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Abstract. This paper shows how occupancy urn models can be used to derive
useful results in epidemiology. First we show how simple epidemic models can

be re-interpreted in terms of occupancy problems. We use this reformulation to

derive an expression for the expected epidemic size, that is, the total number
of infected at the end of an outbreak. We also use this approach to derive point

and interval estimates of the Basic Reproduction Ratio, R0. We show that this

construction does not require that the underlying SIR model be a homogeneous
Poisson process, leading to a geometric distribution for the number of contacts

before removal, but instead it supports a general distribution. The urn model

construction is easy to handle and represents a rich field for further exploitation.

1. Introduction. Epidemic models are a basic tool to understand the main factors
driving an epidemic. Among these, two stochastic models stand for their simplicity
and usefulness: the SIS (Susceptible – Infected – Susceptible) and the SIR (Suscep-
tible – Infected – Recovered) models without vital dynamics (no births or deaths).
In the first, an individual may become infected by infectious individual and after a
period of time characteristic of the disease, become susceptible again. In the SIR
model, permanent immunity follows the infectious period. This epidemic models
are formulated via a system of differential equations that defines the rates at which
the different events (infections, removals, births, deaths, etc.) occur. Most systems
can only be solved numerically due to non-linearity terms or emphasis is put on
the asymptotic behavior of the model. Efforts to evaluate the impact of changing
parameters on the behavior of the epidemic are carried out in the search for efficient
control polices (see [2], [1], [7], [23] and [10]).

The SIR model dynamics differ from those of the SIS in important ways. The
progressive depletion of susceptible individuals (without replacement) implies that
there is a small probability that the epidemic will affect the whole population. This
is true even for epidemics with unusually high transmission parameters. Thus,
among the most important asymptotic characteristics of this epidemic model is
its final epidemic size, the total number of individuals that were infected over the
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outbreak. The final asymptotic epidemic size is closely related to the cost of the
epidemic, which can be thought of a linear function of the summation of the duration
of the infectious period of all those infected.

The estimation of R0, the basic reproduction ratio is also critically important.
R0 is defined as the average number of secondary infections caused by an infectious
individual when introduced to a population of fully susceptibles [12]. Point estimates
of R0 under the underlying assumption that all rates can be thought of as parameters
of exponential distributions –due to the fact that stochastic SIR models are assumed
to be homogeneous Poisson process– do exist, but confidence intervals for R0 are
more or less approximate [8].

Urn models provide a natural framework for analyzing epidemic models. Their
simple construction implies that their essence is easy to capture. A rich source
of information on the topic with applications to biology, engineering, medicine,
physics etc. can be found in [21]. These models have recently provided a way to
construct models of infections that allow to estimate the efficacy of vaccines under
very robust settings [18], [19]. By placing balls at random in a set of N empty
urns, and considering every ball as a threat of infection, empty and occupied urns
can be thought of as susceptible and infected respectively. The process of infection
can be reproduced under this simple paradigm, we focus on the number of occupied
urns and from this information we will make inferences on the total number of balls
thrown. From these last two pieces of information we will make inferences on the
reproductive ability of the disease. Conversely, we will show that if what is known
is the observed number of infections at the end of the outbreak, the epidemic size
can be estimated.

The organization of this paper is as follows: first we review the basic stochastic
SIR model and introduce some basic results from occupancy distributions. We use
these results to find expressions for epidemic size and for the construction of point
and interval estimates of R0.

