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Abstract. Immigration has an important influence on the growth of popu-
lation and the transmission dynamics of infectious diseases. A discrete age-
structured epidemic SIS model with immigration is formulated and its dynam-
ical behavior is studied in this paper. It is found that population growth will
be determined by the reproductive number and the immigration rate. In the
simple case without infected immigration, the basic reproductive number is
defined, and the global stability of equilibria is investigated. In the case with
infected immigration, there is no disease-free equilibrium, and there always ex-
ists an endemic equilibrium, and the global stability conditions of the unique
endemic equilibrium is obtained.

1. Introduction. The transmission of infectious disease is closely associated with
migration at different levels. The demography of migration from higher prevalence
nations to lower prevalence nations will increase infection. The movement of pop-
ulation among different areas in a country has impact on infectious disease. Travel
may increase the possibility of transmission. Therefore, it is natural to integrate
the immigration factor into epidemiological models and to investigate the influence
of immigration on the transmission of an infectious disease.

Age is another important factor when we investigate the dynamics of infectious
diseases, if the vital parameters (the transmission rate, the recovery rate) are re-
lated with age. Age-structured SIS models can provide better insight into the
spread process of the infectious diseases. Some continuous age-structured epidemic
models have been formulated and studied [7, 17, 3]. The dynamical behavior of age-
structured epidemic models is more difficult to study, it is also not easy to collect
enough data to estimate parameter functions in continuous age-structured mod-
els. Compared to the continuous ones, the well-posedness of discrete age-structured
epidemic models is obvious; statistical data of discrete models are piled weekly,
monthly, or yearly. Discrete models also exhibit richer dynamical behavior.

Discrete models in population dynamics have been extensively studied [5, 16, 14].
Formulations and analyses of discrete models in epidemiology are relatively few.
Allen studied discrete SI, SIS, SIR epidemic models and found that SI and SIR
models are similar in behavior to their continuous analogues under some natural re-
striction, and an SIS model can have more diverse behavior [1]. Castillo-Chavez and
Yakubu studied a discrete SIS model which exhibits bistability over a wide range
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of parameter values [4]. Mendez and Fort investigated the dynamical evolution of
discrete epidemic models by taking into account an intermediate class of population
[11]. Li and Wang constructed a discrete SIS epidemic model with stage structure.
Two kinds of recruitment rates are used to show the complicated dynamics[10].
Zhang and Shi studied the oscillation and global asymptotic stability of a discrete
epidemic model[15]. Sabatier et al. used a mathematical model to explore the
phenomenology of the epidemic process in a sheep flock and the potential impact
of an outbreak, according to several biological hypotheses and flock management
practices[13]. Innocenzoa, Paladinia, and Renna analyzed discrete-time determinis-
tic epidemic models numerically to determine their properties and evolutions. They
found oscillations when a small fraction of individuals became not permanently im-
munised. The smaller the probability that a recovered becomes susceptible, the
larger the period of the oscillations in the infected population[9]. Ramani et al.
studied an epidemic model where the cured individuals are not permanently immu-
nized; they found that the epidemic does not follow the usual pattern of growth and
decay but rather oscillates towards a fixed point[12]. Allen and Thrasher formulated
an age-dependent model for varicella and herpes zoster; the effects of various con-
trol strategies are investigated[2]. Zhou and Fergola formulated a general discrete
age-structured SIS model and investigated the dynamical behavior of the model
[18].

In this paper a general discrete age-structured SIS model with immigration is
formulated. The dynamical behavior of the model is studied theoretically and
numerically. The outline of the paper is organized as follows: the discrete age-
structured population model with immigration is discussed in Section 2. The dis-
crete age-structured SIS models without and with infected immigration are studied
in Section 3 and Section 4, respectively. The comparison principle is used to prove
the global stability of equilibria. Numerical simulation is given in Section 5, and
concluding remarks are presented in Section 6.

2. Discrete age-structured population model with immigration. Since birth
rate and death rate are closely age dependent, we assume that the individuals of
the same age have the same probability of death and birth. And we divide the
population into m+ 1 subgroups according to their age. Let Nj(t), j = 0, 1, 2, ...m
denote the number of individuals whose age is between the interval [jA/(m+1), (j+
1)A/(m+ 1)) at time t, where A is the maximal age that an individual can reach.
The classical discrete age-structured population model is[8]

N0(t+ 1) =

m
∑

k=0

bkNk(t), Nj+1(t+ 1) = pjNj(t), (1)

where pj = 1 − dj > 0 is the survival rate of the individuals in group j, dj is the
death rate, j = 0, 1, ...,m− 1. bj is the birth rate of the individuals in group j, and
there exist m1 and m2, 0 < m1 < m2 < m such that bj > 0 for m1 ≤ j ≤ m2. By
using notations

~N(t) =













N0(t)
N1(t)
N2(t)
...

Nm(t)













and L =













b0 b1 b2 ... bm−1 bm
p0 0 0 ... 0 0
0 p1 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... pm−1 0













, (2)
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(1) is written as the classical Leslie model

~N(t+ 1) = L ~N(t),

where L is called the Leslie matrix. In the rest part of the paper the Leslie matrix
L refers to the definition given in (2).

The Leslie matrix L has a simple and dominant eigenvalue ρ0, corresponding to a
positive eigenvector ~v0. The net reproductive number of the Leslie model is defined
to be

n = b0 + b1p0 + b2p1p0 + ...+ bjpj−1pj−2...p1p0 + ...+ bmpm−1pm−2...p1p0.

