
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2009.6.451
AND ENGINEERING
Volume 6, Number 3, July 2009 pp. 451–467

BLASTING NEUROBLASTOMA USING OPTIMAL CONTROL OF

CHEMOTHERAPY

Craig Collins, K. Renee Fister, Bethany Key

and Mary Williams

Department of Mathematics and Statistics
Murray State University
Murray, KY 42071, USA

(Communicated by Urszula Ledzewicz)

Abstract. A mathematical model is used to investigate the effectiveness of
the chemotherapy drug Topotecan against neuroblastoma. Optimal control
theory is applied to minimize the tumor volume and the amount of drug uti-
lized. The model incorporates a state constraint that requires the level of
circulating neutrophils (white blood cells that form an integral part of the im-

mune system) to remain above an acceptable value. The treatment schedule is
designed to simultaneously satisfy this constraint and achieve the best results
in fighting the tumor. Existence and uniqueness of the solution of the opti-
mality system, which is the state system coupled with the adjoint system, is
established. Numerical simulations are given to demonstrate the behavior of
the tumor and the immune system components represented in the model.

1. Introduction. Neuroblastoma is a type of cancer that consists of crest cells
found in tumors of nerve tissues [4, 6]. Crest cells, which resemble the early stages of
cells developing in the embryo or fetus, take part in the development of the nervous
system and other tissues [2]. Two-thirds of this cancer originate in the abdomen.
Another one third begins in the adrenal glands or the sympathetic ganglia found
in the chest, neck, or pelvis. Children under age ten and infants are the most
likely patients to acquire neuroblastoma [3]. According to the Centers for Disease
Control statistics for the year 2003 [8], one quarter of all youth cancer deaths are
attributable to the neurological system.

One particular drug that has proven successful in the reduction of cancer cells is
the drug Topotecan (TPT), which is a novel semisynthetic antiderivative of the an-
ticancer agent Camptothecin [7]. This drug interacts with Topoisomerase I, which is
an intranuclear enzyme in the body, to inhibit the replication of DNA and thus result
in cell death [5, 23, 36]. Several studies have been conducted using several dosage
strategies of TPT in order to kill tumors and reduce side effects [36]. One technique
often used to determine appropriate dosage levels is called pharmacokinetic-based
(PK-based) dosing [5]. This approach utilizes careful monitoring of drug levels in
order to tailor treatments to the particular physiology of each patient [4, 5].

2000 Mathematics Subject Classification. Primary: 49J15, 49K15; Secondary: 93C15.
Key words and phrases. optimal control, chemotherapy, topotecan.
This work is supported by MSU CISR and the NSF under grant NSF-DMS-053-1865.

451

http://dx.doi.org/10.3934/mbe.2009.6.451


452 CRAIG COLLINS, K. RENEE FISTER, BETHANY KEY & MARY WILLIAMS

Optimal control theory is a useful mathematical approach for maximizing the re-
sults of various treatment strategies. This theory has been applied to biological and
mathematical models such as the interaction between tumor cells and chemother-
apy [13, 24, 25]. Studies by G. W. Swan helped open the door to using optimal
control with biology. In 1980, Swan [34] published a study on optimal control in
some chemotherapy problems; two years later, he applied optimal control to dia-
betes mellitus [35]. Ten years after Swan’s paper, J. M. Murray published a more in
depth paper on the same subject by adding aspects such as general growth and loss
functions [28]. Murray is just one of many authors who have furthered the study of
using optimal control with biological models. Control theory has successfully been
applied to models that maximize the effect of the chemotherapy while minimizing
the damage due to toxicity by Kim et al. [21] , Swan and Vincent [33], and Murray
[29]. Optimal control has also been applied to studies for other treatments, such as
immunotherapy for cancer (dePillis et al.[11], Ledzewicz et al. [24, 25]) and HIV
by Kirschner et al. [22]. Costa et al. [9, 10] also published work involving optimal
chemotherapeutic protocols which include inequality constraints of the control and
state variables.

