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Abstract. We formulate an HIV/AIDS deterministic model which incorpo-
rates differential infectivity and disease progression for treatment-naive and
treatment-experienced HIV/AIDS infectives. To illustrate our model, we have
applied it to estimate adult HIV prevalence, the HIV population, the number
of new infectives and the number of AIDS deaths for Botswana for the period
1984 to 2012. It is found that the prevalence peaked in the year 2000 and the
HIV population is now decreasing. We have also found that under the current
conditions, the reproduction number is Rc ≈ 1.3, which is less than the 2004
estimate of Rc ≃ 4 by [11] and [13]. The results in this study suggest that the

HAART program has yielded positive results for Botswana.

1. Introduction. The HIV/AIDS pandemic has continued to be a human catas-
trophe, inflicting extensive suffering on the global community, with about 25 million
deaths from AIDS, thus far, resulting in about 15 million orphans, and an estimated
33 million people living with HIV/AIDS, 95% of whom are in resource-poor develop-
ing countries [21] and [25]. In their 2001 declaration of commitment on HIV/AIDS,
the United Nations Special Session on AIDS observed that the HIV/AIDS pan-
demic was a Global Crisis requiring Global Action and recommended an Action
Plan which proposed many strategies, including promotion of a rapid uptake of
antiretrovirals (ARVs), in order to slow down the epidemic. However, six years
later, the pandemic still presents as a global emergency requiring an exceptional
and comprehensive global response [23]. Despite provision of resources for pre-
vention, care, support, treatment, and promotion of extensive research, the global
response to HIV/AIDS has not yielded satisfactory results as can be seen from the
HIV-incidence rates which continue to grow in certain countries or have stabilized
at very high endemic levels [24]. While the global HIV/AIDS adult prevalence in
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the period 2004 to 2006 has stabilized at about 1%, it is worth noting that de-
clines in HIV prevalence among young people have been recorded between 2000 and
2005 in some African countries and low stable prevalences have been maintained in
East Asia (< 0.2%), the Middle East (0.2% to 0.4%) and North Africa (0.2%)
[24]. However, the prevalence in sub-Saharan Africa as a region has stabilized at an
unacceptably high level of about 5% [24].

There are initiatives to increase the ARV therapy coverage [21]. As a conse-
quence, treatment coverage in sub-Saharan Africa has increased from 2% in 2003
to 28% in 2006 [22]. However, research into the long-term effect of administering
imperfect drugs has just started. Many mathematical models have investigated the
potential successes and failures of Highly Active Antiretroviral Therapy (HAART)
[1]. One major difference between the various models has been in the number of in-
fection stages incorporated into the models [3], [4], and [10]. The point of initiating
HAART has also been an area of variation in the models [3] and [10]. In addition,
many models have analyzed HAART in combination with other intervention strate-
gies [7, 27]. While the studies [3] and [27] give composite results that give some
insight into the effects of individual strategies, there is a need for further research
in this area.

Antiretroviral therapy has nevertheless brought many successes such as: (i) One
is reducing HIV-replication in patients taking it, thereby reducing infectiousness
and opportunistic infections, resulting in significantly reduced need for treatment
of opportunistic infections. The extent of this success, with regard to treatment-
induced infectivity reduction factors, is discussed in various studies [3], [5] and
[12]. It is obvious from these studies that there is variation in the predictions and
conclusions; (ii) HAART has been found to reduce the severity of infectiousness and
to slow down HIV progression rates to AIDS and consequently to increase survival
time [3] and [4]. These studies have led to different predictions in the magnitude of
the factors by which HAART increases survival time with predictions ranging from
1.5 to 3 [3] and 1.5 to 3.7 [4] times that of the none-HAART patients; (iii) HAART
has performed well in reducing annual AIDS deaths [2]. Indeed, when HAART is
compared with other therapies, its benefits exceed many therapies in other areas of
medicine [2]. Despite these benefits, HAART has come at a considerable financial
cost to most economies. According to [2], there is a second problem looming if
HAART administration is not accompanied by an effective education programme
against risky behaviour. The potential for a more severe epidemic exists as partially
recovered patients could revert to risky activities that could increase the number of
new infections [3, 4].

Although the benefits of HAART are known, the cost of treating large num-
bers is prohibitive for most sub-Sahara African countries. In order to ensure a
sustainable HAART program, most sub-Saharan countries have defined AIDS as a
condition whereby an individual’s CD4 count is 200 or less. In Botswana, however,
this threshold has been revised to 250 or less. As a result, many individuals have
managed to access treatment. In most, if not all sub-Sahara Africa, antiretroviral
drugs are given to AIDS patients only.

As a sequel to the studies mentioned above, we propose a five-stage HIV/AIDS
model with seven active infective classes. We shall consider a simple model that ex-
cludes resistant infectives and assume that individuals progress from the susceptible
stage through three HIV stages before developing AIDS and upon treatment they
progress through two treatment stages before treatment failure. (See Figure 1 for
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details.) The analysis is both analytic and numerical, and it explores how treatment
affects the spread of the epidemic. Our results are compared with, among others,
[3], [10] and [27], who also analyzed models similar to ours in that treatment was
used as an intervention strategy against HIV/AIDS.

In sub-Saharan Africa, HIV is transmitted mainly by heterosexual contact. De-
spite this, we have formulated a one-sex model for two reasons. First, this approach
is sufficient to provide a general trend regarding the spread of HIV/AIDS and the
effectiveness of the treatment program. Secondly, we want to maintain parsimony
and still achieve results that contribute towards understanding the current crisis.
We shall find that our results with regard to prevalence and incidence for Botswana
agree with the National AIDS Coordination Agency (NACA) predictions.