The biological interpretation of n is the average number of offsprings produced by
an individual over his whole life span[6]. n plays a crucial role in the dynamical
behavior of the solutions. The population will go to extinction if n < 1. The
population will tend to a stable age distribution if n = 1, and, the total number of
the population will go to infinity if n > 1. In any case the age structured population
model (1) has a stable age profile, i.e.,

lim
t→∞

~N(t)

ρt
0

= c0~v0.

The dynamical behavior of the classical age-structured population model (1) is
simple since it is linear and does not have any immigration. Let us assume that the
immigration to age group j is aj , j = 0, 1, ...,m, then the age-structured population
model with immigration is

N0(t+ 1) = a0 +
m
∑

k=0

bkNk(t),

Nj+1(t+ 1) = aj+1 + pjNj(t), j = 0, 1, ...,m− 1,

(3)

where aj ≥ 0 is the input population in age group j. With the notation ~a =
(a0, a1 a2, ..., am)τ , the age-structured population model with immigration (3) can
be written as

~N(t+ 1) = ~a+ L ~N(t). (4)

The recurrent calculation gives

~N(t+ 1) = (E + L+ L2 + ...+ Lt−1)~a+ Lt ~N(1), (5)

where E is the identical (m + 1) × (m + 1) matrix. If the Leslie matrix L has no
eigenvalue 1, model (5) can be written as

~N(t+ 1) = (E − L)−1(E − Lt)~a+ Lt ~N(1). (6)

If ~v is an eigenvector corresponding to the eigenvalue ρ of the matrix L, then
Ln~v = ρn~v. If ~v is a generalized eigenvector corresponding to the eigenvalue ρ of
the matrix L, satisfying (L − ρE)2~v = ~0, then Ln~v = nρn−1L~v − (n − 1)ρn~v. If
~v is a generalized eigenvector corresponding to the eigenvalue ρ of the matrix L,
satisfying (L− ρE)k~v = ~0, then

Lk~v =
k
∑

j=1

Cj
k(−1)j+1ρjLk−j~v.
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By using this formula we have

Lk+1~v =

k
∑

j=1

Cj
k(−1)j+1ρjLk−j+1~v

= kρLk~v +

k
∑

j=2

Cj
k(−1)j+1ρjLk−j+1~v

= kρ

k
∑

j=1

Cj
k(−1)j+1ρjLk−j~v +

k
∑

j=2

Cj
k(−1)j+1ρjLk−j+1~v

=
k−1
∑

j=1

Cj
k

(k + 1)j

j + 1
(−1)j+1ρj+1Lk−j~v + k(−1)k+1ρk+1~v

=
k
∑

j=1

Cj
k

(k + 1)j

j + 1
(−1)j+1ρj+1Lk−j~v.

Further calculation and mathematical induction yield

Lk+n~v =

k
∑

j=1

Cj
k

(k + 1)(k + 2)...(k + n)j

n!(j + n)
(−1)j+1ρj+nLk−j~v. (7)

In fact, if expression (7) holds for n, then

Lk+n+1~v =
k
∑

j=1

Cj
k

(k + 1)(k + 2)...(k + n)j

n!(j + n)
(−1)j+1ρj+nLk−j+1~v

=
k(k + 1)...(k + n)

(n+ 1)!
ρn+1Lk~v

+

k
∑

j=2

Cj
k

(k + 1)(k + 2)...(k + n)j

n!(j + n)
(−1)j+1ρj+nLk−j+1~v

=

k
∑

j=1

Cj
k

(k + 1)(k + 2)...(k + n+ 1)j

(n+ 1)!(j + n+ 1)
(−1)j+1ρj+n+1Lk−j~v.

From the theory of nonnegative matrix we know that the Leslie matrix L has a
dominant eigenvalue ρ0. ρ0 is simple and positive. ρ0 has a positive eigenvector
~v0. The module of other eigenvalues ρj of the matrix L is strictly less than ρ0, i.e.,
|ρj | < ρ0, j = 1, 2, ...,m. Let ρj be the eigenvalues of L, and ~vj , j = 0, 1, ...,m,
be the eigenvectors or generalized vectors corresponding to the eigenvalue ρj . ~v0,
~v1, ..., ~vm form the basis of the m + 1 dimensional Euclidian space Rm+1. The

immigration vector ~a and the initial population vectors ~N(1) can be expressed to
be the linear combination of those eigenvectors or generalized eigenvectors:

~a = α0~v0 + α1~v1 + ...+ αm~vm =

m
∑

j=0

αj~vj ,

~N(1) = c0~v0 + c1~v1 + ...+ cm~vm =
m
∑

j=0

cj~vj .
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Substituting expressions of ~a and ~N(1) into the expression of (5) we get

~N(t+ 1) =

t−1
∑

i=0

m
∑

j=0

αjL
i~vj +

m
∑

j=0

cjL
t~vj .

If every eigenvalue of L is simple, and ρ0 > 1 we have

lim
t→∞

~N(t+ 1)

ρt
0

= lim
t→∞





t−1
∑

i=0

m
∑

j=0

αj

ρi
j

ρt
0

~vj +

m
∑

j=0

cj
ρt

j

ρt
0

~vj





= lim
t→∞





m
∑

j=0

αj

1/ρt
0 − ρt

j/ρ
t
0

1 − ρj

~vj +
m
∑

j=0

cj
ρt

j

ρt
0

~vj





=
α0~v0
ρ0 − 1

+ c0~v0 =

(

α0

ρ0 − 1
+ c0

)

~v0.

