells are
associated, for example, with a change of tumor mitosis constant rate compared to
this constant in normal cells, while the apoptosis constant rates are equal for both,
normal and tumoral cells.
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The equation (37), describing the approximate tumor growth, is analogous to the
Gompertz model, which has been successfully used for the mathematical description
of many types of cancer [7],[16]. In this case, A1 is related to the growth rate and
A2 represents the value of x when t→ ∞.

Figure 2. Dynamic behavior of the tumor for different fractal
dimensions Df

Figure 3 shows a comparison between the dynamic prediction according to equa-
tion (31) and equation (37), where the latter corresponds to the Gompertz model.
In this case we observe that there are no significant differences between the qual-
itative dynamics predicted for both models. As the Gompertz model has been
successfully used to describe tumor growth and predict its behavior under different
perturbations, the proposed model could be used as well to describe this behavior.
In this case, the main difference between both models is that the Gompertz model
is empirical, while the proposed model is based on the mesoscopic formalism, which
considered the physical and biological complex process that occur in the tumor.
Another result is that it is possible to determine the Gompertz model parameters
from the observation of microscopic cells patterns.

In Figure 4, we show the behavior of the fractal dimension of the tumor-host
interface versus the proliferation index k. In this case, it is predicted that the more
invasive and more proliferative tumors have a more clearly-defined interface than
the least proliferative ones.

Experimental results regarding growth rate and the fractal dimension of different
types of in vitro tumor had been reported by Bru [4]. Taking into account this
information, the index Λ to quantify their proliferation capacity and Γ, related to
the invasion capacity were calculated and these results are shown in Table 1.

In Figure 5, we show the correlation between the proliferation capacity and the
invasion capacity, for the tumors reported in Table 1 [4]. In this case, it is observed
that, in general, both capacities are directly related and the proposed model predicts
that the most proliferative tumors are the most invasive ones.
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Figure 3. Predicted dynamics from both the proposed model (—)
and the Gompertz model ( - - )

Figure 4. Macroscopic pattern morphology versus proliferation index

5. Conclusion and remarks. A model based on the mesoscopic formalism and
the fractal nature of tumors was obtained to predict the tumor growth from micro-
scopic cell patterns on tumor tissue. The fractal dimension was used to characterize
this pattern and a theoretical equation was deduced to relate it with the prolifer-
ation index (or mitosis/apoptosis quotient) of a tumor. In this case, the model
predicts that the fractal dimension Df must increase along with the proliferation
index k, while the interface fractal dimension df decreases with k. Therefore, the
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Table 1. Characterization of proliferation and invasion capacity
for different types in vitro of tumors. (a)Experimental results re-
ported by Brú [4]

Cells line f (a) V (a) Λ Γ
Mv1Lu 1.23 11.50 0.250 7 0.250 7
AT5 1.23 8.72 0.250 7 0.250 7
C-33a 1.25 6.40 0.203 3 0.203 3
B16 1.13 5.83 0.904 8 0.908 4
Vero C 1.18 5.10 0.439 3 0.439 4
C6 1.21 2.90 0.310 2 0.311 1
Car B 1.20 2.06 0.339 2 0.347 7
HT-29 1.13 1.93 0.703 4 0.908 4
3T3K-ras 1.32 1.89 0.09 68 0.09 68
3T3V-scr 1.34 1.35 0.0769 0.076 9
Hela 1.30 1.34 0.120 0 0.120 4
3T3 1.20 1.10 0.290 7 0.347 7
Saos-2 1.34 0.94 0.0767 0.07 69

Figure 5. The proliferation capacity Λ versus the invasion capac-
ity Γ

more invasive a tumor is, the smaller the interface fractal dimension is and the
bigger the fractal dimension of the cell pattern is.

Two indexes are proposed to compare the invasion and proliferation capacities
of different types of tumors. The first index is related to the tumor growth rate
while the second index is related to the size of the tumor in dormant phase. It was
demonstrated that the greater invasion capacity the higher proliferation capacity.

The resulting model, which describes the tumor parenchyma behavior, was used
to obtain a model analogous to the empirical model of Gompertz, successfully used
before us to describe the growth of tumors. The model establishes that the Gom-
pertz model can be explained considering the following aspects: i) only interface
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cells proliferate and invade the host, and ii) the tumor cells form patterns with a
fractal dimension.
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