We will discuss a system of differential equations that model TPT plasma PK,
tumor growth, and absolute neutrophil count (ANC) (Section 2). We then analyze
the existence, characterization, and uniqueness of the optimal control in Sections 3
and 4 respectively. In Section 5, numerical analysis and results are then given with
explanations relating the numerical results to clinical findings.

2. Model. The model used in this study was developed by a research team at St.
Jude Children’s Research Hospital [31] using clinical data generated at St. Jude’s.
The model consists of three components: the TPT plasma PK, the tumor growth
model, and the ANC (Absolute Neutrophil Count) model. The state variables are
defined as follows:

yc - amount of drug in the plasma (ng)

yp - peripheral compartment for the TPT concentration (ng)

P - total number of proliferating tumor cells (number of cells)

Q - total number of quiescent tumor cells (number of cells)

Np - concentration of proliferating immune cells, including stem cells,

colony forming units, myeloblasts, promyeloblasts, and

myelocytes (number of cells/µL)

Nd1

Nd2

Nd3

}

-
concentration of nonproliferating blasts, including metamyelocytes,

bands, and segmented blasts (number of cells/µL)

Ncirc - concentration of circulating neutrophils (number of cells/µL)

u(t) - amount of TPT per unit time (control variable) (ng/hr)

The system of equations describing the collective behavior of these states is given
by
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dyc

dt
= −(ke + kcp)yc + kpcyp + u(t) (1)

dyp

dt
= kcpyc − kpcyp (2)

dP

dt
=

(

γ − α−
δyc

V

)

P + βQ (3)

dQ

dt
= αP − βQ (4)

dNp

dt
=

[

kin

(

Km

Km +Ncirc

)(

IC50

IC50 + yc

V

)]

Np − kbpNp (5)

dNd1

dt
= kbp (Np −Nd1) (6)

dNd2

dt
= kbp (Nd1 −Nd2) (7)

dNd3

dt
= kbp (Nd2 −Nd3) (8)

dNcirc

dt
= kbpNd3 − koutNcirc (9)

where the value of each parameter is found in Table 1. Note that the values used
represent averages taken from clinical data [31]. In addition, values of certain
parameters are altered in the presence of G-CSF (granulocyte colony-stimulating
factor). G-CSF is produced naturally and increases both the growth rate of stem
cells and the rate at which new neutrophils are formed. Typically, additional G-CSF
is administered at the end of a TPT treatment cycle in an attempt to rejuvenate
levels of circulating neutrophils. Please note that the effects of the body’s natural
production of endogenous G-CSF is already incorporated into the determination of
the parameters kin,Km, and kbp; the parameters kingcsf ,Kmgcsf , and kbpgcsf all
have adjusted values in the presence of exogenous G-CSF. The implementation of
these adjusted parameters is discussed in the numerical simulation section.

For clarity, we give a brief explanation of the system and refer the reader to
the aforementioned article for more details. A two compartment model is used
to describe the first two equations in which the equations explore transfer from a
plasma TPT compartment to a peripheral TPT compartment with rates kcp and
kpc. There is natural decay associated with the plasma TPT and the control is
implemented as the amount of drug per unit time in the plasma compartment.
Within the second compartment, equations (3) and (4) model the tumor growth.
Within this model, the α and β parameters describe the transition from proliferating
and quiescent compartments. In the third compartment, the neutrophil production
in the bone marrow is modeled from stem cell production and differentiation to
circulation. Michaelis-Menton terms for circulating neutrophils as well as the TPT
concentration are included in equation (5) to take into account that lower neutrophil
counts stimulate G-CSF. This growth factor in turn activates the production of stem
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cells. Equations (6)-(8) incorporate the transitions from movement of the blasts
from various phases of differentiation.

Table 1. Parameter values for system (1)-(11).