2. Model formulation. Consider a model in which the total population is divided
into eight homogeneously mixing sexually active classes. These include a susceptible
class, S(t), treatment-naive individuals in the primary HIV stage, I1, the asymp-
tomatic stage in the chronic HIV stage, I2, pre-AIDS individuals, I3, and a class of
individuals who have developed AIDS, A1. After infection, an individual progresses
through the classes I1, I2, I3 before entering the AIDS stage, A1, spending average
periods of 1

ω12

, 1
ω23

and 1
ω3a1

years respectively in each of the first three stages.

Suppose that individuals in the A1 class initiate treatment at the rate θ and that
a proportion p of these individuals respond to treatment and move into a class of
treated AIDS individuals, Y2. We have assumed differential HIV/AIDS dynamics
for treatment-naive individuals in A1 and those patients from A1 who progress to
A2 due to treatment failure. This assumption is supported by available literature,
[19] for example, which confirms that HAART continues to reduce the severity of
HIV/AIDS even after patients have experienced treatment failure. Thus, we as-
sume that those patients from A1 for whom treatment has failed join the class of
treatment failures in A2 at the rate (1 − p)θ. Let the treated AIDS individuals in
Y2 proceed to the pre-treatment failure class, Y3, at a rate ρ23 and suppose that
treatment fails at a rate ρ3a2

, (see Figure 1). All individuals are subject to the nat-
ural per capita removal rate µ and the infected individuals are assumed to acquire
sexual partners at the same constant rate, c per year. In addition to the natural
death rate, individuals with full blown AIDS in A1 and A2 suffer disease-related
removal rates δ1 and δ2 respectively.

Let us denote the per capita recruitment rate into the susceptible population by
π. Suppose susceptible individuals get infected with HIV by treatment-naive HIV-
infected individuals at a rate λn and by treated individuals at a rate λt. Let βnj

for j = 1, 2, 3, 4 be composite transmission parameters for normal infectives in the
classes I1, I2, I3 and A1 respectively. Denote by βtj , for j = 2, 3, 4, the transmission
parameter for infectives who are receiving treatment and are progressing through
Y2, Y3 and A2 respectively. The force of infection λ is given by λ = λn + λt where























λn = βn1I1+βn2I2+βn3I3+βn4A1

N
,

λt = βt2Y2+βt3Y3+βt4A2

N

N = S + I1 + I2 + I3 +A1 + Y2 + Y3 +A2.

(1)

We assume that treatment reduces the per partnership transmission rate by a factor
α [3] and [27]. For simplicity, we assume that if βi is the per-partnership transmis-
sion probability for a treatment-naive class, then the probability of transmission for
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the corresponding class on treatment is αβi. Figure 1 is a schematic representation
of the model.
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Figure 1. HIV/AIDS model with treatment
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From Figure 1, we obtain the following system of differential equations:






















































































































S′ = π − µS − (λn + λt)S

I ′1 = (λn + λt)S − (µ+ ω12)I1

I ′2 = ω12I1 − (µ+ ω23)I2

I ′3 = ω23I2 − (µ+ ω3a1
)I3

A′

1 = ω3a1
I3 − (µ+ θ + δ1)A1

Y ′

2 = pθA1 − (µ+ ρ23)Y2

Y ′

3 = ρ23Y2 − (µ+ ρ3a2
)Y3

A′

2 = ρ3a2
Y3 + (1 − p)θA1 − (µ+ δ2)A2

N ′ = π − µN − δ1A1 − δ2A2.

(2)

Suppose that

(S (t) , I1 (t) , I2 (t) , I3 (t) , A1 (t) , Y2 (t) , Y3 (t) , A2 (t)) ∈ ℜ8

is any solution of the system (2). Then from the system (2), it is easy to show that

0 < S∗(t) <
π

µ+ λ∗n + λ∗t
(3)

and

0 < N∗ <
π

µ+ δ
<
π

µ
, where δ = min{δ1, δ2} (4)

and * indicates equilibrium values of state variables. We conclude that the space

Γ =

{

(S (t) , I1 (t) , I2 (t) , I3 (t) , A1 (t) , Y2 (t) , Y3 (t) , A2 (t)) ∈ ℜ8 : N∗ <
π

µ

}

,

of biological interest, is positively invariant under the flow induced by the system
(2). In order to understand the effects of treatment, we propose to consider the
system (2) under two scenarios: (i) when there is no treatment and (ii) when there
is treatment.

3. Analysis of the model.

3.1. The model without treatment. We begin by considering the model without
treatment, obtained by setting θ = 0. The system (2) reduces to

S′ = π − µS − λnS (5)

I ′1 = λnS − (µ+ ω12)I1 (6)

I ′2 = ω12I1 − (µ+ ω23)I2 (7)

I ′3 = ω23I2 − (µ+ ω3a1
)I3 (8)

A′

1 = ω3a1
I3 − (µ+ δ1)A1. (9)
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The system (5) to (9) has two equilibrium points, namely the disease-free equilib-
rium (DFE) point

E0 = (S∗, I∗1 , I
∗

2 , I
∗

3 , A
∗

1)

= (
π

µ
, 0, 0, 0, 0),

and the endemic point E∗

1 = (S∗, I∗1 , I
∗

2 , I
∗

3 , A
∗

1) where






































































S∗ = πΦ
µΦ+(R0−1)(µ+ω12) ,

I∗1 = π(R0−1)
µΦ+(R0−1)(µ+ω12) ,

I∗2 =
(

ω12

µ+ω23

)

I∗1 ,

I∗3 =
(

ω12

µ+ω3a1

) (

ω23

µ+ω23

)

I∗1 ,

A∗

1 =
(

ω12

µ+δ1

)(

ω23

µ+ω23

) (

ω3a1

µ+ω3a1

)

I∗1 ,

(10)

and where






























Φ = φ1 + φ2 + φ3 + φa1

φ1 = 1, φ2 =
(

ω12

µ+ω23

)

, φ3 =
(

ω12

µ+ω3a1

) (

ω23

µ+ω23

)

,

φa1
=

(

ω12

µ+δ1

)(

ω23

µ+ω23

) (

ω3a1

µ+ω3a1

)

.