2. Review of the SIR model. In a stochastic SIR model, every infectious in-
dividual has contacts with individuals chosen at random at the rate λ. Contact
is any activity that will result in a susceptible becoming infected by an infectious
individual. Infected individuals recover at the rate µ. In stochastic models, both
parameters, λ and µ are assumed to be parameters of exponential distributions,
that is, both events, infection and recovery are modeled as a homogeneous Poisson
process. The total population size N = I + S + R is assumed to be constant. Then
the state of the process at time t can be identified with X(t) = {St, It}. That is, the
number of infected and recovered individuals at time t. When there are It infected
and St susceptible, the transition probabilities are:

P (Xt+δ = {St − 1, It + 1} | Xt = {St, It}) = λItSt/N + o(δ)

P (Xt+δ = {St, It − 1} | Xt = {St, It}) = µIt + o(δ).
(1)

The main parameter driving the epidemic is the basic reproductive ratio, R0.
Since the number of infections that an individual will cause is clearly influenced by
the number of susceptibles available, it is customary to define R0 as the expected
number of infections that an infected individual causes when it is introduced in a
population of susceptibles [12]. There is a continuous depletion of susceptibles in
this model and thus the first infectious individual has a larger expected number
of secondary infections than the second one, and so on. Thus, if the expected
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number of infections caused by the first individual is less or equal to one, from
the theory of branching processes, we conclude that the epidemic will die out with
probability one. In fact, when N →∞, by approximating the epidemic process with
a branching process, the probability of eventual extinction starting with n initially
infected individuals and large N is approximately equal to the Min(1, R−n

0 ).
While the number of infections caused by an infected individual during the length

of its infectious period depends on the number of susceptibles available at the mo-
ment of infection, the number of contacts of an individual follows the same distribu-
tion for all individuals regardless of the time of infection. This distribution is easy
to derive and as a requirement to construct an epidemic model using occupancy urn
models, we will will use here the definition of R0 adopted in [20]:

R0 is the expected number of contacts that an infectious individual has during
its entire infectious period, where a contact between two individuals, one susceptible
and one infected, is any act that would cause the infection of the susceptible.

A review on R0, its properties and general methods for calculation can be found
in [13], [17]. A simple algorithm for its computation based on Markov chains that
can be applied to complicated stochastic epidemic models is presented in [20].

In the SIR stochastic model (1), it can be shown that the number of contacts of
an infective individual during its entire infectious life is a geometric random variable
with parameter µ/ (λ + µ), that is,

P (X = k) =
(

λ

λ + µ

)k
µ

β + µ
, k = 0, 1, 2, ... (2)

with expected value λ/µ, which is the definition of R0. Therefore, in terms of R0,
the probability mass function of the number of infected can be written as

P (X = k) =
(

R0

1 + R0

)k

(1 + R0)
−1 , k = 0, 1, 2, ...

An additional important result that will complete our brief account of R0 is the
following: in a seminal paper, [24] derived an expression for the epidemic size of a
deterministic SIR epidemic. They found it to be the unique root of the equation of

x = N(1− e−R0x/N ). (3)

For stochastic SIR models, it is known that epidemics can be “small ” or “large”
with a given probability. For instance, there is a (R0 + 1)−1 probability that the
initial infected individual will recover before infecting anyone else, hence, for R0 = 3,
approximately 25 percent of “outbreaks” will end with only one infected. Figure 1
shows the distribution of the epidemic size for two different values of R0. We can
observe small and large outbreaks. Several versions of stochastic models lead to a
Poisson distribution for the number of ultimate susceptibles with a mean given by
the deterministic solution of (3) (see [11] and [26]), or to a normal distribution with
that mean [5], [6]. These results are based in the stochastic process given by system
(1). See also [3] and [4].

3. Occupancy distributions. An extensive account of urn models is found in
[21] and in [22]. Basic occupancy models relate to the distribution of some random
variables associated with the placement of a fixed number of balls b on a fixed
number of urns N at random, meaning that every ball can occupy any particular
urn with probability N−1. Perhaps one of the most simple random variables is the
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Figure 1. Distribution of the epidemic size for R0 = 2.0 and R0 =
2.5, showing the relative frequency of large and small epidemics.
Population size is N = 100.

distribution of empty urns. The probability that exactly x urns are empty when b
balls are thrown to N urns is

P (X = x) =
N∑

j=x

(−1)j−x

(
j

x

)(
N

j

) (
x

j

) (
N − j

N

)b

. (4)

The factorial moments for the number of empty cells are given elsewhere (see [22],
p. 415). In particular

E[X] = (N − 1)bN1−b. (5)
which tends to Ne−b/N for moderate N and b. In [25] it is shown that the distri-
bution tends to a Poisson distribution with parameter Ne−b/N when both b and N
tend to infinity as long as Ne−b/N remains bounded.