The inequality Cj
k

(k + 1)(k + 2)...(k + n+ 1)j

(n+ 1)!(j + n+ 1)
=

(n+ 2)(n+ 3)...(n+ k + 1)j

j!(k − j)!(j + n+ 1)
≤

(n + k + 1)k implies that limn→∞

(n+ k + 1)k

rn
= 0 for r > 1. If ρj0 is a multiple

eigenvalue of L with a generalized eigenvector ~vj0 such that (L− ρj0E)k~vj0 = ~0, we
can have |ρj0/ρ0| < 1 and

lim
t→∞

Lk+t~vj0

ρt
0

= lim
t→∞

k
∑

j=1

Cj
k

(k + 1)(k + 2)...(k + t)j

t!(j + t)

(

ρj0

ρ0

)t

(−1)j+1ρj
j0
Lk−j~vj0 = 0.

Therefore, we can obtain

lim
t→∞

~N(t+ 1)

ρt
0

= lim
t→∞



α0

t−1
∑

i=0

1

ρt−i
0

~v0 + c0~v0 +

t−1
∑

i=0

m
∑

j=1

αj

Li~vj

ρt
0

+

m
∑

j=1

cj
Lt~vj

ρt
0





=
α0~v0
ρ0 − 1

+ c0~v0 + lim
t→∞



(E − L)−1
m
∑

j=1

αj

(E − Lt)~vj

ρt
0

+

m
∑

j=1

cj
Lt~vj

ρt
0





=

(

α0

ρ0 − 1
+ c0

)

~v0.

If ρ0 < 1 we have

lim
t→∞

~N(t+ 1) = lim
t→∞

(

(E − L)−1(E − Lt)~a+ Lt ~N(1)
)

= (E − L)−1~a.

The expression of (E−L)−1 = E+L+L2+...+Ln+... implies that (E−L)−1~a ≥ 0.
The dominant eigenvalue ρ0 = 1 will lead to linear population increase. We can

decompose the ~a and ~N(1) to be ~a = α0~v0 + ~va, ~N(1) = c0~v0 + ~vN , where ~va and
~vN are in the complement space of the eigenvector ~v0:

lim
t→∞

~N(t+ 1)

t
= lim

t→∞

1

t

(

t−1
∑

i=0

Li(α0~v0 + ~va) + Lt(~v0 + ~vN )

)

= lim
t→∞

1

t

(

tα0~v0 +

t−1
∑

i=0

Li~va + ~v0 + Lt~vN

)

= α0~v0.

We summarize our results in following theorem.
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Theorem 2.1. For the discrete age-structured population model with immigration,
(3), the population will tend to a globally asymptotically stable equilibrium if n < 1,
and it will tend to stable age distributions if n ≥ 1. That is,

lim
t→∞

~N(t+ 1) = (E − L)−1~a, if n < 1,

lim
t→∞

~N(t+ 1)

ρt
0

=

(

α0

ρ0 − 1
+ c0

)

~v0, if n > 1,

lim
t→∞

~N(t+ 1)

t
= α0~v0, if n = 1.

(8)

In the rest of this paper we focus on the dynamics of the epidemiological models
and assume that the total population reaches its equilibrium or stable age distribu-
tion, i.e., Nj(t) = N∗

j if ρ0 < 1, or Nj(t) = ρt
0N

∗

j if ρ0 > 1, where N∗

j is defined by

the right hand of (8), respectively.

3. Age-structured SIS model with susceptible immigration. Consider an
infectious disease spreading in a population. We divide the population into suscep-
tible and infectious subgroups, and assume that there is no infected immigration
and all the immigrants are susceptibles. Let Sj(t) and Ij(t) denote the number of
the susceptible and infected populations, respectively. We assume that all the new-
borns are in the susceptible group S0. After one unit time the susceptibles in group
Sj can live to become part of group Sj+1, or be infected to become part of group
Ij+1, or die. The infected in group Ij can transfer to group Ij+1, or recover to group
Sj+1, or die. The discrete age-structured SIS model with susceptible immigrants is

S0(t+ 1) = a0 +

m
∑

k=0

bkNk(t), t = 0, 1, 2, 3, ...,

Sj+1(t+ 1) = aj + pjSj(t) − λj

m
∑

k=0

βkIk(t)
pjSj(t)

Nj(t)
+ γjpjIj(t), j = 0, 1, ...m− 1,

I0(t+ 1) = 0,

Ij+1(t+ 1) = pjIj(t) + λj

m
∑

k=0

βkIk(t)
pjSj(t)

Nj(t)
− γjpjIj(t), j = 0, 1, ...m− 1,

Sj(0) = Sj0 ≥ 0, Ij(0) = Ij0 ≥ 0, j = 0, 1, ...m,

(9)

where βkλj is the transmission rate between an infected in group k and a susceptible
in group j, γj is the recovery rate of infected individuals in group j. We assume
that λj , βj and γj are positive, j = 0, 1, ...,m. In order to make our notations and
analysis simple, we combine λj and pj (γj and pj) to be one parameter. We still use
λj (γj) to stand for the λjpj (γjpj) in model (9). Model (9) has following simple
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form:

S0(t+ 1) = a0 +

m
∑

k=0

bkNk(t), t = 0, 1, 2, 3, ...,

Sj+1(t+ 1) = aj + pjSj(t) − λj

m
∑

k=0

βkIk(t)
Sj(t)

Nj(t)
+ γjIj(t), j = 0, 1, ...m− 1,

I0(t+ 1) = 0,

Ij+1(t+ 1) = pjIj(t) + λj

m
∑

k=0

βkIk(t)
Sj(t)

Nj(t)
− γjIj(t), j = 0, 1, ...m− 1,

Sj(0) = Sj0 ≥ 0, Ij(0) = Ij0 ≥ 0, j = 0, 1, ...m.