(11)

The basic reproduction number R0 for this model determined using the van Driesche
and Watmough technique [6] is given by

R0 = φn1R0n1 + φn2R0n2 + φn3R0n3 + φna1
R0na1

, (12)

where


















































φn1 = 1, φn2 =
(

ω12

µ+ω12

)

, φn3 =
(

ω12

µ+ω12

) (

ω23

µ+ω23

)

φna1
=

(

ω12

µ+ω12

)(

ω23

µ+ω23

) (

ω3a1

µ+ω3a1

)

R0n1 = βn1

µ+ω12
, R0n2 = βn2

µ+ω23
,

R0n3 = βn3

µ+ω3a1

, and R0na1
= βn4

µ+δ1

.

(13)

R0n1, R0n2, R0n3 R0na1
are contributions from the infected classes I1, I2, I3 and

A1 respectively and the coefficients φn1, φn2, φn3 and φna1
are the weights.

Theorem 3.1. The endemic equilibrium point E∗

1 exists for R0 > 1.

Note that in (10) as R0 → 1, E∗

1 → E0. We have a hypothetical model where the
two states E0 and E∗

1 communicate as R0 decreases to one. We can investigate the
stability of the two states E0 and E∗

1 .

Theorem 3.2. For R0 < 1 the disease-free equilibrium point is globally asymptoti-
cally stable (g.a.s).
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Proof. We start by assuming that R0 < 1. Now, I2 ∈ [0,∞) since it measures
population size. From the boundedness of N in equation (4), we deduce that

I2 <
π

µ+ δ
.

Also from (7), we have

I ′′2 = ω12I
′

1 − (µ+ ω23)I
′

2 ≤M
( π

µ+ δ

)

,

where

M =
ω12λn(µ+ δ)

µ+ λn

+ (µ+ ω23)
2.

Hence, I ′′2 is bounded and I2 satisfies all the conditions in Lemma 1 by [20]. Similarly
we can show that the other state variables I3 and A1 satisfy the conditions of Lemma
1, [20]. Consequently we can choose a sequence pn → ∞ such that

I2(pn) → I∞2 , I ′2(pn) → 0.

From equation (7) and [20], we have

I∞2 ≤

(

ω12

µ+ ω23

)

I∞1 . (14)

Similarly, by choosing sequences qn and rn for I3 and A1 respectively, we can show
that

I∞3 ≤

(

ω12

µ+ ω3a1

) (

ω23

µ+ ω23

)

I∞1 , (15)

and

A∞

1 ≤

(

ω12

µ+ δ1

) (

ω23

µ+ ω23

) (

ω3a1

µ+ ω3a1

)

I∞1 . (16)

Now from (6), we have the inequality

I∗1

[

R0 − 1
]

≥ 0. (17)

The assumption R0 − 1 < 0 and the inequality (17) imply that I∞1 ≤ 0. Combining
this with the positive invariance condition I∞1 ≥ 0, leads to the conclusion I∞1 = 0.
Applying this in (14), (15), and (16) leads to

I∞2 (t) → 0, I∞3 (t) → 0 and A∞

1 → 0 as t→ ∞.

Adding equations (5) to (9) gives

dN

dt
= π − µN − δ1A1 ≤ π − µN.

Using the result that dN
dt

< 0 if N > π
µ

and [20] gives

N∞ ≥
π

µ
. (18)

Now, consider solutions with N(t) ≤ π
µ
. Since nonnegative initial data for the model

(5) to (9) lead to nonnegative solutions, we deduce that

N∞ ≤
π

µ
. (19)
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Hence from (18) and (19), we conclude that

N∞ = N∞ =
π

µ
, (20)

which is the disease free value for S∗. Hence the DFE point is globally asymptoti-
cally stable when R0 < 1.

Next, we investigate the stability of E∗

1 using the technique used by [29].

Theorem 3.3. The endemic equilibrium point for the model (5) to (9) is locally
asymptotically stable for R0 > 1.

Proof. If we define

H =
βn1I1 + βn2I2 + βn3I3 + βn4A1

N
,

then the equilibrium state variables can be expressed in terms of H∗ as:

S∗ =

(

π

µ+H∗

)

, I∗1 = ψn1

(

πH∗

µ+H∗

)

, I∗2 = ψn2

(

πH∗

µ+H∗

)

I∗3 = ψn3

(

πH∗

µ+H∗

)

, A∗

1 = ψna1

(

πH∗

µ+H∗

)

, N∗ =
(1 + ΨH∗)π

(µ+H∗)
,

Hence










H∗ = R0H∗

1+ΨH∗

= Υ (H∗)

Ψ = ψn1 + ψn2 + ψn3 + ψna1
.