Parameter Numerical value Parameter description
ke 0.83 (1/hr) natural decay rate of TPT in plasma
kcp 0.26 (1/hr) transfer rate of TPT from yc to yp

kpc 0.27 (1/hr) transfer rate of TPT from yp to yc

γ 0.011 (1/hr) proliferation rate for tumor cells
α 0.02 (1/hr) transition rate from proliferating to quiescent
δ 0.66 (mL/ng*hr) TPT effect parameter
β 0.0042 (1/hr) transition rate from quiescent to proliferating
kin 0.09 (1/hr) stem cell production rate

kingcsf 0.172 (1/hr) stem cell production rate in the presence of
G-CSF

Km 3.091 (1/µL) half saturation parameter of Ncirc

Kmgcsf 2.308 (1/µL) half saturation parameter of Ncirc in the
presence of G-CSF

IC50 1.455 (ng/mL) half saturation parameter of TPT concentration
V 32.33 (µL) plasma volume
kbp 0.068 (1/hr) differentiation rate

kbpgcsf 0.12 (1/hr) differentiation rate in the presence of G-CSF
kout 0.099 (1/hr) natural decay rate of circulating neutrophils

In addition, we impose a state constraint on the concentration of circulating
neutrophils; namely, we require

Ncirc(t) ≥ 500, ∀t ∈ [0, T ]. (10)

The inclusion of this constraint represents the need for the immune system to
be at a sufficient strength to handle the harmful side effects of chemotherapy, as
measured through the ANC. We incorporate this constraint as a component of the
state system, as in Kirk [20]. To begin, we rewrite this constraint in the form
h(x(t), t) ≥ 0, which is, in this situation, h(x(t), t) = (Ncirc(t)− 500) ≥ 0. We then
define an additional state variable Z through the following:

dZ

dt
= [Ncirc(t) − 500]2H(500 −Ncirc(t)), (11)

where H : R → R is defined by H(t) = 0 if t < 0 and H(t) = 1 elsewhere. Further-
more, Z(t) must satisfy the boundary conditions Z(0) = Z(T ) = 0. We now treat
Z(t) as an additional state variable and include equation (11) with the state system
(1) - (9).

For convenience, we define the system (1)-(11) in matrix form: let
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x =
(

yc yp P Q Np Nd1 Nd2 Nd3 Ncirc Z
)T
,

u =
(

u 0 0 0 0 0 0 0 0 0
)T
, and

B =
(

0 0 0 0 χ 0 0 0 0 ψ
)T
,

where

χ = kin

(

Km

Km +Ncirc

)(

IC50

IC50 + yc

V

)

Np

and

ψ = (Ncirc − 500)2H(500 −Ncirc).

System (1)-(11) can now be expressed as x′ = Ax+B+u. Note that Ax contains
only linear terms, while B contains the nonlinear terms.

3. Quadratic control. We apply optimal control theory to the model given by
equations (1)-(11) in order to find the treatment strategy that produces the best
results. In particular, we examine a specific aspect of the research done by Panetta,
et al. [31]; namely, the effect of varying topotecan systemic exposure given a fixed
administration schedule. The object of applying optimal control theory to this
problem is to determine the ideal topotean systemic exposure; that is, the dosage
of topotecan that results in a minimization of both tumor volume and myelosup-
pression. Note that in [31] the authors also investigate the effects of altering the
TPT administration schedule; the research discussed in this work only addresses
variations in the amount of topotecan administered according to a fixed schedule.

3.1. Objective functional. The cost functional balances the competing objec-
tives of minimizing the tumor size and the detrimental cost associated with the
drugs administered. This minimization of the quadratic cost can be considered as
a minimization of the cost to the system, whether it be a financial cost or a cost in
relation to the health of the patient. In other words, the objective functional

J(u) = P (T ) +Q(T ) +

∫ T

0

ε

2
u2(t)dt (12)

is to be minimized over the set of admissible controls

U = {u measurable | 0 ≤ u(t) ≤ 1, ∀t ∈ [0, T ]}, (13)
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where ε is a weight parameter used to emphasize the importance of minimizing
the control relative to the salvage terms (the choice of value for ε will be discussed
in the numerical simulations section). We choose a quadratic control term in the
objective functional for convenience in finding an analytic representation.