4. An alternative construction of an SIR epidemic using urn models. Here
we show how to construct an SIR epidemic model via an occupancy urn process.
Begin with N urns, labeled 1, 2, 3, ..., N that can accommodate an unlimited number
of balls each. We start with a single occupied urn. This urn will throw to the
remaining N − 1 urns a random number of balls described by the random variable
Yi, where Yi is a geometric random variable as in (2). Every ball can fall in any
one of the remaining N − 1 urns with the same probability. Thus, urns will end
up empty or occupied, depending on whether they contain no balls or at least one.
When an empty urn becomes occupied –which occurs when it receives a ball for the
first time–, it throws in turn a random number of balls Yi on the complementary
N − 1 urns. The process repeats until there are no newly occupied urns. In this
construction, we have incorporated all the elements of an SIR model. The fact
that a newly occupied urn only throws a random number of balls when it was first
occupied accounts for the fact that subsequent attempts of infection on an infected
or recovered individual do not affect the infectiousness of individuals. As in an SIR
epidemic model, the epidemic halts when the last ball thrown falls in an already
occupied urn.
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5. Applications.

5.1. Epidemic size. When the outbreak is over, one only identifies the number
of occupied urns (infected individuals) and not the number of balls they contain.
Therefore, there is no information on the total number of balls thrown. Hereafter
the term infected and occupied are used indistinctly. The same applies to the
terms susceptible and empty. Assume that the outbreak ends up with X infected
individuals. Hence, the total number of balls thrown is given by the random sum

b =
X∑

i = 1

Yi, i = 1, 2, 3, .., X. (6)

If we denote X as the number of occupied urns when b balls are thrown in N urns,
then using

E[X] = E[E[X|b]]
= E[N(1− e−b/N )]

which can be approximated with N(1 − e−E[b]/N ). Since b is a random sum, its
expected value equals E[X] E[Yi] if Yi is independent of X, which is not the case.
For instance, if we observe a small X –value, then it is more likely that this is due
to low values of Yi, i = 1, 2, 3, ..., X. However, for moderately large values of X, X
is independent of Yi and thus we can use the approximation

E[b] ≈ E[X] E[Yi] = E[X] R0,

that is,
E[X] = N(1− e−E[X]R0/N ), (7)

which is (3), the solution for the deterministic model. This expression has no closed
(analytical) solution for E[X], but can be solved numerically. Kermack et al [24]
provided approximations for its solution. This construction makes it evident that
the number of contacts of an infected individual, Yi, does not have to follow a geo-
metric distribution, and in principle, it could be any discrete distribution as long
as its expected value is R0. This is an appealing result because the underlying sto-
chastic process relies on homogeneous Poisson process with constant hazard rates,
an assumption that is generally to restrictive in epidemiology in general. Whereas
the inter-event times for the contact process may be assumed to be exponentially
distributed, this is a more restricted assumption for the time to removal (duration
of the infectious period) which in general has an increasing hazard rate.

In Table (1) we compare the observed epidemic size obtained from solving (7)
numerically with the values obtained from stochastic simulations of the epidemic
averaging over the simulations of “large” outbreaks only, for four different distribu-
tions with the same expected value R0. There is no consensus on what is a “large”
outbreak. Here we define it as any outbreak that ends up with more than 10 percent
of the population infected. For geometric distributions, the probability of a small
epidemic is R−1