(21)

We define

H =
R0H

1 + ΨH
= Υ (H) . (22)

The full definitions of ψn1, ψn2, ψn3 and ψna1
are given in the appendix. From

equation (22) we can see that the equilibrium points are essentially the fixed points
of Υ (H), where the point Υ(0) = 0 is the DFE point. (The reader is referred to
[15] and [29] for details of this.) We note that the Jacobian of Υ(H) at the endemic

equilibrium point is the spectral radius ρ
(

D
[

Υ
{

H(E1)
}])

= R0

(1+ΨH)2 , which is

an increasing function of the reproduction number but a decreasing function of the
incidence rate H . Clearly, as H → ∞, the spectral radius ρ tends to zero implying
that the endemic equilibrium point is asymptotically stable.

3.2. The model with treatment. The model in the presence of a treatment
strategy given by equations (2) with θ 6= 0 and p 6= 0 has a unique DFE point E0

and a unique endemic point E∗

1 given by

E0 =

(

π

µ
, 0, 0, 0, 0, 0, 0, 0

)

,

E∗

1 =
(

S∗, I∗1 , I
∗

2 , I
∗

3 , A
∗

1, Y
∗

2 , Y
∗

3 , A
∗

2

)
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and



































































































































































S∗ = πΦ̂

µΦ̂+

(

µ+ω12

)(

Rc−1

) ,

I∗1 =
π

(

Rc−1

)

µΦ̂+

(

µ+ω12

)(

Rc−1

) ,

I∗2 =
(

ω12

µ+ω23

)

I∗1 ,

I∗3 =
(

ω12

µ+ω3a1

)(

ω23

µ+ω23

)

I∗1 ,

A∗

1 = Ψ23

(

ω12

µ+θ+δ1

)

I∗1 ,

Y ∗

2 = Ψ23

(

ω12

µ+ρ23

)(

pθ
µ+θ+δ1

)

I∗1 ,

Y ∗

3 = Ψ23

(

ω12

µ+ρ3a2

)(

pθ
µ+θ+δ1

)(

ρ23

µ+ρ23

)

I∗1

A∗

2 = Ψ23

(

ω12

µ+δ2

)(

θ
µ+θ+δ1

)[(

1 − p
)

+ p
(

ρ23

µ+ρ23

)(

ρ3a2

µ+ρ3a2

)]

I∗1 ,

(23)

where because of the length of the expressions for Rc, Ψ23 and Φ̂, φt2, φt3 and φta2

and in order to improve the readability of text, we have defined these expressions
in the appendix. The existence and stability of the two states are summarized in
the following theorems.

Theorem 3.4. The endemic equilibrium point E1 of the model (2) exists when
Rc > 1.

Remark 1. We note from the expressions for Ii, Yj and Ak where i = 1, 2, 3, j =
2, 3 and k = 1, 2 that as Rc → 1, E∗

1 → E0. As in the model without treatment,
we investigate the stability of E0 and E∗

1 . We note further that the expression for
Ii, i = 1, 2, 3 in the model with treatment have the same structure as those for
the model without treatment except that R0 in (10) is replaced by Rc.

Theorem 3.5. If Rc < 1, then the disease-free equilibrium point of the model (2)
is g.a.s.

Proof. In Theorem 3.2, we proved the convergence of I∞1 , I∞2 , I∞3 and A∞

1 to zero
provided that I∞1 = 0. Now, it suffices to show that

I∞1 = 0 ⇒ Y∞

2 = 0, Y∞

3 = 0 and A∞

2 = 0.
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We can choose sequences τn, ̺n and υn for Y2, Y3 and A2 respectively, and show
that

Y∞

2 ≤
( ω12

µ+ ρ23

)( ω23

µ+ ω23

)( ω3a1

µ+ ω3a1

)( pθ

µ+ θ + δ1

)

I∞1 (24)

Y∞

3 ≤
( ω12

µ+ ρ3a2

)( ω23

µ+ ω23

)( ω3a1

µ+ ω3a1

)( pθ

µ+ θ + δ1

)( ρ23

µ+ ρ23

)

I∞1 (25)

A∞

2 ≤
( ω12

µ+ δ2

)( ω23

µ+ ω23

)( ω3a1

µ+ ω3a1

)[( (1 − p)θ

µ+ θ + δ1

)

(26)

+
( pθ

µ+ θ + δ1

)( ρ23

µ+ ρ23

)( ρ3a2

µ+ ρ3a2

)]

I∞1 .

Hence using [20] and the equation for I ′1 in system (2), we obtain

I∗1 [Rc − 1] ≥ 0. (27)

Using I∞1 = 0 in (24), (25) and (26) leads to

Y∞

2 (t) → 0, Y∞

3 (t) → 0 and A∞

2 → 0 as t→ ∞.

Using a similar argument to that in the proof of Theorem 2, we conclude that
N∞ = N∞ = π

µ
. This completes the proof.

To first order, the reproduction number Rc can be expressed as

Rc = R0 −

(

θφna1

µ+ δ1

)

R0na1
+R0t, (28)

where R0t is the average number of secondary infectives generated by an infective

on ARV treatment during the infective’s period of treatment, and
(

θφna1

µ+δ1

)

R0na1

is the average number by which the number of secondary infectives by drug-naive
infectives is reduced because some infected individuals with full-blown AIDS in the
class A1 have started treatment.

As θ → 1 (when everybody is treated)

Rc = R0 −

(

φna1

µ+ δ1

)

R0na1
+ R̂0t

(

R̂0t > R0t

)

. (29)

The effect of treatment is to reduce the basic reproduction number (that is, re-
duce the number of new infectives by treatment-naive infectives) but to increase
R0t. In the absence of counseling, treatment could increase the reservoir of treated
infectives. As θ → 0 (when no one is treated) Rc = R0 (as in the earlier model).