3.2. Existence. First, we obtain boundedness of the state system given an optimal
control in the admissible control set U . This grants that the set of all feasible
solutions to the control problem is non-empty. We then establish the existence of
an optimal control using a standard theorem from Fleming and Rishel.

Lemma 3.1. Given u ∈ U , there exists a bounded solution to the initial value

problem defined in (1)-(11) with initial condition x(0) = x0 ∈ (R0)
+ × {0}.

Proof. We recognize that the system (1)-(11) componentwise has a lower bound
independent of u. We consider an upper bound of the state system using the
following notation:

A =



































0 kpc

kcp 0 0 0
0 γ β

α 0 0
0 0 0

kbp 0 0
kbp 0 0

0 kbp 0 0
kbp 0 0

0 0



































,

and

B =
(

0 0 0 0 kinN
max
p 0 0 0 0 Nmax

circ )
)T
, and

with
u =

(

1 0 0 0 0 0 0 0 0 0
)T
.

We denote a supersolution to our system (1)-(11) as

x′ = Ax +B + u.

Since both Np and Ncirc are finite populations of cells, we let Nmax
p be an upper

bound for Np(t) and Nmax
circ the upper bound for Ncirc(t)

2. Consequently, this
supersolution x is bounded on a finite time interval. We can use a comparison
result to obtain that the original state system is bounded. See [12] for similar
analyses.

With the boundedness of the state system established, we now prove the existence
of the optimal control using the results of Fleming and Rishel (Theorem 5.1, stated
in the Appendix).

Theorem 3.2 (Existence of a Quadratic Optimal Control). Given the objective

functional (12), subject to the system given by equations (1)-(11), with x(0) = x0 ∈
(R0)

+×{0}, and the admissible control set (13) then there exists an optimal control

u∗(t) such that

min
u∈U

J(u) = J(u∗),

if the following conditions are met:
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1. The class of all initial conditions with a control u(t) such that u(t) is a

Lebesgue integrable function on [0, T ] with values in the admissible control

set and such that the state system is satisfied is not empty.

2. The admissible control set U is closed and convex.

3. The right hand side of the state system is continuous, is bounded above by

a sum of the bounded control and the state, and can be written as a linear

function of u(t) with coefficients depending on time and the state variables.

4. The integrand of the objective functional (12) is convex on U and is bounded

below by −c+ c2|u|
β where c2 > 0 and β > 1.

Proof. The system (1)-(11) is bounded from Lemma 3.2. As the coefficients of
this system are also bounded, a solution to the system exists using a theorem
from Lukes [27], which fulfills condition 1. The second condition is fulfilled from
the definition of the admissible control set U . For the third condition, note that
since the parameters V , Km, and IC50 are all positive and Ncirc(t) and yc(t) are
nonnegative for all t in the finite time interval, then the right hand side of system
(1)-(11) is continuous. Using the boundedness of the solutions, we also have that
|Ax+B+u| ≤ |A||x|+ |B|+ |u| ≤ Ω(|x|+ |u|), where Ω is the maximum of |A| and
|B|. For the final condition, it is clear that since the objective functional is squared
then it is convex and satisfies the needed bound with β = 2 and c2 dependent on
ǫ.