0 , and thus the expected proportion of large epidemics is 1 − R−1
0

which is very close to the observed values of large epidemics for this distribution.
It can be seen that the expected epidemic size conditional on the occurrence of a
major outbreak is very similar for the four distributions tested: Geometric, Poisson,
Binomial and Hypergeometric. It is clear that the numerical solution of (7) fits very
well the observed values for “large” outbreaks for the four distributions.
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Table 1. Epidemic size for several distributions of the number
of contacts. All distributions have the same mean. Results from
1× 104 simulations. N = 1000

R0 Geometric Poisson Binomial Hypergeometric
1/(R0 + 1) R0 (10, R0/10) (100, 10R0, 10) Expected
(∗) (†) (∗) (†) (∗) (†) (∗) (†) (‡)

1.2 0.15 319.3 0.29 311.2 0.33 312.5 0.34 312.4 313.7
1.5 0.33 577.8 0.57 581.2 0.62 581.3 0.64 581.4 582.8
2.0 0.49 794.5 0.80 795.5 0.85 796.1 0.86 796.3 796.8
2.5 0.60 891.9 0.89 892.3 0.93 892.2 0.94 892.6 892.6

(∗) Proportion of ‘large’ epidemics (exceeding 10 percent of the population size).

(†) Average observed epidemic size over ‘large’ epidemics.

(‡) Numerical solution of (7).

5.2. Point and interval estimation of R0. In general, methods for estimating
R0, the key parameter governing an SIR epidemic are based on the analysis of the
underlying stochastic model with transitions (1) (see [8]). These methods rely on
asymptotic distributions for N large.

The exact distribution of the number of empty urns after placing b balls in N
urns is given in (4). Observe that since all balls thrown (if any) by an infected
individual must fall on the remaining N − 1 urns, we must make a correction on
the expected number of occupied urns after placing b balls at random, namely

θ̂ = M e−b/M ,

with M = N − 1. After observing k infections, the MLE of theta is s = M − k,
the observed number of remaining susceptibles. By the invariance properties of the
MLE’s, that of b is b̂ = −M log(s/M), and the MLE of the mean number of balls
thrown per infected individual is

R̂0 = −M log(s/M)/(M − s), (8)

which is the classical point estimate of R0 obtained with deterministic or stochastic
models (see [8]).

The urn model construction allows to see that the distribution of the number of
balls produced by each newly infected should affect the variance of the epidemic
size. Table (2) is complementary to Table (1) and shows the observed variances of
the epidemic sizes obtained from the same distributions used in Table (1). In Table
2 all distributions have the same mean for each R0, but the variances are such that
V ar(XG) > V ar(XP ) > V ar(XB) > V ar(XH) where XG, XP , XB and XH are the
random variables of the number of contacts per individual (balls) during the infec-
tious period for the distributions: geometric, Poisson, binomial and hipergeometric
respectively.

As we can see, the variances of the epidemic sizes maintain the same relation-
ship among them than those of the distribution for the number of balls thrown by
each individual, with the variance for the geometric distribution almost doubling
the variance of the others. This implies that while point estimation of R0 does
not require assumptions on the distribution of the number of contacts per individ-
ual, interval estimation should be sensible to this distribution. In what follows we
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Table 2. Variance of the epidemic size of large outbreaks for sev-
eral distributions of the number of contacts. Results from 1× 104

simulations. N = 1000

R0 Geometric Poisson Binomial Hypergeom.
1/(R0 + 1) R0 (10, R0/10) (100, 10R0, 10)

1.2 10530.5 6908.5 5917.6 5388.7
1.5 3774.5 1843.3 1607.0 1539.4
2.0 837.1 458.4 423.7 416.2
2.5 310.8 178.4 171.1 167.9

introduce a method to derive a confidence interval (CI) for R0 that results from
occupancy models, based on the system of equations (1). This is equivalent to as-
suming that the number of contacts during the infectious period of an individual
follows a geometric distribution.

Once the outbreak is over, we observe X individuals that were infected at some
time. Every one of the infections was caused by the same infected individuals,
and using the urn model construction we can think of X individuals that throw an
unknown number of balls b to a fixed number of urns N , filling exactly X urns.
This allows to establish our strategy to derive a CI for R0: using the Probability
Mass Function of the number of occupied cells when each of X individuals throw
balls according to (2).