(10)

When the dominant eigenvalue of L is less than 1, the total population will tend
to an equilibrium value. We study the asymptotical behavior of Model (10) in
the case that the total population reaches the equilibrium value, i.e., Nj(t) = N∗

j ,
j = 0, 1, 2, ...,m. Using the fact that Sj(t) + Ij(t) = N∗

j the SIS model (10) can be
reduced to

I0(t+ 1) = 0,

Ij+1(t+ 1) = (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t)

(

1 −
Ij(t)

N∗

j

)

, j = 0, 1, ...m− 1,

Ij(0) = Ij0, j = 0, 1, ...m.

(11)

The existence and uniqueness of the solution of the initial value problem (11) are
obvious. The solution (11) is nonnegative if the following conditions hold [18]

(A) λ0

m
∑

k=1

βkN
∗

k ≤ N∗

1 , dj + γj +
λj

N∗

j

m
∑

k=1

βkN
∗

k ≤ 1, j = 1, 2, ...,m− 1.

We can show that the domain

D = {(I1, I2, ..., Im) | 0 ≤ Ij ≤ N∗

j , j = 1, 2, ...,m}

is positively invariant for the model; that is, the solution of (11) with the initial value
in D will keep being in D for all t = 1, 2, .... In fact, if 0 ≤ Ij(t) ≤ N∗

j , j = 1, 2, ...m,
and condition (A) holds, then we have

Ij+1(t+ 1) = Ij(t)

(

1 − dj − γj −
λj

Nj

m
∑

k=1

βkIk(t)

)

+ λj

m
∑

k=1

βkIk(t) ≥ 0,

Ij+1(t+ 1) ≤ (pj − γj)Ij(t) + λj

m
∑

k=1

βkN
∗

k

(

1 −
Ij(t)

N∗

j

)

≤ (pj − γj)Ij(t) + (pj − γj)N
∗

j

(

1 −
Ij(t)

N∗

j

)

= (pj − γj)N
∗

j ≤ pjN
∗

j = N∗

j+1, j = 0, 1, ...m− 1.

In [18] the basic reproductive number of (11) was defined; the global stability of
the disease-free equilibrium was obtained if R0 < 1. It was proved that the disease-
free equilibrium is unstable if R0 > 1. The existence and the local stability of the
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endemic equilibrium were discussed when 0 < R0 − 1 ≪ 1. Now, let us investigate
the existence and global stability of the endemic equilibrium of (11) for R0 > 1. The
components I∗1 , I

∗

2 , ..., I
∗

m of the endemic equilibrium satisfy the following equations

I∗1 = λ0

∑m

k=1 βkI
∗

k ,

I∗j+1 = (pj − γj)I
∗

j + λj

∑m

k=1 βkI
∗

k

(

1 −
I∗j
N∗

j

)

, j = 1, 2, ...,m− 1.
(12)

We introduce the notations

~I∗ =













I∗1
I∗2
I∗3
...
I∗m













, B =













0 0 ... 0 0
p1 − γ1 0 ... 0 0

0 p2 − γ2 ... 0 0
... ... ... ... ...
0 0 ... pm−1 − γm−1 0













,

~λ =













λ0

λ1

λ2

...
λm−1













, Q =













0 0 ... 0 0
λ1/N

∗

1 0 ... 0 0
0 λ2/N

∗

2 ... 0 0
... ... ... ... ...
0 0 ... λm−1/N

∗

m−1 0













.

The equilibrium equation for I∗j can be written as

~I∗ = ~λx+B~I∗ − xQ~I∗, (13)

where, x = β1I
∗

1 + β2I
∗

2 + ...+ βmI
∗

m = (~β · ~I∗), “·” denotes the dot product of two

vectors. ~I∗ has the expression

~I∗ = x(E −B)−1(~λ−Q~I∗),

where E is the identity m×mmatrix, and (E−B) is invertible since det(E−B) = 1.
From the definition of B, we know that the inverse (E−B)−1 = E+B+B2 + ...+
Bm−1 is nonnegative. The definition of x implies x = 0, or

g(~I∗) = (~β · (E −B)−1(~λ−Q~I∗)) − 1 = 0. (14)

The basic reproductive number of model (11) is defined to be R0 = ~β · (E−B)−1~λ.
From the expression of (E −B)−1 we see that

R0 = ~β ·E~λ+ ~β · B~λ+ ~β · B2~λ+ ...+ ~β ·Bm−2~λ+ ~β · Bm−1~λ.

If we introduce one infected individual in every age group into the community
with all individuals in the population susceptible, the secondary infection by those

infected in the first year is ~β · E~λ, the secondary infected by those infected in

the second year is ~β · B~λ, the secondary infection by those infected in the third

year is ~β · B2~λ, and the secondary infection by those infected in the mth year

is ~β · Bm−1~λ. Subsequently, the biological interpretation of R0 is the secondary
infection if we introduce one infected individual in every age group to a whole
susceptible pool. The discrete age-structured SIS model (11) has only the disease

free equilibrium ~I∗ = 0 (x = 0) if R0 < 1. When R0 > 1, it is easy to see

that g(~0) = (~β · (E − B)−1~λ) − 1 = R0 − 1 > 0. When ~I∗ = (N∗

1 , N
∗

2 , ..., N
∗

m)τ ,

x =
∑m

j=1 βjN
∗

j , ~λ − Q~I∗ = (λ0, 0, 0, ..., 0)τ , and g(~I∗) = λ0β1 − 1 < 0, since

λ0

∑m

k=1 βkN
∗

k ≤ N∗

1 in condition (A) implies λ0β1 < 1. Therefore, the existence of
endemic equilibrium of (11) was established for R0 > 1.
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Theorem 3.1. Assume condition (A) holds and R0 > 1. Then model (11) has an
endemic equilibrium I∗(I∗0 , I

∗

1 , I
∗

2 , ..., I
∗

m), which is globally asymptotically stable for
positive initial value in D.