3.3. Characterization. Having proven the existence of an optimal control, we
now determine the analytic representation for that control. The form of the adjoint
equations and the transversality conditions are standard results from Pontryagin’s
Minimum Principle [32], with the exception of the additional conditions imposed
by constraint (10). The constraint is incorporated into the state system through
equation (11), as before. The Hamiltonian, used to find the characterization of the
optimal control, is given by

H =
ε

2
u2(t) + λ1 [−(ke + kcp)yc + kpcyp + u(t)] + λ2 [kcpyp − kpcyc]

+ λ3

[(

γ − α−
δyc

V

)

P + βQ

]

+ λ4 [αP − βQ]

+ λ5

[

kin

(

Km

Km +Ncirc

)(

IC50

IC50 + yc

V

)

Np − kbpNp

]

+ λ6 [kbp (Np −Nd1)] + λ7 [kbp (Nd1 −Nd2)]

+ λ8 [kbp (Nd2 −Nd3)] + λ9 [kbpNd3 − koutNcirc]

+ λ10

[

(Ncirc(t) − 500)2H(500−Ncirc(t))
]

.

Theorem 3.3 (Characterization of the Optimal Control). Given an optimal con-

trol, u∗(t), and solutions of the corresponding state system, there exist adjoint vari-

ables λi for i = 1, 2, ..., 10 that satisfy the system λ′ = −ATλ + C, where λ is the

vector of adjoint variables, AT is the transpose of the coefficient matrix defined in

Section 2, and C is the vector of nonlinear terms given by
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.

In addition, the adjoint variables satisfy the transversality conditions λ3(T ) =
1, λ4(T ) = 1, and λi(T ) = 0 for i = 1, 2, 5, 6, 7, 8, 9, 10.

Furthermore, u∗(t) can be represented by

u∗ = min

(

max

(

0,−
λ1

ε

)

, 1

)

.

Proof. Suppose u∗(t) ∈ U is an optimal control and X = (yc, yp . . . , Z) is a corre-
sponding solution to the system (1)-(11), (11). The existence of adjoint variables
λ1, . . . , λ10 satisfying the transversality conditions stated in Theorem 3.3 is guar-
anteed by Pontryagin’s Minimum Principle [32]. We note that solutions to the
adjoint equations are absolutely continuous and are not identically zero based on
the normality of the stated optimal control problem. By analyzing the bounds on
the controls and the representation in the interior of the set, we find that

u∗ = min

(

max

(

0,−
λ1

ε

)

, 1

)

. (14)

3.4. Uniqueness. In order to ascertain the uniqueness of the optimality system
(which is the state and adjoint system considered in concert), we must use the
bounds of the state and adjoint solutions. We note that from the bounds for the
state equations, we see that the adjoint system has bounded coefficients and is linear
in each adjoint variable. Hence, the solutions of the adjoint system are bounded on
a finite time interval.

Theorem 3.4. For T sufficiently small, the solution to the optimality system is

unique.

Proof. We suppose that we have two solutions to our optimality system. One so-
lution has the previously mentioned variable names and the second has the use of
bars associated with each variable name. We will choose m > 0 such that for the
state equations, for example, yc = emth1, and for the adjoint variables associated
with the equations moving backward in time, we have λ1 = e−mtw1. In addition,

u = min

(

max

(

0,
e−mtw3

ε

)

, 1

)

. (15)

and
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ū = min

(

max

(

0,
e−mtw̄3

ε

)

, 1

)

. (16)

Next, we subtract the equations for h1 and h̄1, h2 and h̄2, etc. The resulting
equations are then multiplied by an appropriate function and integrated from zero
to T. To complete the proof for the uniqueness of the optimal control, the integral
representations of (h1 − h̄1), (h2 − h̄2), (h3 − h̄3), etc. and (w1 − w̄1), (w2 − w̄2),
and so forth are combined, and estimates are utilized to obtain

(m−D1 − C̃e2mT )
∫ T

0

[

(h1 − h̄1)
2 + (h2 − h̄2)

2 + (h3 − h̄3)
2 + (h4 − h̄4)

2

+ (h5 − h̄5)
2 + (h6 − h̄6)

2 + (h7 − h̄7)
2 + (h8 − h̄8)

2

+ (h9 − h̄9)
2 + (w1 − w̄1)

2 + (w2 − w̄2)
2 + (w3 − w̄3)

2

+ (w4 − w̄4)
2 + (w5 − w̄5)