Theorem 3.6. The endemic equilibrium point for the model (2) is asymptotically
stable for Rc > 1.

Remark 2. The proof of theorem (3.6) is similar to that of Theorem (3.3).

4. Numerical simulation. The model (2) requires several input values of param-
eters, which can be divided into three sets, namely (i) those that are measured by
the statistics office and the national agencies such as µ, δ1 and δ2, (ii) those that
have been estimated by other researchers such as the disease progression rates ω13,
ω23 and ω3a1

, probabilities of infection βn1, βn2, βn3 and βn4, and (iii) those that
are to be estimated using the above parameters, namely the rate of initiating treat-
ment, θ∗, the disease progression reduction factor, g∗, and the infectivity reduction
factor, α∗, for which the disease burden may clear from the population.
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In this simulation, we shall confine ourselves to the Botswana case for which some
input demographic parameters are available and the government has committed it-
self to offering free ARVs to all those who meet the criteria for the ARV program
(CD4 count of 250 cells per mm−3 and below). We want to use the estimated
parameters to study the following hypothetical problems: (a) What conclusions
can we draw regarding the evolution of HIV and AIDS over the next five years if
HAART is emphasized as the major intervention strategy? (b) Treatment intro-
duces more HIV sub-populations who progress toward AIDS (treatment failure) at
different rates to the normal HIV infectives. We want to investigate the likely im-
pacts of various infected sub-populations on the spread of HIV and AIDS when the
progression rates for the normal HIV infectives and for the treated infectives are (i)
different (ii) the same. (c) Using the estimated values of the treatment rate, θ∗, the
infectivity reduction factor, α∗, and the progression reduction factor, g∗, we want to
determine the HIV prevalence over the period 1984 to 2012 and ask the questions:
Is the HAART program likely to reduce the HIV/AIDS burden? For HAART to
succeed, how many infected individuals should join the HAART programme each
year?

In order to reduce the number of parameters in our model we have made the
following assumptions: First, we have assumed that the per partnership transmis-
sion probabilities for the treated classes Y2, Y3 and A2 are proportional to the per
partnership transmission probabilities for the untreated infectives, i.e., αβn2, αβn3

and αβn4 respectively. This assumption is supported by various studies including
[3] and [4]. Secondly, [3] and [4] estimated survival time for individuals on ARVs
to be about 1.5 to 3 times greater than the survival time for untreated HIV/AIDS
individuals. This estimate translates into a reduction in the progression rates from
Y2 to Y3 and from Y3 to A2. However, we have also considered hypothetical scenar-
ios when the treatment rate is large. Table 1 gives the estimated values of θ∗, α∗

and g∗ for which the reproduction number Rc would eventually be reduced to one.
The results in this table show that for a fixed value of θ∗, the infectivity reduction

Table 1. Estimated treatment parameters.

θ∗ 0.5 0.5 0.5 0.8 0.8 0.8 1 1 1
α∗ 0.067 0.0585 0.0546 0.158 0.129 0.12 0.184 0.151 0.135
g∗ 0.27 0.47 0.67 0.27 0.47 0.67 0.27 0.47 0.67

factor α∗ decreases as the progression reduction factor g∗ increases. Furthermore,
we note that the threshold values of infectivity reduction factor, α∗, are lower than
the corresponding values of the progression reduction factors g∗ and this agrees with
the conclusion by [27] that a treatment program must at least reduce infectiousness
more than the progression rate in order to contain the HIV epidemic.

Using some of the estimated parameters, a sample of which are in Table 1, we
have obtained results given in the following figures. Figure 2 compares a plot of
the actual antenatal prevalence rates for Botswana and three other plots generated
for varying values of α, θ and g. Figure 2 helps us to choose appropriate values
of α, θ and g which closely approximate the actual antenatal prevalence rates for
Botswana for the period 1999 to 2006. From these plots, we have chosen α, θ and
g from Figure 2(iv) for the approximate antenatal prevalence rates.
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(iv) α = 0.135, θ = 1

Figure 2. Plot (i) prevalence-time plot for Botswana ante-
natal data. Plots (i), (ii) and (iii) : Rc ≈ 1, α varies,
(βn1, βn2, βn3, βn4) = (0.8, 0.03, 0.04, 0.4) and (βt2, βt3, βt4) =
α∗ × (0.03, 0.04, 0.4). g∗ = 0.67 and (ω12, ω23, ω3a1

, ρ23, ρ3a2
) =

(13, 0.2355, 0.2355, 0.1578, 0.1578). (i) α∗ = 0.0546, θ∗ = 0.5 (ii)
α∗ = 0.12, θ∗ = 0.8 (iii) α∗ = 0.135, θ∗ = 1. The other parameter
values are as given in Table 2.

Using the software Estimation and Projection Package (EPP) developed by UN-
AIDS, we have converted the antenatal prevalence rates for Figure 2 plot (iv) into
prevalence rates for the total population in Botswana (Figure 3). Note that in
Figure 3 the prevalence reached a peak in the year 2000 and has been declining
since then. Using these prevalence rates, we have determined by using the software
SPECTRUM, also developed by UNAIDS, the estimated number of individuals in-
fected with HIV for the period 1984 to 2012 (Figure 4). The estimated HIV numbers
agree with the NACA estimates [14], [16] and [17].