Proof. The global attraction of the endemic equilibrium for the solutions with
positive initial values can be proved by comparison principle. The derivative of
Ij+1(t+ 1) with respect to Ik(t) is

∂Ij+1(t+ 1)

∂Ik(t)
=























λjβk

(

1 −
Ij(t)

N∗

j

)

, k 6= j,

λjβj

(

1 −
Ij(t)

N∗

j

)

+ 1 − dj − γj −
λj

N∗

j

∑m

k=1 βkIk(t), k = j.

Under this assumption we see that
∂Ij+1(t+ 1)

∂Ik(t)
≥ 0; that is, the solution of model

(11) is monotone with the initial conditions. For any solution of (11) with positive
initial value Ij(0), we can choose a small positive ε such that

εI∗j ≤ Ij(0), j = 1, 2, ...,m.

The comparison principle shows that

Iε
j (t) ≤ Ij(t), j = 1, 2, ...,m, t = 1, 2, ...,

where Iε
j (t) is the solution of (11) with the initial value Iε

j (0) = εI∗j , and Ij(t) is
the solution of (11) with the initial value Ij(0). For the solution Iε

j (t) we see that

Iε
j+1(1) = (pj − γj)εI

∗

j + ελj

m
∑

k=1

βkI
∗

k

(

1 −
εI∗j
N∗

j

)

= εI∗j+1 + ελj

m
∑

k=1

βkI
∗

k

(1 − ε)I∗j
N∗

j

≥ εI∗j+1

(

1 + λjβj+1

(1 − ε)I∗j
N∗

j

)

≥ εI∗j+1(1 + (1 − ε)σ),

(15)

where σ < σ0, and σ0 is a positive number,

σ0 = min

{

1

10
, λ1β2

I∗1
N∗

1

, λ2β3
I∗2
N∗

2

, ..., λm−1βm

I∗m−1

N∗

m−1

}

.

The similar process shows this:

Iε
j+1(2) ≥ ε(1 + (1 − ε)σ)I∗j+1(1 + (1 − ε(1 + (1 − ε)σ)σ).

The mathematical induction shows that

Ij+1(t) ≥ εtI
∗

j+1, t = 0, 1, 2, ...,

where εt is determined by following recurrent equation

ε0 = ε, εt+1 = εt

(

1 + (1 − εt)σ
)

, t = 0, 1, 2, ....

It is easy to see that {εt}
+∞

t=0 is a monotonically increasing sequence, satisfying
0 < εt < 1 if 0 < ε0 < 1 and 0 < σ < σ0 < 1/10. Therefore, the limit limt→+∞ εt

exists and is greater than 0. The fact that

lim
t→+∞

εt+1 = lim
t→+∞

εt

(

1 + (1 − lim
t→+∞

εt)σ
)
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implies that limt→+∞ εt = 1. Hence, for any given positive number η, Ij+1(t) >
(1 − η)I∗j+1 holds if t is large enough.

Now let us consider the solution of (11) with the initial value Ij(0) = N∗

j , j =
1, 2, ...,m. The solution of (11) satisfies

I1(1) = λ0

m
∑

k=1

βkN
∗

k < N∗

1 ,

Ij+1(1) = (pj − γj)N
∗

j < N∗

j+1, j = 1, 2, ...,m− 1,

If we use Ij(1), j = 1, 2, ...,m as the new initial value the comparison theorem
implies Ij(2) ≤ Ij(1), j = 1, 2, ...,m. The mathematical induction shows that the
solution of (11) with initial value Ij(0) = N∗

j is a monotonically decreasing sequence

Ij(t + 1) ≤ Ij(t), j = 1, 2, ...,m. The monotonicity of Ij(t) ≥ 0 implies that the
limt→+∞ Ij(t) = I∗∗j , j = 1, 2, ...,m. The limit I∗∗j , j = 1, 2, ...,m satisfies the
equation

I∗∗j+1 = (pj − γj)I
∗∗

j + λj

m
∑

k=1

βkI
∗∗

k

(

1 −
I∗∗j

N∗

j

)

, j = 0, 1, ...m− 1.

Therefore, Ij = I∗∗j , j = 1, 2, ...,m is also the equilibrium solution of model (11).
The comparison theorem shows that I∗∗j ≥ I∗j , j = 1, 2, ...,m. If there is one j0
such that I∗∗j0

> I∗j0 , we can choose a sufficiently small ξ such that ξI∗∗j < I∗j , j =
1, 2, ...,m hold. Consider two solutions of model (11) with the initial values ξI∗∗j and
I∗j , respectively. The similar procedure can show that the solution with initial value

ξI∗∗j satisfies Iξ
j (t) > (1 − η)I∗∗j for sufficiently large t and any sufficiently small

positive η. The comparison principle shows that Iξ
j (t) ≤ I∗j , j = 1, 2, ...,m, t =

1, 2, ..., i.e., (1 − η)I∗∗j ≤ I∗j , especially, (1 − η)I∗∗j0
≤ I∗j0 . That contradiction shows

that I∗∗j = I∗j , j = 1, 2, ...,m.

For any given solution of (11) with nonnegative initial value Ij(0) > 0, we can
choose a small positive number ε such that εI∗j ≤ Ij(0) ≤ N∗

j . We have proved

that the two solutions of (11) with initial values εI∗j and N∗

j tend to the endemic

equilibrium ~I∗. Then, the comparison theorem implies limt→∞ Ij(t) = I∗j , j =
1, 2, ...,m. The proof of global attraction of the endemic equilibrium is completed.