2 + (w6 − w̄6)
2 + (w7 − w̄7)

2

+ (w8 − w̄8)
2 + (w9 − w̄9)

2

]

dt

≤ 0

where D1, C̃ depend on all coefficients and bounds on all solution variables.
We choosem such that m−D1−C̃e

2mT > 0. Since the logarithm is an increasing
function, then

ln

(

m−D1

C̃

)

> 2mT (17)

if m > C̃ + D1. Thus, this gives that T < 1
2m
ln
(

m−D1

C̃

)

. With this choice of

m and T , we obtain that each of the squared terms in the integral terms must be
zero. Based on the uniqueness of the optimality system, the optimal control is thus
unique.

4. Numerical simulations. Numerical investigations were implemented using the
Forward-Backward Sweep method found in [26]. This technique incorporates a
Runge-Kutta method to solve the state system forward in time and the adjoint
system backward in time. Note that the problem of solving the adjoint system
backward in time is actually an initial value problem, using the transversality con-
ditions given in Theorem 3.3 as initial values. The control is then updated using its
analytic representation, which is given in terms of the state and adjoint variables.

For completeness, this process is depicted as the following:

• make an educated guess for the control,
• solve the state system forward in time,
• solve the adjoint system backwards in time, using the information from the

solution to the state system,
• update the control and repeat the process.

In theory, this process is repeated until the relative error between the current
control and the control found during the previous iteration is sufficiently small; i.e.,
‖~u− ~oldu‖

‖~u‖ ≤ η, where ~oldu represents the control vector from the previous itera-

tion, ‖ · ‖ is the ℓ1 norm, and η > 0 is negligibly small. In practice, however, we
must allow for the control to be zero; thus, the convergence requirement we use is

η‖~u‖−‖~u− ~oldu‖≥ 0. More information about the convergence and stability of this
numerical method may be found in [17].
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The optimal control representation provided the impetus for the numerics given
using the requirements that the state constraint had to be satisfied. Numerical
simulations were performed according to the fixed schedule investigated in [31]: five
concurrent days of TPT treatments, two days of rest, another five days of TPT,
followed by the administration of G-CSF for eight days and two days to rest before
beginning the cycle again. This 22-day cycle was repeated three times. Note that
the control is only implemented during those phases of the treatment where TPT is
being administered; this represents the goal of optimizing TPT systemic exposure.
The parameters kin,Km, and kbp are replaced with the parameters kingcsf ,Kmgcsf ,

and kbpgcsf during each 8-day administration of exogenous G-CSF in the simula-
tions. In addition, the value of the weight parameter ε in the objective functional
(12) is set equal to 1 for all simulations; varying this parameter had no significant
effect.

Simulations were performed with various combinations of tumor size and immune
system strength. The following two cases correspond to simulations run with aver-
age values for both tumor size and ANC levels. The first case represents a patient
whose neutrophils regenerate at an average rate throughout treatment, while the
second case simulates a patient with slower rate of regeneration. The first case also
incorporates a higher rate of effectiveness for the TPT. The parameter values used
for each scenario are given in Table 2. All parameters used during the numerical
simulations are within observed ranges determined during clinical trials [31].

Table 2. Parameter values used in simulations.

Parameter/Value (Case 1) Parameter/Value (Case 2)
δ = 0.66 δ = 0.25
kin = 0.09 kin = 0.035

kingcsf = 0.172 kingcsf = 0.117
Km = 3.091 Km = 7.75

Kmgcsf = 2.308 Kmgcsf = 2.441
kbp = 0.068 kbp = 0.031
kbpgcsf = 0.12 kbpgcsf = 0.083

Figure 1 shows the behavior of the optimal control u∗(t). The optimal control on
each period of TPT administration is found to be maximal. Note that the control
is only implemented during those periods when TPT is administered.