A study on the global HIV incidence rate by [18] revealed that the HIV incidence
rate has peaked for most African countries and, specifically, the number of new
infections in Botswana peaked in 1995 and has been declining since then. Our results
agree with both the results in [18] and those in the United Nations report [24], which
revealed a falling trend in the HIV/AIDS burden in Botswana. Furthermore, using
the estimated prevalence rates from our model, we have estimated the number of
new HIV infections and the number of AIDS deaths for the age group 15-49 years
for the period 1984 to 2012. The results are illustrated in Figure 5(a) and 5(b).
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Figure 3. Model estimate of HIV prevalence for the 15-49 age
group (adult HIV/AIDS prevalence).

Figure 4. Model estimate of the total HIV population among the
15-49 age group.
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Figure 5. (a) Estimated number of annual AIDS-related deaths
among the 15-49 year olds. (b) Model estimate of newly HIV in-
fected 15-49 year old individuals.

The number of AIDS deaths peaked in 2001 and has been falling since then because
of the HAART programme, which has prevented many deaths. However, our model
is predicting that the number of AIDS deaths will rise between 2006 and 2012 as
AIDS individuals currently on HAART succumb to AIDS due to treatment failure.
The trend of new infections, on the other hand, will keep declining (Figure 5(b)),
signifying the success of HAART and other intervention strategies.

Using our estimates of the prevalence rates for the total population, the pro-
gramme SPECTRUM has estimated the number in need of first line therapy (Figure
6).
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Figure 6. Population of 15-49 year old HIV infectives who are in
need of first line therapy.

According to our estimates, this number will reach a peak of 110,000 in 2009 and
will probably decline thereafter as more individuals on HAART succumb to AIDS.
Currently, there are only about 80,000 individuals receiving HAART. Our estimate,
according to Figure 6, is that about 105,000 infected individuals should be receiving
HAART. There is, therefore an urgent need to enrol more patients if the full benefits
of HAART are to be realized.

In all of the following figures we have used the following parameter values:
(βn1, βn2, βn3, βn4) = (0.8, 0.03, 0.04, 0.4) and (ω12, ω23, ω3a1

) = (13, 0.16, 0.5). The
other parameter values are given in the captions. Figures 7(a) and 8(a) are popu-
lation time plots for the cases Rc ≤ 1 for varying values of the parameter θ∗. In
both cases the HIV/AIDS burden decreases with time. The relative fraction of new
infections generated by an infected group Ii is given by

ρi =
βiIi

j=n
∑

j=1

βjIj

and it can be used as a measure of the infected group’s contribution towards
disease transmission [8, 9]. Consequently, the corresponding relative impacts of
I1, I2, I3, A1, Y2, Y3, and A2 are respectively

P1 =
βn1I1

P
, P2 =

βn2I2

P
, P3 =

βn3I3

P
, P4 =

βn4A1

P
,

P5 =
βt2Y2

P
, P6 =

βt3Y2

P
, P7 =

βt4A2

P
,

where

P = βn1I1 + βn2I2 + βn3I3 + βn4A1 + βt2Y2 + βt3Y3 + βt4A2.

Figures 7(b) and 8(b) illustrate the impacts.
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Figure 7. (a) Population-time plots (b) relative impact-time
plots. g∗ = 0.67 (fairly good progression rate reduction), θ = 0.5
and α = 0.055 (good treatment-induced infectivity reduction).
Rc ≈ 1, (βt2, βt3, βt4) = (0.00165, 0.0022, 0.022) and (ρ23, ρ3a2

) =
(0.1072, 0.335). Period : 1999 to 2049.
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Figure 8. (a) Population-time plots (b) relative impact-time
plots. g∗ = 1 (progression rate unchanged by treatment) and
α = 0.01 (fairly good treatment-induced infectivity reduction).
(βt2, βt3, βt4) = (0.0003, 0.0004, 0.004), (ρ23, ρ3a2

) = (0.16, 0.5),
θ = 0.9 and Rc = 0.6376. Period: 1999 to 2100.
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Figure 9. Relative impact at α = 0.5, and (βt2, βt3, βt4) =
(0.003, 0.004, 0.04), g∗ = 0.47 and (ρ23, ρ3a2

) = (0.0752, 0.235).
Treatment levels vary : (a) θ = 0.3, Rc = 2.3212 (b) θ = 0.5,
Rc = 2.1443 (c) θ = 0.7, Rc = 2.0581 (d) θ = 0.9, Rc = 1.9887.

It is clear from these graphs that in the initial stages of the disease spread, the
normal infectives I1, I2, I3 and A1 are more significant in spreading the disease
than the other infectives, namely Y2, Y3 and A2. However, as time increases, most
of the infections are caused by the AIDS classes A1 and A2. The contribution to
the spread of the disease by treated infectives Y2 and Y3 remains insignificant for
all disease progression rates g. However, Figure 8(b) shows that even if θ∗ ≈ 1,
provided the infectivity reduction factor is low, the contribution to the spread of
HIV is dominated by the normal infectives, although the contribution from the
treated failure class A2 may grow with time. Figure 9 reveals a similar pattern for
the case Rc > 1 for various treatment rates. In this case, however, the dominance
of the class A2 occurs much earlier than for Rc < 1.