We begin by letting Y be the number of urns filled at the end of an occupancy
process where each of X individuals throw balls according to the distribution (2).
Letting p = (1 + R0)−1 and using (4) and (2) we have that:

P (Y = y;X, p) =
∞∑

j=0

P (Y = y|W = j)P (W = j), (9)

where W follows a negative binomial distribution with parameters X and p, and
P (Y = y|W = j) is the distribution of occupied urns when j balls are randomly
placed in N urns. After some simplifications, we obtain

P (Y = y;X, p) =
N∑

j=N−y

(−1)j+y−NpX

(
j + Np− jp

N

)−x (
N − y

j

) (
N

j

)(
j

N − y

)
.

(10)
In practice we are interested in evaluating P (Y = X), the observed number of

infected. A confidence interval (pL, pU ) of size 1− α for p can be obtained (see [9])
using pL and pU such that

X∑
j=0

P (Y = j;X, pL) = α;
X∑

j=0

P (Y = j;X, pU ) = 1− α, (11)

From here a CI of the same size for R0 is ((1−pU )/pU , (1−pL)/pL). Figures 2 and
3 show the shape of a 0.95 CI for R0 for N = 200 and N = 2×104 respectively, as a
function of the epidemic size. At first glance it seems odd that the upper limit of the
CI is higher for a very low epidemic size than that of an epidemic that decimated
half the population. The explanation is simple: even high R0 values can result in
an epidemic of size 5, but as epidemic sizes increases, it is less likely that those
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Figure 2. 95 percent confidence intervals for R0 (dashed lines) at
different values of epidemic size, for N=200. The solid line is the
point estimate.

high R0’s could cause such sizes. The upper bound for CI tends also to increase
dramatically when the epidemic size is close to N .

Computing confidence intervals for large values of N is computationally intensive,
since expression (10) has to be iteratively computed. The intervals of Figure 2 were
calculated using approximation to a normal distribution for both the total number
of balls thrown and the number of empty urns. This approach yields approximate
intervals that are computationally less intensive to calculate. According to this, we
approximate the total number of balls thrown by the observed X infected, that is W
in (9) with hW (p, X;w) a Normal distribution with mean X(1− p)/p and variance
X(1− p)/p2, whereas the distribution of the number of occupied urns conditioning
on a given number of balls thrown, that is P (Y |W ) in (9) can be approximated by
fY (N,w; y) a Normal distribution with mean N(1− e−w/N ) and variance Ne−w/N .
If we let

gX(N, p;x) =
∫ −∞

0

fY (N,w; y) hW (X, p;w)dw (12)

then the confidence intervals for R0 are obtained using (1 − pU )/pU , (1 − pL)/pL)
with pL and pU such
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Figure 3. 95 percent confidence intervals for R0 (dashed lines) at
different values of epidemic size, for N = 2× 104. The solid line is
the point estimate.

∫ X

0

gX(N, pL;X) = α;
∫ X

0

gX(N, pU ;X) = 1− α. (13)

6. Discussion. Becker [8] suggested a method for constructing confidence intervals
that can be applied when final epidemic size data are available. For N = 120 and
an observed epidemic size of x = 30 the point estimate is the same as (8), and
a 95 percent confidence interval for R0 is (1.02, 1.18). Using the method in this
paper for small populations using (10) and (11) we get (0.71, 1.96). There is a huge
difference in the size of both intervals not only in its width but more importantly,
our interval includes 1, the threshold value. We believe that the interval constructed
with this data should include 1 and support our argument as follows: Let Z be the
final epidemic size of an SIR epidemic that started with one inital infected among a
population of size N . Let FZ(z;R0) the cdf of the epidemic size. Clearly, FZ(z;R0)
is decreasing with R0 for every z, 1 ≤ z ≤ N , thus, after observing an epidemic size
of x a lower bound for R0 would be RU such that