The reactions of the tumor populations – both proliferating and quiescent – are
plotted in Figure 2. In this case, the TPT is effective in fighting the tumor. The
proliferating population is suppressed whenever TPT is administered; however, it
resurges during the G-CSF administration and the rest periods. This resurgence
does appear to be waning as the treatment continues, as the final population of the
proliferating cells is smaller than the initial population. The TPT appears to have
a more significant effect on the quiescent tumor population; in this simulation, the
number of quiescent tumor cells decreases steadily throughout the treatment.

Figure 3 displays the levels of the circulating neutrophils over the course of treat-
ment. The Ncirc populations must be kept above 500 cells per microliter of blood,
as anything below this level constitutes a condition called neutropenia, in which the
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Figure 1. Optimal control u∗(t).
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Figure 2. Tumor cell populations (Average response to TPT).

body is severely limited in its ability to fight off infection. During the simulations,
we notice a consistent pattern; the levels of circulating neutrophils behave cyclically
in response to the various phases of the treatment schedule. To relate these three
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Figure 3. Levels of circulating neutrophils (Average regeneration).

graphs, we note that when the control turns on there is a general decrease in the
amount of tumor cells and circulating neutrophils. When the drug is not admin-
istered, both the tumor cells and the circulating neutrophils begin to regenerate,
with the tumor cells reproducing at a faster rate. In the presence of G-CSF, the
circulating neutrophils rebound to slightly above the initial level, while the tumor
cells also regenerate substantially.

The second case is not as successful. The implementation of the control is once
again maximal on each period of TPT administration; however, here the treatment
is not as effective. This case represents a patient whose tumor cells do not respond
as well to the TPT and whose immune system is sluggish during treatment.

Figure 4 illustrates the reduced efficacy of the TPT in this second case. Here we
see a similar behavior to that in case 1; however, here the final tumor volume at the
end of each 22-day treatment cycle is greater than the initial tumor volume. This
behavior occurs consistently in both the proliferating and quiescent populations.

The levels of circulating neutrophils during the second case are depicted in Figure
5. Here the Ncirc levels increase sharply in response to the initial TPT dose, then
decrease equally sharply before settling into a cyclic behavior similar to that in case
1. Note that while the TPT is not having quite the effect desired on the tumor
populations, here the levels of circulating neutrophils remain relatively stable.

5. Discussion. This research indicates the existence of dosing schedules that sig-
nificantly reduce tumor size while maintaining the ANC above an acceptable level.
However, the simulations suggest that the effectiveness of TPT as a treatment op-
tion for neuroblastoma patients will vary significantly from individual to individual.
The concept of giving medication at the beginning of a treatment cycle has been
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0 500 1000 1500
500

1000

1500

2000

Time (hours)

N
um

be
r 

of
 c

irc
ul

at
in

g 
ne

ut
ro

ph
ils

 (
1/

µL
)

 

 
N

circ

Figure 5. Levels of circulating neutrophils (Slow regeneration).

demonstrated as optimal; other scientists [13, 16, 24, 25] have shown that this strat-
egy is effective in reducing tumors. In the clinical setting, it has been understood
that treatments have been administered as injections because of the restrictions
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due to patient health and clinical staff availability [30]. It is interesting to note the
similar results found in this work and [30]. Yet, we recognize that we are giving
the maximum treatment during each time interval since the problem has been con-
strained by the predetermined time intervals. Here, the optimal strategy for the
patients with average immune systems have higher success rates for reduction of
the proliferating tumor cells. In a patient with a weakened immune system, the op-
timal mathematical strategy produces unsatisfactory results for the patient in that
the proliferating cells are increasing. Although treatment in [30] is given over six
21-day cycles, the behavior of the ANC is quite similar and reflects the oscillatory
behavior (induced by the chemotherapy treatments) encountered here. It should
also be noted that the simulations that are produced in this manuscript denote a
continuous infusion of the treatment; whereas, the simulations from the aforemen-
tioned work are given via short infusions for five days of treatment with prescribed
days of rest. This optimal control work complements the clinical findings in [31]
using a different approach. Even though there is the consideration of a continuous
nature of the treatment, this treatment can be approximated by discrete infusions
to depict the clinical setting.