For any give positive number ε, we can choose a positive number δ = ε/(2‖~I∗‖),
where ‖ · ‖ is the usual norm in finite Euclidean space, i.e., ‖(I1, I2, ..., Im)‖ =
√

I2
1 + I2

2 + ...+ I2
m. For any solution with initial value satisfying ‖~I(0) − ~I∗‖ < δ

we have |Ij(0) − I∗j | < δ and (1 − δ)I∗j < Ij(0) < (1 + δ)I∗j . Then, the comparison

principle implies that I−δ
j (t) < Ij(t) < I+δ

j (t), where I−δ
j (t) and I+δ

j (t) are solutions

of (11) with initial value I−δ
j (0) = (1 − δ)I∗j and I+δ

j (0) = (1 + δ)I∗j , respectively.

I−δ
j (t) is monotonically increasing and I−δ

j (t) ≥ I−δ
j (0) = (1 − δ)I∗j . I+δ

j (t) is

monotonically decreasing and I+δ
j (t) ≤ I+δ

j (0) = (1+δ)I∗j . Therefore, ‖~I(t)−~I∗‖ <
ε for any t ≥ 0. The endemic equilibrium is stable. The global stability of the
endemic equilibrium follows from the local stability and global attraction.

From Theorem 2.1 we see that the total population in each age group will increase
to infinity and the age distribution will tend to a stable profile if the dominant
eigenvalue ρ0 of L is greater than the unit. Now, we assume that the age distribution
of the total population reaches the stable value, i.e., Nj(t) = ρt

0N
∗

j . Using the fact



DISCRETE AGE-STRUCTURED SIS MODELS 419

that Sj(t) + Ij(t) = ρt
0N

∗

j the SIS model (10) can be reduced to

I0(t+ 1) = 0,

Ij+1(t+ 1) = (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t)

(

1 −
Ij(t)

ρt
0N

∗

j

)

, j = 0, 1, ...m− 1,

Ij(0) = Ij0, j = 0, 1, ...m.

(16)

By using the new variables Ĩj(t) = Ij(t)/ρ
t
0 and parameters β̃j = βj/ρ0, p̃j =

pj/ρ0 = 1/ρ0 − dj/ρ0, γ̃j = γj/ρ0, d̃j = dj/ρ0, j = 0, 1, ...,m, we have the similar
model as that ρ0 < 1

Ĩ0(t+ 1) = 0,

Ĩj+1(t+ 1) = (p̃j − γ̃j)Ĩj(t) + λj

m
∑

k=1

β̃k Ĩk(t)

(

1 −
Ĩj(t)

N∗

j

)

, j = 0, 1, ...m− 1,

Ĩj(0) = Ĩj0, j = 0, 1, ...m.

(17)

We use the similar assumption

(B) λ0

m
∑

k=1

β̃kN
∗

k ≤ N∗

1 , d̃j + γ̃j +
λj

N∗

j

m
∑

k=1

β̃kN
∗

k ≤ 1, j = 1, 2, ...,m− 1.

The basic reproductive number R̃0 of model (17) can be defined the same way. We
can obtain the similar stability result.

Theorem 3.2. Assume condition (B) holds. The endemic equilibrium of model

(17) is globally asymptotically stable if R̃0 > 1.

The proof of Theorem 3.2 is similar to Theorem 3.1 since equations in (17) have
the same form as those in (11). The epidemiological explanation of Theorem 3.2
is different from Theorem 3.1. Theorem 3.1 implies that the number of infected
individuals in each age group will tend to a constant, i.e., limt→∞ Ij(t) = I∗j . While
Theorem 3.2 says that the age distribution of the infected individuals in each age
group will tend to a constant, i.e., limt→∞ Ij(t)/ρ

t = Ĩ∗j .

4. Age-structured SIS model with infected immigration. If there is immi-
gration in both susceptible and infected populations, the analysis becomes more
complicated. Let φj and ψj , φj +ψj = aj j = 0, 1, 2, ...,m, denote the immigration
number of susceptible and infected populations in age group j, respectively. We
assume that the new borns are in susceptible groups and ψ0 = 0, φ0 = a0. The SIS
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model (corresponding to (10)) with immigration is

S0(t+ 1) = φ0 +

m
∑

j=1

bjNj(t), t = 0, 1, 2, 3, ...,

Sj+1(t+ 1) = φj+1 + pjSj(t) − λj

m
∑

k=0

βkIk(t)
Sj(t)

Nj(t)
+ γjIj(t), j = 0, 1, ...m− 1,

I0(t+ 1) = 0,

Ij+1(t+ 1) = ψj+1 + pjIj(t) + λj

m
∑

k=0

βkIk(t)
Sj(t)

Nj(t)
− γjIj(t), j = 0, 1, ...m− 1,

Sj(0) = Sj0 ≥ 0, Ij(0) = Ij0 ≥ 0, φj + ψj = aj, j = 0, 1, ...m.

(18)

When the dominant eigenvalue ρ0 of matrix L is less than the unit, the total
population in each age group will tend to its equilibrium state, i.e., limt→∞Nj(t) =
N∗

j . Using the fact that Sj(t) + Ij(t) = N∗

j , the SIS model with immigration (18)
can be reduced to

I1(t+ 1) = ψ1 + λ0

m
∑

k=1

βkIk(t),

Ij+1(t+ 1) = ψj+1 + (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t)

(

1 −
Ij(t)

N∗

j

)

,

j = 1, 2, ...,m− 1,

Ij(0) = Ij0 > 0, j = 1, 2, ...,m.

(19)

There is no disease-free equilibrium for SIS model (19) due to the infected immi-
gration. Let I∗j be the jth component of the equilibrium (19), and x =

∑m

j=1 βjI
∗

j .
We can have following equations

I∗1 = ψ1 + λ0x,

I∗2 = ψ2 + (p1 − γ1)I
∗

1 + λ1x

(

1 −
I∗1
N∗

1

)

,

I∗j+1 = ψj+1 + (pj − γj)I
∗

j + λjx

(

1 −
I∗j
N∗

j

)

, j = 2, 3, ...,m− 1.