The relative impacts for our model without treatment and the model with treat-
ments are compared in Figures 10, 11 and 12. From Figures 10(a), 11(a) and 12(a),
it is evident that the impact of the individuals with full-blown AIDS in the model
without treatment is much greater than that of individuals in the same class in
the presence of a treatment strategy. Figures 10(b), 11(b) and 12(b) compare the
relative impacts of HAART-naive and HAART-experienced individuals. It is shown
that the impact of HAART-naive individuals is greater in the early stages of the
treatment programme, but this decreases with time and in the long run the two
groups have more or less equal impact if Rc ≈ 1, the treatment-naive have more
impact if Rc < 1, and the treatment-experienced have more impact if Rc > 1.
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Figure 10. Comparing relative impacts. Parameter values : α =
0.135, g∗ = 0.67, θ = 1, (βt2, βt3, βt4) = (0.00405, 0.0054, 0.054),
(ρ23, ρ3a2

) = (0.1072, 0.335), Rc ≈ 1 and R0 = 4.2454. (a) Time
plots of the relative impact of A1 in the presence of treatment(PT

4 )
and the relative impact of A1 in the absence of treatment (P4). (b)
Time plots of the relative impact of treatment-experienced infec-
tives (Pte) and treatment-naive infectives (Ptn).

1950 2000 2050 2100 2150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
el

at
iv

e 
im

pa
ct

1950 2000 2050 2100 2150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
el

at
iv

e 
im

pa
ct

P
4

PT
4

(a)
(b)

P
tn

P
te

Figure 11. Comparing relative impacts. Parameter values : α =
0.45, g∗ = 0.67, θ = 1, (βt2, βt3, βt4) = (0.00405, 0.0054, 0.054),
(ρ23, ρ3a2

) = (0.0432, 0.135), Rc = 1.9339 and R0 = 4.2454. The
relative impact-time plots in (a) and (b) are as described in Figure
10.
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Figure 12. Comparing relative impacts. Parameter values : α =
0.45, g∗ = 0.67, θ = 1, (βt2, βt3, βt4) = (0.00405, 0.0054, 0.054),
(ρ23, ρ3a2

) = (0.0432, 0.135), Rc = 0.8777 and R0 = 4.2454. The
relative impact-time plots in (a) and (b) are as described in Figure
10.

Changes in the total susceptible (S(t)) and total infected (I(t)) populations at
time t as fractions of their initial values (S(0)) and (I(0)) respectively may depict
how the HIV-susceptible and -infected populations vary relative to each other. We
can also deduce how these populations vary relative to their initial values. Figures
13 and 14 show these trends for the cases Rc < 1 and Rc > 1 respectively.
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Figure 13. Dynamics of susceptible fraction in relation to total
infected fraction for (βt2, βt3, βt4) = α× (0.03, 0.04, 0.4), g∗ = 0.47,
(ρ23, ρ3a2

) = (0.1578, 0.1578) and Rc < 1. Period : 1999 to 2150 (a)
θ = 0.4, α = 0.01, Rc = 0.9683 (b) θ = 0.5, α = 0.01, Rc = 0.8553
(c) θ = 0.7, α = 0.01, Rc = 0.7162 (d) θ = 1, α = 0.01, Rc =
0.6042.
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It is shown that for Rc < 1 the proportion of infectives decreases while the propor-
tion of susceptibles increases, while for Rc > 1 the proportion of infectives grows
while the proportion of susceptibles decreases.
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Figure 14. Dynamics of susceptible fraction in relation to total
infected fraction for (βt2, βt3, βt4) = α× (0.03, 0.04, 0.4), g∗ = 0.47,
(ρ23, ρ3a2

) = (0.0432, 0.135) and Rc > 1. Period : 1999 to 2099.
(a) θ = 0.3, α = 0.5, Rc = 2.3212 (b) θ = 0.5, α = 0.5, Rc = 2.1443
(c) θ = 0.7, α = 0.5, Rc = 2.0581 (d) θ = 0.9, α = 0.5, Rc = 2.0071.

Figure 15 is a prevalence versus time plot for various values of the reproduction
number Rc.
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Figure 15. Prevalence-time graphs for (βt2, βt3, βt4) = α ×
(0.015, 0.02, 0.2), g∗ = 0.67 and (ρ23, ρ3a2

) = (0.1072, 0.335) and
θ = 0.6 and (i) α = 0.7, Rc = 2.7616, (ii) α = 0.2, Rc = 1.3237,
(iii) α = 0.01, Rc = 0.7773. Other parameter values are as given
in the appendix.
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Comparing the results in Figure 15 with the actual antenatal prevalence rates for
Botswana, it is clear that the plot which best describes the Botswana prevalence is
that corresponding to the reproduction number Rc = 1.3237. A declining trend in
the reproduction number was also found by [7] in their stochastic simulation of the
Uganda HIV incidence. Furthermore, [7] concluded that any treatment program
which does not treat all HIV-infected individuals can not reduce the reproduction
number below 1.0 unless it is coupled with other intervention strategies like vacci-
nation and/or counseling. The studies by [11] and [13] which used the Botswana
HIV/AIDS data up to the year 2004 found Rc = 4 for the period 1989 to 2002 which
was the period of rising antenatal prevalence (which reached a peak value of 0.374
in 2003). The result in this study shows that intervention strategies, particularly
the HAART program, which was made accessible by all those who met the criteria
in 2002 are bearing fruit.

5. Discussion. Our work makes a contribution to one of the questions that has
been raised on whether large-scale HAART programmes would significantly reduce
the HIV/AIDS burden. In developing countries which lack the capacity to provide
and sustain the required infrastructure, the answer to this question will remain elu-
sive. However, in the case of Botswana, which has kept good demographic data
on HIV and AIDS, our study shows that there will be a slow decline in the preva-
lence rate even though the reproduction number remains above one, but that it will
decline to below 20% by 2012. However, what is notable is that the reproduction
number has declined significantly from Rc = 4 to Rc ≈ 1.3237 during the period
2003 to 2007. The decline of course cannot be attributed to HAART alone but to
a combination of education on prevention of HIV combined with HAART. What is
clear from our results is that the sharp decline in the reproduction number occurred
when the government embraced the HAART programme. Many mathematical mod-
els which have been analyzed before confirm that HAART reduces the severity of the
HIV/AIDS epidemic by reducing the reproduction number, prevalence or incidence.
See [3, 5, 7, 10] for more details.