As noted in the weakened immune system patient, the mathematical strategy
gives an answer but it is not beneficial to the patient. Therefore, future work will
address the utilization of other mechanisms as the control of the G-CSF to see
if this will allow for greater success for sicker patients. Another logical direction
for future research is to optimize the dosage schedules outlined in [31]. Further-
more, the concepts of utilizing difference equations in a discrete setting for optimal
control analyses of cancer treatments is another viable possibility. The results of
that research indicate that alterations to the schedule may be more effective than
increasing dosage levels. This suggests the implementation of a linear control in
the objective functional and an investigation of the possible existence of bang-bang
and/or singular control, which could produce a clearer idea of the toxicity levels
that the TPT produces in the mathematical setting.

Acknowledgements. The authors would like to thank Dr. J. Carl Panetta and
the team from St. Jude Children’s Hospital for their permission to further study the
model presented in [31]. This study owes its existence to the support of the Com-
mittee on Institutional Studies and Research (CISR) at Murray State University,
as well as the National Science Foundation grant NSF-DMS-053-1865. We would
also emphasize that all work contained herein is the sole opinion of the authors and
does not necessarily reflect that of the CISR or NSF.

Appendix.

Theorem 5.1 (Fleming-Rishel Theorem [15]). Consider the following optimal

control problem with system equations

ẋ = f(t, x(t), u(t)), t0 ≤ t ≤ t1,

and performance index

J(x0, u) =

∫ t1

t0

L(t, x(t), u(t))dt + φ(e),

over some admissible control set U , where endpoint conditions are denoted

e = (t0, t1, x(t0), x(t1)).
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Let F ′ denote the class of all (x0, u) such that u is a Lebesgue-integrable function

on an interval [t0, t1] with values in U and the solution of the state system ẋ =
f(t, x(t), u(t)) satisfies the end conditions e.

Suppose that L is continuous, and that the following conditions hold:

1. F ′ is not empty;

2. U is closed;

3. |f(t, x, u)| ≤ C(1 + |x|);
4. U is convex, f(t, x, u) = α(t, x) + β(t, x)u, L(t, x, ·) is convex in U ;

5. L(t, x, u) ≥ c1|u|
β − c2, where c1 > 0, β > 1.

Then there exist (x∗, u∗) minimizing J(x0, u) on F ′.

The equations that define the adjoint system discussed in Theorem 3.3 are given
below.

dλ1

dt
= −

∂L

∂yc

= λ1(ke + kcp) − λ2kcp + λ3

(

δ

V

)

P

+ λ5

[

kin

(

Km

Km +Ncirc

)(

IC50

V (IC50 + yc

V
)2

)

Np

]

(18)

dλ2

dt
= −

∂L

∂yp

= kpc(λ2 − λ1) (19)

dλ3

dt
= −

∂L

∂P
= − λ3

(

γ − α−
δyc

V

)

− λ4α (20)

dλ4

dt
= −

∂L

∂Q
= − β(λ3 − λ4) (21)

dλ5

dt
= −

∂L

∂Np

= − λ5

[

kin

(

Km

Km +Ncirc

)(

IC50

IC50 + yc

V

)

− kbp

]

− λ6kbp (22)

dλ6

dt
= −

∂L

∂Nd1
= kbp(λ6 − λ7) (23)

dλ7

dt
= −

∂L

∂Nd2
= kbp(λ7 − λ8) (24)

dλ8

dt
= −

∂L

∂Nd3
= kbp(λ8 − λ9) (25)

dλ9

dt
= −

∂L

∂Ncirc

= λ5

[

kin

(

Km

(Km +Ncirc)
2

)

(

IC50

IC50 + yc

V

)

Np

]

+ λ9kout

− 2λ10(Ncirc − 500)H(500−Ncirc) (26)

dλ10

dt
= −

∂L

∂Z
= 0 (27)
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