(20)

By introducing the notation ~ψ = (ψ1, ψ2, ..., ψm)τ the equilibrium equation for I∗j
can be written as

~I∗ = ~ψ + ~λx+B~I∗ − xQ~I∗, (21)

where ~I∗, ~λ, B, and Q are the same as those defined in section 3. The equilibrium
~I∗ has the expression

~I∗ = (E −B)−1 ~ψ + x(E −B)−1(~λ−Q~I∗),

where E is the identity matrix of dimension m. The definition of x = (~β ·~I∗) implies

(~β · (E −B)−1 ~ψ) + x(~β · (E −B)−1(~λ−Q~I∗)) − x = 0, (22)

When ~I∗ = 0 (x = 0) the left side of (22) is (~β · (E − B)−1 ~ψ) > 0. When
~I∗ = ~N∗ = (N∗

1 , N
∗

2 , ..., N
∗

m)τ , x = (~β · ~N∗) =
∑m

j=1 βkN
∗

j , x∗N , and x(~β ·



DISCRETE AGE-STRUCTURED SIS MODELS 421

(E−B)−1(~λ−Q~I∗)) = β1λ0x
∗

N . The left side of (22) is (~β · (E−B)−1 ~ψ)−β1λ0x
∗

N .
The existence of endemic equilibrium of (19) is stated in following theorem.

Theorem 4.1. Assume that the dominant eigenvalue of the Leslie matrix L is
less than one. Then, the discrete age-structured SIS model (19) has an endemic

equilibrium ~I∗ = (I∗1 , I
∗

2 , ..., I
∗

m) if (~β · (E −B)−1 ~ψ) − β1λ0x
∗

N < 0.

The condition (~β · (E − B)−1 ~ψ) − β1λ0x
∗

N < 0 may not be necessary for the
existence of the endemic equilibrium of model (19). We hope that this condition
can be canceled by further detailed analysis.

The difference of the equation in model (19) and (11) is the constant immigration
ψj . The extra term ψj does not change the monotonicity of the model with respect
to its initial value. The similar procedure as we have used in Section 3 can show
global stability of (19).

Theorem 4.2. Assume that the dominant eigenvalue of the Leslie matrix L is less
than one and the condition (A) holds. Then, the solution of (19) is monotoni-
cally increasing with the initial value, and the endemic equilibrium (I∗1 , I

∗

2 , ..., I
∗

m)
is globally asymptotically stable if it exists.

When the dominant eigenvalue of the Leslie matrix is greater than the unit,
the total population will not have the equilibrium state; we assume that the total
population reaches the stable age profile, Sj(t) + Ij(t) = Nj(t) = ρt

0N
∗

j , and we
have

I1(t+ 1) = ψ1 + λ0

m
∑

k=1

βkIk(t),

Ij+1(t+ 1) = ψj+1 + (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t)

(

1 −
Ij(t)

ρt
0N

∗

j

)

,

j = 1, 2, ...,m− 1,

Ij(0) = Ij0 > 0, j = 1, 2, ...,m.

(23)

The presence of the infected immigration makes it impossible to transform model
(23) to a simple and time independent model by variable changes. We can study
following linear model

I1(t+ 1) = ψ1 + λ0

m
∑

k=1

βkIk(t),

Ij+1(t+ 1) = ψj+1 + (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t), j = 1, 2, ...,m− 1,

Ij(0) = Ij0 > 0, j = 1, 2, ...,m.

(24)

For the same initial values, the comparison theory implies that the solution of model
(23) is less than the solution of model (24). The basic reproductive number of the

linear model (24) is R0 = ~β · (E − B)−1~λ. The linear model (24) has a globally
asymptotical endemic equilibrium if R0 < 1. And the solution of (24) will go to
infinity if R0 > 1. From the comparison theorem we know that the solution of
model (23) will be bounded if R0 < 1. The solution of model (23) may be bounded
or keep increasing if R0 > 1. We will use numerical simulation to investigate the
dynamical behavior of model (23) in the next section.
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5. Numerical simulation. In this section we present numerical simulation for
different dominant eigenvalue ρ0 of the Leslie matrix L and for different basic re-
productive number R0. We use equivalent model equations for the total population
and for the infected individuals. m is chosen to be 17, and the model is

N0(t+ 1) = a0 +
m
∑

k=0

bkNk(t),

Nj+1(t+ 1) = aj+1 + pjNj(t), j = 0, 1, ..., 16,

Nj(0) > 0, j = 0, 1, ..., 17,

I0(t+ 1) = 0, I1(t+ 1) = ψ1 + λ0

m
∑

k=0

βkIk(t),

Ij+1(t+ 1) = ψj+1 + (pj − γj)Ij(t) + λj

m
∑

k=1

βkIk(t)

(

1 −
Ij(t)

Nj(t)

)

,

j = 1, 2, ..., 16,

I0(0) = 0, Ij(0) = Ij0 ≥ 0, j = 1, 2, ..., 17.

(25)

The equations in the model for the total population are independent of others,
and two sets of parameters are used to show different cases: ρ0 < 1 and ρ0 > 1.

The death rate in different age groups is ~d=(6.17, 0.58, 0.41, 0.62, 0.98, 1.14, 1.31,
1.60, 2.46, 3.39, 5.29, 8.59, 14.55, 23.91, 40.27, 62.84, 101.81, 161.04)/1000. The im-
migration is ~a=(3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2). The initial value is
(180, 179, 179, 179, 179, 178, 178, 178, 178, 177, 177, 176, 174, 172, 168, 161, 151, 135).