Our results on the relative impacts of various infected subgroups show that for
high treatment rates the infected group that is responsible for most of the infections
is the group A2 (treatment failure AIDS individuals). Individuals in this group will
have undergone counseling. Hence, if the effects of education were included in the
model, there would be further reduction in the reproduction number.

Figure (9) illustrates the dangers of low rates of treatment and the low rates of
reduction in infectivity which include among other things (i) a significantly high
reproduction number and (ii), analyzing Figure (9)(c) and (d), dominance of un-
treated infectives in the spread of HIV. These are groups that have not accessed
counseling. We could not get data on other southern African countries, where
HIV/AIDS is still a problem, to illustrate what is happening in those countries.
However, the gap in the knowledge about the comparative risks of getting HIV
between males and females and between urban and rural communities in Southern
Africa is the same in the region [26]. We are confident that the results in this study
apply to other southern African states.
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6. Appendix.

Lemma 6.1. (Thieme’s lemma) Let

f : [0,∞) → R

be bounded and twice differentiable with bounded second order derivative.
Let t→ ∞ and f(tn) converge to f∞ or f∞ for n→ ∞. Then

f ′(tn) → 0, n→ ∞.

Definitions of ψn1, ψn2, ψn3 and ψna as used in system (21).



















Ψ′ =
(

ω12

µ+ω12

)(

ω23

µ+ω23

) (

ω3a1

µ+ω3a1

)

, ψn1 = 1
µ+ω12

,

ψn2 =
(

ω12

µ+ω12

)(

1
µ+ω23

)

, ψna = Ψ′

(

1
µ+δ1

)

,

and ψn3 =
(

ω12

µ+ω12

)(

ω23

µ+ω23

) (

1
µ+ω3a1

)

.

Parameters used in (23):

Rc = φn1R0n1 + φn2R0n2 + φn3R0n3 + φna1
R0na + φt2R0t2

+φt3R0t3 + φta2
R0ta,

Φ̂ = φ1 + φ2 + φ3 + φa1
+ φ22 + φ23 + φ2a,

where φ1, φ2, φ3 and φa1
are given in (11) and

φ22 = Ψ23

(

ω12

µ+ ρ23

) (

pθ

µ+ θ + δ1

)

,

Ψ23 =

(

ω23

µ+ ω23

) (

ω3a1

µ+ ω3a1

)

,

φ23 =

(

Ψ23ω12

µ+ ρ3a2

) (

pθ

µ+ θ + δ1

) (

ρ23

µ+ ρ23

)

,

φ2a =
Ψ23ω12θ

(µ+ δ2) (µ+ θ + δ1)

[

(1 − p) + p

(

ρ23

µ+ ρ23

) (

ρ3a2

µ+ ρ3a2

)]

,

φn1 = 1, φn2 =

(

ω12

µ+ ω12

)

, φn3 =

(

ω12

µ+ ω12

) (

ω23

µ+ ω23

)

,

φna1
= Ψ′, φt2 = Ψ′

(

pθ

µ+ θ + δ1

)

,

φt3 = Ψ′

(

pθ

µ+ θ + δ1

) (

ρ23

µ+ ρ23

)

,

φta2
= Ψ′

(

θ

µ+ θ + δ1

) [

p

(

ρ23

µ+ ρ23

) (

ρ3a2

µ+ ρ3a2

)

+ (1 − p)

]

.
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R0t and R̂0t as used in (28):

R0t = Ψ′

(

pθ

µ+ θ + δ1

)

R0t2 + Ψ′

(

pθ

µ+ θ + δ1

) (

ρ23

µ+ ρ23

)

R0t3

+Ψ′

(

θ

µ+ θ + δ1

) [

p

(

ρ23

µ+ ρ23

) (

ρ3a2

µ+ ρ3a2

)

+ (1 − p)

]

R0ta

R̂0t = Ψ′

(

p

µ+ δ1

)

R0t2 + Ψ′

(

p

µ+ δ1

) (

ρ23

µ+ ρ23

)

R0t3

+Ψ′

[(

p

µ+ δ1

) (

ρ23

µ+ ρ23

) (

ρ3a2

µ+ ρ3a2

)

+

(

1 − p

µ+ δ1

)]

R0ta.

Table 2. Parameter values common for all the simulations.

Parameter and symbol Value Source
Susceptible recruitment rate (π) 30000yr−1 Estimate
Natural removal rate (µ) 0.03 Estimate
AIDS removal rate (δ1, δ2) 0.05 [8] and [9]
Progression rates (13, 0.16 and 0.5) [8] and [9]
( ω12, ω23 and ω3a1

) respectively
Progression rates : ρ23 and ρ3a2

g × (0.16, 0.5) [8]
respectively g ∈ (0, 1)
Per-partnership probabilities (0.4, 0.015, 0.02, 0.2) estimated using
(βn1, βn2, βn3, βn4) respectively [9]
Per-partnership probabilities α× (0.015, 0.02, 0.2) α ∈ (0, 1)
(βt2, βt3, βt4) (estimate)
Partner acquisition rate (c) 2 [28].
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