FZ(x;RU ) = 1− α, (14)
however, for N = 120 the population size is small and the density of the epidemic
size can be obtained analytically. For x = 30 we have that FZ(30; 0.78) ≈ 0.975,
that is, the exact lower value for an equal tail CI is less than 1.
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R0 will be in general underestimated: epidemic models do not include the natural
decrease in the infectious activity of those infected in the later stages of the epidemic
as well as in the exposure to infection, mainly due to an increase in the information
available to the population. This implies that the expected number of balls thrown
by an individual decreases with time by natural reasons. This has to be considered
seriously since control polices are then based on an underestimated R0 [8].

There are known models that include the possibility that a ball may escape (or
may be rejected) from the urn with some constant probability. These models are
called leaky urns models (see [22], p. 417 and references therein). These models may
be useful to account for the efficacy of some protective measure against infection
on an individual basis, the essence of leaky vaccines [15], [14]. If the probability
that a ball will be retained is θ, then the expected number of empty cells tends to
a Poisson distribution with mean N exp(−b θ/N) as N and b become large under
the assumption that the mean remains bounded (see [22], p. 418 and references
therein). On the other hand, there are situations where a vaccine may fully protect
a fraction of those vaccinated while leaving unprotected the remaining individuals
[15], [14]. These are called all/nothing vaccines and urn models for these effects can
be easily constructed. If b balls are placed at random in N urns and a fraction 1−θ
of the urns is covered whereas the remaining fraction θ is left ‘susceptible’, then
the expected number of empty urns is Nθ exp(−b θ/(Nθ)) = Nθ exp(−b /N). This
result is obtained from assuming that the total number of urns has been reduced
to Nθ and that every ball will have a probability θ of falling in a ‘susceptible’ urn.

Vaccines not only have a direct effect on the protection of an individual, but also
have indirect effects [16]. One of the most important measures of the efficacy of a
vaccine is the Population Vaccination Effectiveness (PVE) which is defined as one
minus the ratio of two expectations: the expected number of infections under a given
vaccination policy to the expected number of infections under no policy. Thus, PVE
attempts to measure the reduction in the number of infections due to vaccination
campaign, a reduction which is difficult to estimate since such reduction is the result
of both the efficacy of the vaccine on an individual basis and herd immunity, the
indirect protection gained by the fact that there will be less infectious pressure on
individuals. Thus, once a vaccination policy has been applied it is very difficult to
estimate what would be the number of infections under no vaccination at all. Urn
models provide a suitable framework to differentiate both effects and to estimate
the denominator of the PVE.

Distributions associated with placing at random m different types of balls have
also been studied (see [21], [22]). These distributions include among others, the
number of urns containing exactly (or at least) k types of balls, k = 0, 1, 2, ...,m.
These distributions may be useful to model the spread of a disease that can be
caused by different strains were immunity is strain specific (e.g. dengue fever).
Sampling individuals to make inferences on the distribution of immunity generated
by different strains may be useful in the development of control policies aimed to
reduce the impact of seasonal outbreaks.

The fact that the expression for the epidemic size for large epidemics (7) and
that of the point estimate of R0 (8) do not require the assumption of exponential
duration for both the time between contacts and the duration of the infectious state
deserves special attention: while the former assumption may work, the assumption
that time to recovery (or to removal) from an infected state has constant hazard
rate is generally unrealistic. Unfortunately, the construction of confidence intervals
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for R0 does require assumptions on the distribution of the number of contacts made
by an infectious individual.

It is true that (7) is the expected epidemic size conditioning on a large epidemic,
and that the true epidemic size should weight this by considering the probability of
a small epidemic, nevertheless, its importance should not be underestimated since
control policies to reduce the cost of an epidemic should be conservative and hence
probably based on a worst case scenarios.

We hope that the construction in this paper will increase the understanding of
basic, yet useful epidemic models to professionals and applied researchers of those
disciplines which are traditionally more exposed to the field of statistics than to
dynamical systems or stochastic processes.
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