The birth rate in the first case is ~b=(0, 0, 0, 10.5, 245.34, 204.88, 76.56, 17.3,

3.54, 1.02, 0, 0, 0, 0, 0, 0, 0, 0)/1000. The birth rate for the second case is 4~b. In
the first case, the dominant eigenvalue ρ0 of the Leslie matrix L is 0.9032. The to-

tal population has the globally asymptotical equilibrium ~N∗ =(42.21, 45.95, 50.92,
56.90, 63.86, 71.80, 80.72, 90.61, 101.47, 111.22, 119.84, 127.21, 133.11, 137.18,
138.90, 137.30, 131.68, 120.27)τ . In the second case, the dominant eigenvalue ρ0 of
the Leslie matrix L is 1.1501. The total population increases to infinity; the stable

age profile is ~N∗ =273.52, 236.35, 205.38, 178.50, 155.11, 134.73, 117.01, 101.60,
88.20, 76.50, 66.29, 57.33, 49.42, 42.34, 35.94, 29.99, 24.44, 19.08)τ .

For the disease transmission parameters, we take ~λ =(5.7, 2.3, 3.3, 3.4, 4.1, 2.9,

3.7, 4.7, 3.3, 2.4, 3.1, 2.9, 3.8, 4.5, 5.2, 5.7, 5.9, 6.2)/100, ~β=(4.6, 6.6, 6.8, 8.2,
5.8, 7.4, 9.4, 6.6, 4.8, 6.2, 5.8, 7.6, 7.2, 6.4, 5.6, 5.1, 4.5)/100, ~γ=(0.16, 0.17, 0.18,
0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.25, 0.24, 0.24, 0.23, 0.22, 0.15, 0.10), and
~ψ=(1,2,3,3,4,4,5,5,5,4,4,4,3,2,2,1,1). Three sets of the initial conditions are used in
the simulation. Those initial values for (I1, I2, ..., I17) are (20, 25, 30, 35, 40, 45,
50, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10), (80, 100, 120, 140, 160, 180, 200, 220,
200, 180, 160, 140, 120, 100, 80, 60, 40), and (4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7,
6, 5, 4, 3, 2), respectively. We increase the transmission rate β to 5β and 10β to
see the influence of β to the infected equilibrium. The result is shown in Figure
1. The abscissa is time; the vertical coordinate is the total population or infected
population. The top left figure is the total population; the top right is the infected
with transmission rate β; the bottom left is the infected with transmission rate 5β;
the bottom right is the infected with transmission rate 10β. The total population
and the infected tend to their equilibrium states. The total value of the population
and the infected at their equilibrium states are 1761, 223, 840, 1394, respectively.
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Figure 1. The total population and total infected with different ~β

Figure 2 shows the simulation results of model (25) with dominant eigenvalue

ρ0 = 1.1501. The birth rate of the population increases to 4~b, and other parameters
are kept the same as those in Figure 1. The total population keeps increasing very

fast. While the infected numbers for the small and the middle ~β still tend to their

equilibrium states. The total number of the infected for the given ~β is 227, only a
little larger than that in Figure 1: 223. The total number of the infected for 5β is
674, even less than that in Figure 1: 840. The total number of the infected for the

10~β keeps increasing, and may go to infinity. Though the basic reproductive number
defined in the previous section does not have the exact biological interpretation as
the classical SIS or SIR model, the R0 may still play an important role in the
transmission of the spreading infectious disease.

6. Concluding remarks. The dynamics of the total population is important to
the transmission of infectious disease. We have studied the dynamical behavior of
the age-structured population model with immigration. The discussion is based
on the classical Leslie matrix model. The net reproductive number n was defined
and used as the threshold parameter to investigate the dynamical behavior. There
exists a positive equilibrium and it is globally asymptotically stable if n < 1. There
is no equilibrium and the number of the population will tend to infinity if n > 1.
The population has a stable age profile even though the number of the population
increases to infinity.

Under the assumption of fixed total population or stable age profile, the age-
structured SIS model has been reduced to the model concerning equations of the
infected and the total population. If there is no any infected immigration, the
basic reproductive number R0 determines the asymptotic behavior. The disease-free
equilibrium is globally asymptotically stable if R0 < 1. It is proved that there exists
a globally asymptotically stable endemic equilibrium if R0 > 1. The global stability
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Figure 2. The total population and total infected with different ~β

of endemic equilibrium is similar in both cases n < 1 and n > 1. Epidemiological
interpretation is different: the number of infected individuals in every age group
will tend to a positive constant if n < 1; the number of infected individuals will
tend to a stable age profile, i.e., limt→+∞ Ij(t)/ρ

t
0 = c̃j , if n > 1. If there is

immigration in both susceptible and infected populations, then there is no disease
free-equilibrium. The endemic equilibrium is globally asymptotically stable for the
equilibrium total population (Nj(t) = N∗

j , n < 1). When n > 1 the SIS model
with infected immigration becomes more complicated. The sufficient conditions for
the boundedness of the infected population is obtained by comparison theory. The
dynamical behavior of the model was investigated by numerical simulation.

Our discussion of the dynamical behavior of the age-structured SIS model is
based on the natural condition (A) or (B). Condition (A) or (B) is biologically
necessary since the solution of the model with positive initial values should be
nonnegative. The condition is also sufficient to guarantee the monotonicity, which
is crucial in mathematical analysis of the dynamics. Though the age-structured
models of infectious diseases with immigration are more complicated, they are more
realistic than models without age structure and immigration. There is very little
research on discrete age-structured SIS models. The study in this paper improved
and generalized our result in [18]. More data and detailed analysis on discrete age-
structured epidemic models with immigration are the object of our current efforts.
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